1
|
Lei J, Li X, Xue W, Qian X, Wang T, Xiang Y, Zhang Y, Chen M, Liu Z. [ 18F]FDG PET/CT versus [ 18F]FDG PET/MRI in the diagnosis of lymph node metastasis in nasopharyngeal carcinoma: a systematic review and meta-analysis. Front Med (Lausanne) 2024; 11:1450526. [PMID: 39478819 PMCID: PMC11521955 DOI: 10.3389/fmed.2024.1450526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Purpose This meta-analysis aimed to evaluate the comparative diagnostic accuracy of [18F]FDG PET/CT versus [18F]FDG PET/MRI in identifying lymph node metastases in individuals with nasopharyngeal carcinoma. Methods A comprehensive search was executed across PubMed, Embase, and Web of Science through September 2023 to identify studies evaluating the diagnostic precision of [18F]FDG PET/CT and [18F]FDG PET/MRI in detecting lymph node metastasis in nasopharyngeal carcinoma. Sensitivity and specificity were assessed through the DerSimonian-Laird method, incorporating the Freeman-Tukey transformation. Results The meta-analysis encompassed nine articles, involving a total of 916 patients. The overall sensitivity and specificity of [18F]FDG PET were 0.95 (95%CI: 0.88-1.00) and 0.95 (95%CI: 0.84-1.00). The overall sensitivity of [18F]FDG PET/CT was 0.94 (95%CI, 0.85-0.99), whereas [18F]FDG PET/MRI achieved a sensitivity of 1.00 (95%CI, 0.94-1.00). The findings reveal that [18F]FDG PET/CT demonstrates comparable sensitivity to [18F]FDG PET/MRI (p = 0.20). The overall specificity of [18F]FDG PET/CT was 0.94 (95%CI, 0.82-1.00), whereas [18F]FDG PET/MRI exhibited a specificity of 0.98 (95%CI, 0.93-1.00). Additionally, the results suggest that [18F]FDG PET/CT offers similar specificity to [18F]FDG PET/MRI (p = 0.11). Conclusion [18F]FDG PET demonstrates high sensitivity and specificity in identifying lymph node metastasis in nasopharyngeal carcinoma. Furthermore, [18F]FDG PET/CT exhibits comparable sensitivity and specificity to [18F]FDG PET/MRI. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=496006, PROSPERO (CRD42024496006).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhaohui Liu
- Department of Otorhinolaryngology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Ebrahimi S, Lundström E, Batasin SJ, Hedlund E, Stålberg K, Ehman EC, Sheth VR, Iranpour N, Loubrie S, Schlein A, Rakow-Penner R. Application of PET/MRI in Gynecologic Malignancies. Cancers (Basel) 2024; 16:1478. [PMID: 38672560 PMCID: PMC11048306 DOI: 10.3390/cancers16081478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The diagnosis, treatment, and management of gynecologic malignancies benefit from both positron emission tomography/computed tomography (PET/CT) and MRI. PET/CT provides important information on the local extent of disease as well as diffuse metastatic involvement. MRI offers soft tissue delineation and loco-regional disease involvement. The combination of these two technologies is key in diagnosis, treatment planning, and evaluating treatment response in gynecological malignancies. This review aims to assess the performance of PET/MRI in gynecologic cancer patients and outlines the technical challenges and clinical advantages of PET/MR systems when specifically applied to gynecologic malignancies.
Collapse
Affiliation(s)
- Sheida Ebrahimi
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Elin Lundström
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Surgical Sciences, Radiology, Uppsala University, 751 85 Uppsala, Sweden
- Center for Medical Imaging, Uppsala University Hospital, 751 85 Uppsala, Sweden
| | - Summer J. Batasin
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Elisabeth Hedlund
- Department of Surgical Sciences, Radiology, Uppsala University, 751 85 Uppsala, Sweden
| | - Karin Stålberg
- Department of Women’s and Children’s Health, Uppsala University, 751 85 Uppsala, Sweden
| | - Eric C. Ehman
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Vipul R. Sheth
- Department of Radiology, Stanford University, Palo Alto, CA 94305, USA; (V.R.S.)
| | - Negaur Iranpour
- Department of Radiology, Stanford University, Palo Alto, CA 94305, USA; (V.R.S.)
| | - Stephane Loubrie
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Alexandra Schlein
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rebecca Rakow-Penner
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
DeBay DR, Brewer KD. Combined PET/MR: Where Anatomical Imaging Meets Cellular Function. Methods Mol Biol 2024; 2729:391-408. [PMID: 38006508 DOI: 10.1007/978-1-0716-3499-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Recent technological advances in medical imaging have allowed for both sequential and simultaneous acquisition of magnetic resonance imaging (MRI) and positron emission tomography (PET) data. Simultaneous PET/MRI offers distinct advantages by efficiently capturing functional and metabolic processes with co-localized, high-resolution anatomical images while minimizing time and movement. We will describe some of the technical and logistic requirements for optimizing sequential and simultaneous PET/MRI in the preclinical research setting.
Collapse
Affiliation(s)
- Drew R DeBay
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, Canada
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada
| | - Kimberly D Brewer
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada.
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada.
- Diagnostic Radiology, Dalhousie University, Halifax, Canada.
| |
Collapse
|
4
|
Virarkar MK, Montanarella M, Itani M, Calimano-Ramirez L, Gopireddy D, Bhosale P. PET/MRI imaging in neuroendocrine neoplasm. Abdom Radiol (NY) 2023; 48:3585-3600. [PMID: 36525051 DOI: 10.1007/s00261-022-03757-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Molecular imaging plays a vital role in the management of neuroendocrine neoplasms (NENs). Somatostatin receptor (SSTR) PET is critical for evaluating NENs, ascertaining peptide receptor radionuclide therapy (PRRT) eligibility, and treatment response. SSTR-PET/MRI can provide a one-stop-shop multiparametric evaluation of NENs. The acquisition of complementary imaging information in PET/MRI has distinct advantages over PET/CT and MR imaging acquisitions. The purpose of this manuscript is to provide a comprehensive overview of PET/MRI and a current review of recent PET/MRI advances in the diagnosis, staging, treatment, and surveillance of NENs.
Collapse
Affiliation(s)
- Mayur K Virarkar
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA
| | - Matthew Montanarella
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA
| | - Malak Itani
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 510 S Kings Highway Blvd, Campus Box 8131, St Louis, MO, 63110, USA
| | - Luis Calimano-Ramirez
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA.
| | - Dheeraj Gopireddy
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA
| | - Priya Bhosale
- Division of Diagnostic Imaging, Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Evaluation of a High-Sensitivity Organ-Targeted PET Camera. SENSORS 2022; 22:s22134678. [PMID: 35808181 PMCID: PMC9269056 DOI: 10.3390/s22134678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023]
Abstract
The aim of this study is to evaluate the performance of the Radialis organ-targeted positron emission tomography (PET) Camera with standardized tests and through assessment of clinical-imaging results. Sensitivity, count-rate performance, and spatial resolution were evaluated according to the National Electrical Manufacturers Association (NEMA) NU-4 standards, with necessary modifications to accommodate the planar detector design. The detectability of small objects was shown with micro hotspot phantom images. The clinical performance of the camera was also demonstrated through breast cancer images acquired with varying injected doses of 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (18F-FDG) and qualitatively compared with sample digital full-field mammography, magnetic resonance imaging (MRI), and whole-body (WB) PET images. Micro hotspot phantom sources were visualized down to 1.35 mm-diameter rods. Spatial resolution was calculated to be 2.3 ± 0.1 mm for the in-plane resolution and 6.8 ± 0.1 mm for the cross-plane resolution using maximum likelihood expectation maximization (MLEM) reconstruction. The system peak noise equivalent count rate was 17.8 kcps at a 18F-FDG concentration of 10.5 kBq/mL. System scatter fraction was 24%. The overall efficiency at the peak noise equivalent count rate was 5400 cps/MBq. The maximum axial sensitivity achieved was 3.5%, with an average system sensitivity of 2.4%. Selected results from clinical trials demonstrate capability of imaging lesions at the chest wall and identifying false-negative X-ray findings and false-positive MRI findings, even at up to a 10-fold dose reduction in comparison with standard 18F-FDG doses (i.e., at 37 MBq or 1 mCi). The evaluation of the organ-targeted Radialis PET Camera indicates that it is a promising technology for high-image-quality, low-dose PET imaging. High-efficiency radiotracer detection also opens an opportunity to reduce administered doses of radiopharmaceuticals and, therefore, patient exposure to radiation.
Collapse
|
6
|
Hu H, Quintana J, Weissleder R, Parangi S, Miller M. Deciphering albumin-directed drug delivery by imaging. Adv Drug Deliv Rev 2022; 185:114237. [PMID: 35364124 PMCID: PMC9117484 DOI: 10.1016/j.addr.2022.114237] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023]
Abstract
Albumin is the most abundant plasma protein, exhibits extended circulating half-life, and its properties have long been exploited for diagnostics and therapies. Many drugs intrinsically bind albumin or have been designed to do so, yet questions remain about true rate limiting factors that govern albumin-based transport and their pharmacological impacts, particularly in advanced solid cancers. Imaging techniques have been central to quantifying - at a molecular and single-cell level - the impact of mechanisms such as phagocytic immune cell signaling, FcRn-mediated recycling, oncogene-driven macropinocytosis, and albumin-drug interactions on spatial albumin deposition and related pharmacology. Macroscopic imaging of albumin-binding probes quantifies vessel structure, permeability, and supports efficiently targeted molecular imaging. Albumin-based imaging in patients and animal disease models thus offers a strategy to understand mechanisms, guide drug development and personalize treatments.
Collapse
Affiliation(s)
- Huiyu Hu
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Surgery, Massachusetts General Hospital and Harvard Medical School, United States; Department of General Surgery, Xiangya Hospital, Central South University, China
| | - Jeremy Quintana
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States; Department of Systems Biology, Harvard Medical School, United States
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, United States
| | - Miles Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States.
| |
Collapse
|
7
|
Disselhorst JA, Newport DF, Schmid AM, Schmidt FP, Parl C, Liu CC, Pichler BJ, Mannheim JG. NEMA NU 4-2008 performance evaluation and MR compatibility tests of an APD-based small animal PET-insert for simultaneous PET/MR imaging. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac499d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/10/2022] [Indexed: 11/11/2022]
Abstract
Abstract
An avalanche photodiode (APD)-based small animal positron emission tomography (PET)-insert was fully evaluated for its PET performance, as well as potential influences on magnetic resonance imaging (MRI) performance. This PET-insert has an extended axial field of view (FOV) compared with the previous design to increase system sensitivity, as well as an updated cooling and temperature regulation to enable stable and reproducible PET acquisitions. The PET performance was evaluated according to the National Electrical Manufacturers Association NU4-2008 protocol. The energy and timing resolution’s full width at half maximum were 16.1% and 4.7 ns, respectively. The reconstructed radial spatial resolution of the PET-insert was 1.8 mm full width at half maximum at the center FOV using filtered back projection for reconstruction and sensitivity was 3.68%. The peak noise equivalent count rates were 70 kcps for a rat-like and 350 kcps for a mouse-like phantom, respectively. Image quality phantom values and contrast recovery were comparable to state-of-the art PET-inserts and standalone systems. Regarding MR compatibility, changes in the mean signal-to-noise ratio for turbo spin echo and echo-planar imaging sequences were below 8.6%, for gradient echo sequences below 1%. Degradation of the mean homogeneity was below 2.3% for all tested sequences. The influence of the PET-insert on the B
0 maps was negligible and no influence on functional MRI sequences was detected. A mouse and rat imaging study demonstrated the feasibility of in vivo simultaneous PET/MRI.
Collapse
|
8
|
Abstract
PET/MR imaging is in routine clinical use and is at least as effective as PET/CT for oncologic and neurologic studies with advantages with certain PET radiopharmaceuticals and applications. In addition, whole body PET/MR imaging substantially reduces radiation dosages compared with PET/CT which is particularly relevant to pediatric and young adult population. For cancer imaging, assessment of hepatic, pelvic, and soft-tissue malignancies may benefit from PET/MR imaging. For neurologic imaging, volumetric brain MR imaging can detect regional volume loss relevant to cognitive impairment and epilepsy. In addition, the single-bed position acquisition enables dynamic brain PET imaging without extending the total study length which has the potential to enhance the diagnostic information from PET.
Collapse
Affiliation(s)
- Farshad Moradi
- Department of Radiology, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA.
| | - Andrei Iagaru
- Department of Radiology, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, 619 19th Street South, JT 773, Birmingham, AL 35249, USA
| |
Collapse
|
9
|
AI-enhanced simultaneous multiparametric 18F-FDG PET/MRI for accurate breast cancer diagnosis. Eur J Nucl Med Mol Imaging 2021; 49:596-608. [PMID: 34374796 PMCID: PMC8803815 DOI: 10.1007/s00259-021-05492-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
Purpose To assess whether a radiomics and machine learning (ML) model combining quantitative parameters and radiomics features extracted from simultaneous multiparametric 18F-FDG PET/MRI can discriminate between benign and malignant breast lesions. Methods A population of 102 patients with 120 breast lesions (101 malignant and 19 benign) detected on ultrasound and/or mammography was prospectively enrolled. All patients underwent hybrid 18F-FDG PET/MRI for diagnostic purposes. Quantitative parameters were extracted from DCE (MTT, VD, PF), DW (mean ADC of breast lesions and contralateral breast parenchyma), PET (SUVmax, SUVmean, and SUVminimum of breast lesions, as well as SUVmean of the contralateral breast parenchyma), and T2-weighted images. Radiomics features were extracted from DCE, T2-weighted, ADC, and PET images. Different diagnostic models were developed using a fine Gaussian support vector machine algorithm which explored different combinations of quantitative parameters and radiomics features to obtain the highest accuracy in discriminating between benign and malignant breast lesions using fivefold cross-validation. The performance of the best radiomics and ML model was compared with that of expert reader review using McNemar’s test. Results Eight radiomics models were developed. The integrated model combining MTT and ADC with radiomics features extracted from PET and ADC images obtained the highest accuracy for breast cancer diagnosis (AUC 0.983), although its accuracy was not significantly higher than that of expert reader review (AUC 0.868) (p = 0.508). Conclusion A radiomics and ML model combining quantitative parameters and radiomics features extracted from simultaneous multiparametric 18F-FDG PET/MRI images can accurately discriminate between benign and malignant breast lesions. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05492-z.
Collapse
|
10
|
Brendle C, Maier C, Bender B, Schittenhelm J, Paulsen F, Renovanz M, Roder C, Castaneda-Vega S, Tabatabai G, Ernemann U, la Fougère C. Impact of 18F-FET PET/MR on clinical management of brain tumor patients. J Nucl Med 2021; 63:522-527. [PMID: 34353870 PMCID: PMC8973289 DOI: 10.2967/jnumed.121.262051] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/15/2021] [Indexed: 11/25/2022] Open
Abstract
Multiparametric PET/MRI with the amino-acid analog O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) enables the simultaneous assessment of molecular, morphologic, and functional brain tumor characteristics. Although it is considered the most accurate noninvasive approach in brain tumors, its relevance for patient management is still under debate. Here, we report the diagnostic performance of 18F-FET PET/MRI and its impact on clinical management in a retrospective patient cohort. Methods: We retrospectively analyzed brain tumor patients who underwent 18F-FET PET/MRI between 2017 and 2018. 18F-FET PET/MRI examinations were indicated clinically because of equivocal standard imaging results or the clinical course. Histologic confirmation or clinical and standard imaging follow-up served as the reference standard. We evaluated 18F-FET PET/MRI accuracy in identifying malignancy in untreated suspected lesions (category, new diagnosis) and true progression during adjuvant treatment (category, detection of progression) in a clinical setting. Using multiple regression, we also estimated the contribution of single modalities to produce an optimal PET/MRI outcome. We assessed the recommended and applied therapies before and after 18F-FET PET/MRI and noted whether the treatment changed on the basis of the 18F-FET PET/MRI outcome. Results: We included 189 patients in the study. 18F-FET PET/MRI allowed the identification of malignancy at new diagnosis with an accuracy of 85% and identified true progression with an accuracy of 93%. Contrast enhancement, 18F-FET PET uptake, and tracer kinetics were the major contributors to an optimal PET/MRI outcome. In the previously equivocal patients, 18F-FET PET/MRI changed the clinical management in 33% of the untreated lesions and 53% of the cases of tumor progression. Conclusion: Our results suggest that 18F-FET PET/MRI helps clarify equivocal conditions and profoundly supports the clinical management of brain tumor patients. The optimal modality setting for 18F-FET PET/MRI and the clinical value of a simultaneous examination need further exploration. At a new diagnosis, multiparametric 18F-FET PET/MRI might help prevent unnecessary invasive procedures by ruling out malignancy; however, adding static 18F-FET PET to an already existing MRI examination seems to be of equal value. At detection of progression, multiparametric 18F-FET PET/MRI may increase therapy effectiveness by distinguishing between tumor progression and therapy-related imaging alterations.
Collapse
|
11
|
Ganeshan B, Miles K, Afaq A, Punwani S, Rodriguez M, Wan S, Walls D, Hoy L, Khan S, Endozo R, Shortman R, Hoath J, Bhargava A, Hanson M, Francis D, Arulampalam T, Dindyal S, Chen SH, Ng T, Groves A. Texture Analysis of Fractional Water Content Images Acquired during PET/MRI: Initial Evidence for an Association with Total Lesion Glycolysis, Survival and Gene Mutation Profile in Primary Colorectal Cancer. Cancers (Basel) 2021; 13:2715. [PMID: 34072712 PMCID: PMC8199380 DOI: 10.3390/cancers13112715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/07/2023] Open
Abstract
To assess the capability of fractional water content (FWC) texture analysis (TA) to generate biologically relevant information from routine PET/MRI acquisitions for colorectal cancer (CRC) patients. Thirty consecutive primary CRC patients (mean age 63.9, range 42-83 years) prospectively underwent FDG-PET/MRI. FWC tumor parametric images generated from Dixon MR sequences underwent TA using commercially available research software (TexRAD). Data analysis comprised (1) identification of functional imaging correlates for texture features (TF) with low inter-observer variability (intraclass correlation coefficient: ICC > 0.75), (2) evaluation of prognostic performance for FWC-TF, and (3) correlation of prognostic imaging signatures with gene mutation (GM) profile. Of 32 FWC-TF with ICC > 0.75, 18 correlated with total lesion glycolysis (TLG, highest: rs = -0.547, p = 0.002). Using optimized cut-off values, five MR FWC-TF identified a good prognostic group with zero mortality (lowest: p = 0.017). For the most statistically significant prognostic marker, favorable prognosis was significantly associated with a higher number of GM per patient (medians: 7 vs. 1.5, p = 0.009). FWC-TA derived from routine PET/MRI Dixon acquisitions shows good inter-operator agreement, generates biological relevant information related to TLG, GM count, and provides prognostic information that can unlock new clinical applications for CRC patients.
Collapse
Affiliation(s)
- Balaji Ganeshan
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Kenneth Miles
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Asim Afaq
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Shonit Punwani
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Manuel Rodriguez
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Simon Wan
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Darren Walls
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Luke Hoy
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Saif Khan
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Raymond Endozo
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Robert Shortman
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - John Hoath
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Aman Bhargava
- Institute of Health Barts and London Medical School, Queen Mary University of London (QMUL), London E1 2AD, UK;
| | - Matthew Hanson
- Division of Cancer and Clinical Support, Barking, Havering and Redbridge University Hospitals NHS Trust, Queens and King George Hospitals, Essex IG3 8YB, UK;
| | - Daren Francis
- Department of Colorectal Surgery, Royal Free London NHS Foundation Trust, Barnet and Chase Farm Hospitals, London NW3 2QG, UK;
| | - Tan Arulampalam
- Department of Surgery, East Suffolk and North Essex NHS Foundation Trust, Colchester General Hospital, Colchester CO4 5JL, UK;
| | - Sanjay Dindyal
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Shih-Hsin Chen
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
- Department of Nuclear Medicine, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Tony Ng
- School of Cancer & Pharmaceutical Sciences, King’s College London (KCL), London WC2R 2LS, UK;
| | - Ashley Groves
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| |
Collapse
|
12
|
Pourfathi M, Kadlecek SJ, Chatterjee S, Rizi RR. Metabolic Imaging and Biological Assessment: Platforms to Evaluate Acute Lung Injury and Inflammation. Front Physiol 2020; 11:937. [PMID: 32982768 PMCID: PMC7487972 DOI: 10.3389/fphys.2020.00937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
Pulmonary inflammation is a hallmark of several pulmonary disorders including acute lung injury and acute respiratory distress syndrome. Moreover, it has been shown that patients with hyperinflammatory phenotype have a significantly higher mortality rate. Despite this, current therapeutic approaches focus on managing the injury rather than subsiding the inflammatory burden of the lung. This is because of the lack of appropriate non-invasive biomarkers that can be used clinically to assess pulmonary inflammation. In this review, we discuss two metabolic imaging tools that can be used to non-invasively assess lung inflammation. The first method, Positron Emission Tomography (PET), is widely used in clinical oncology and quantifies flux in metabolic pathways by measuring uptake of a radiolabeled molecule into the cells. The second method, hyperpolarized 13C MRI, is an emerging tool that interrogates the branching points of the metabolic pathways to quantify the fate of metabolites. We discuss the differences and similarities between these techniques and discuss their clinical applications.
Collapse
Affiliation(s)
- Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen J. Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Shampa Chatterjee
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Rahim R. Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Rahim R. Rizi,
| |
Collapse
|
13
|
Brix G, Günther E, Rössler U, Endesfelder D, Kamp A, Beer A, Eiber M. Double-strand breaks in lymphocyte DNA of humans exposed to [ 18F]fluorodeoxyglucose and the static magnetic field in PET/MRI. EJNMMI Res 2020; 10:43. [PMID: 32346810 PMCID: PMC7188749 DOI: 10.1186/s13550-020-00625-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Given the increasing clinical use of PET/MRI, potential risks to patients from simultaneous exposure to ionising radiation and (electro)magnetic fields should be thoroughly investigated as a precaution. With this aim, the genotoxic potential of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and a strong static magnetic field (SMF) were evaluated both in isolation and in combination using the γH2AX assay detecting double-strand breaks in lymphocyte DNA. METHODS Thirty-two healthy young volunteers allocated to three study arms were exposed to [18F]FDG alone, to a 3-T SMF alone or to both combined over 60 min at a PET/CT or a PET/MRI system. Blood samples taken after in vivo exposure were incubated up to 60 min to extend the irradiation of blood by residual [18F]FDG within the samples and the time to monitor the γH2AX response. Absorbed doses to lymphocytes delivered in vivo and in vitro were estimated individually for each volunteer exposed to [18F]FDG. γH2AX foci were scored automatically by immunofluorescence microscopy. RESULTS Absorbed doses to lymphocytes exposed over 60 to 120 min to [18F]FDG varied between 1.5 and 3.3 mGy. In this time interval, the radiotracer caused a significant median relative increase of 28% in the rate of lymphocytes with at least one γH2AX focus relative to the background rate (p = 0.01), but not the SMF alone (p = 0.47). Simultaneous application of both agents did not result in a significant synergistic or antagonistic outcome (p = 0.91). CONCLUSION There is no evidence of a synergism between [18F]FDG and the SMF that may be of relevance for risk assessment of PET/MRI.
Collapse
Affiliation(s)
- Gunnar Brix
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Neuherberg, Germany.
| | - Elisabeth Günther
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Ute Rössler
- Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - David Endesfelder
- Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Alexandra Kamp
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
- Department of Nuclear Medicine, University Ulm, Ulm, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
14
|
Allen C, Dunne M. The power of integrating imaging throughout the drug development process. J Control Release 2020; 317:386-388. [PMID: 31870851 DOI: 10.1016/j.jconrel.2019.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
PET and MRI based RT treatment planning: Handling uncertainties. Cancer Radiother 2019; 23:753-760. [PMID: 31427076 DOI: 10.1016/j.canrad.2019.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 12/11/2022]
Abstract
Imaging provides the basis for radiotherapy. Multi-modality images are used for target delineation (primary tumor and nodes, boost volume) and organs at risk, treatment guidance, outcome prediction, and treatment assessment. Next to anatomical information, more and more functional imaging is being used. The current paper provides a brief overview of the different applications of imaging techniques used in the radiotherapy process, focusing on uncertainties and QA. The paper mainly focuses on PET and MRI, but also provides a short discussion on DCE-CT. A close collaboration between radiology, nuclear medicine and radiotherapy departments provides the key to improve the quality of radiotherapy. Jointly developed imaging protocols (RT position setup, immobilization tools, lasers, flat table…), and QA programs are mandatory. For PET, suitable windowing in consultation with a Nuclear Medicine Physician is crucial (differentiation benign/malignant lesions, artifacts…). A basic knowledge of MRI sequences is required, in such a way that geometrical distortions are easily recognized by all members the RT and RT physics team. If this is not the case, then the radiologist should be introduced systematically in the delineation process and multidisciplinary meetings need to be organized regularly. For each image modality and each image registration process, the associated uncertainties need to be determined and integrated in the PTV margin. When using functional information for dose painting, response assessment or outcome prediction, collaboration between the different departments is even more important. Limitations of imaging based biomarkers (specificity, sensitivity) should be known.
Collapse
|
16
|
Optimization of MRI Turnaround Times Through the Use of Dockable Tables and Innovative Architectural Design Strategies. AJR Am J Roentgenol 2019; 212:855-858. [PMID: 30807221 DOI: 10.2214/ajr.18.20459] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The purpose of this study is to increase the value of MRI by reengineering the MRI workflow at a new imaging center to shorten the interval (i.e., turnaround time) between each patient examination by at least 5 minutes. MATERIALS AND METHODS The elements of the MRI workflow that were optimized included the use of dockable tables, the location of patient preparation rooms, the number of doors per scanning room, and the storage location and duplication of coils. Turnaround times at the new center and at two existing centers were measured both for all patients and for situations when the next patient was ready to be brought into the scanner room after the previous patient's examination was completed. RESULTS Workflow optimizations included the use of dockable tables, dedicated patient preparation rooms, two doors in each MRI room, positioning the scanner to provide the most direct path to the scanner, and coil storage in the preparation rooms, with duplication of the most frequently used coils. At the new imaging center, the median and mean (± SD) turnaround times for situations in which patients were ready for scanning were 115 seconds (95% CI, 113-117 seconds) and 132 ± 72 seconds (95% CI, 129-135 seconds), respectively, and the median and mean turnaround times for all situations were 141 seconds (95% CI, 137-146 seconds) and 272 ± 270 seconds (95% CI, 263-282 seconds), respectively. For existing imaging centers, the median and mean turnaround times for situations in which patients were ready for scanning were 430 seconds (95% CI, 424-434 seconds) and 460 ± 156 seconds (95% CI, 455-465 seconds), respectively, and the median and mean turnaround times for all situations were 481 seconds (95% CI, 474-486 seconds) and 537 ± 219 seconds (95% CI, 532-543 seconds), respectively. CONCLUSION The optimized MRI workflow resulted in a mean time savings of 5 minutes 28 seconds per patient.
Collapse
|
17
|
Tate CJ, Mollee PN, Miles KA. Combination bone marrow imaging using positron emission tomography (PET)-MRI in plasma cell dyscrasias: correlation with prognostic laboratory values and clinicopathological diagnosis. BJR Open 2019; 1:20180020. [PMID: 33178915 PMCID: PMC7592407 DOI: 10.1259/bjro.20180020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/13/2018] [Accepted: 01/10/2019] [Indexed: 02/05/2023] Open
Abstract
Objective This prospective observational study of positron emission tomography (PET)-MRI findings in 16 consecutive newly diagnosed patients with a plasma cell dyscrasia describes and compares MRI-detected myeloma lesions with 18F-fludeoxyglucose PET-avid myeloma lesions, and correlates quantitative imaging findings to a range of biochemical and prognostic parameters. Methods Simultaneously acquired whole body PET and MRI images were evaluated qualitatively for the presence of focal or generalised abnormalities of bone marrow (BM) on either modality. Quantitative analysis comprised mean standardised uptake values (SUVmean) and fractional water content of the BM measured from PET and chemical shift MRI images of the second to fourth lumbar vertebrae. Results Final diagnoses comprised symptomatic myeloma (n = 10), asymptomatic myeloma (n = 4) and monoclonal gammopathy of uncertain significance (n = 2). 8/10 patients with symptomatic myeloma demonstrated BM abnormalities on qualitative assessment of MRI compared to 4/10 on PET. BM SUVmean inversely correlated with serum albumin (r = 0.57, p = 0.017). BM water fraction correlated with trephine cellularity and blood platelet count (r = 0.78, p = 0.00039 and r = 0.61, p = 0.0013 respectively). BM water fraction correlated with SUVmean in patients with low plasma cell burden (r = 0.91, p = 0.0015) but not in patients with high plasma cell burden (r = 0.18, p = 0.61). Conclusion PET-MRI shows promise in both morphological and functional multiparametric quantitative assessment of myeloma. Advances in knowledge For the first time, multiparametric imaging in myeloma has been shown to predict BM abnormalities and correlate with known biochemical prognostic markers, moving PET-MRI beyond simple diagnostic applications into potential prognostic and treatment selection applications.
Collapse
Affiliation(s)
- Courtney J Tate
- Princess Alexandra Hospital, Royal Brisbane and Women's Hospital, University of Queensland, QLD, Australia
| | - Peter N Mollee
- Institute of Nuclear Medicine, University College London, QLD, Australia
| | - Kenneth A Miles
- Princess Alexandra Hospital, University of Queensland, QLD, Australia
| |
Collapse
|
18
|
Precision Medicine: A New Era. Mol Diagn Ther 2018; 22:637-639. [PMID: 30382561 DOI: 10.1007/s40291-018-0364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Catana C, Quick HH, Zaidi H. Current commercial techniques for MRI-guided attenuation correction are insufficient and will limit the wider acceptance of PET/MRI technology in the clinic. Med Phys 2018; 45:4007-4010. [PMID: 29758089 DOI: 10.1002/mp.12963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/03/2018] [Indexed: 01/18/2023] Open
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|