1
|
Gao Y, Liu Q, Song C, Song S, Tian C, Li J, Liu W, Cheng M, Zhang S, Wang X, Xia C, Liu T. Achieving theranostic probes targeting BRD3/BRD4 for imaging and therapy of tumor. Eur J Med Chem 2025; 283:117151. [PMID: 39681044 DOI: 10.1016/j.ejmech.2024.117151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
The BET family proteins play pleiotropic roles in the tumorigenesis and growth of various human malignancies that have aroused great interests as the cancer therapeutic targets. Therefore, it's significant to develop labeling toolkits for the dynamic monitoring of BET family proteins in living tumor cells and tissue slices. In particular, there are few small-molecule fluorescent probes based on BET family proteins developed for real-time imaging of these proteins in tumor cells and tissues and treatment of breast cancer. In general, antibodies of BET family proteins are chosen for imaging of these proteins. However, the cost of these antibodies is more expensive than small molecules and the operation is relatively complicated. Moreover, the antibodies for imaging are not capable of the therapy for breast cancer. Thus, it's essential to exploit a novel imaging system for BET family proteins which is easy-operating and economical, with achieving therapeutic effects simultaneously. Therefore, a series of fluorescent probes (17-21) targeting BET family proteins were developed. Through the evaluation studies, probe 17 showed advantages in docking studies, analysis of cell viability, and imaging studies. Importantly, probe 17 was capable of distinguishing tumor cells and tissue slices and made a distinction between them by labeling BRD3 and BRD4 proteins. Importantly, probe 17 showed higher resolution in mouse tumor and human tumor slice imaging than BRD3 and BRD4 antibodies. Moreover, compared with these antibodies, probe 17 was more stable, more economical and easier to operate in the imaging assays. In addition, it also played an anti-tumor role by inducing cell apoptosis, proliferation inhibition, and cycle arrest in tumor cells. All these features render probe 17 to perform as an effective labeling toolkit compatible for imaging studies of BRD3/BRD4, as well as an approach to diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Yuqi Gao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China.
| | - Qiao Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Cong Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, 250117, China
| | - Shubin Song
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Chengsen Tian
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, 250200, China
| | - Jianjun Li
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Wenjie Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Mingyu Cheng
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Sitao Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xu Wang
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chengcai Xia
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
2
|
Wei M, Chen W, Dong Y, Gu Y, Wei D, Zhang J, Ren Y. Hypoxia-Inducible Factor-1α-Activated Protein Switch Based on Allosteric Self-Splicing Reduces Nonspecific Cytotoxicity of Pharmaceutical Drugs. Mol Pharm 2024; 21:5335-5347. [PMID: 39213620 DOI: 10.1021/acs.molpharmaceut.4c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Protein-based therapeutic agents currently used for targeted tumor therapy exhibit limited penetrability, nonspecific toxicity, and a short circulation half-life. Although targeting cell surface receptors improves cancer selectivity, the receptors are also slightly expressed in normal cells; consequently, the nonspecific toxicity of recombinant protein-based therapeutic agents has not been eliminated. In this study, an allosteric-regulated protein switch was designed that achieved cytoplasmic reorganization of engineered immunotoxins in tumor cells via interactions between allosteric self-splicing elements and cancer markers. It can target the accumulated HIF-1α in hypoxic cancer cells and undergo allosteric activation, and the splicing products were present in hypoxic cancer cells but were absent in normoxic cells, selectively killing tumor cells and reducing nonspecific toxicity to normal cells. The engineered pro-protein provides a platform for targeted therapy of tumors while offering a novel universal strategy for combining the activation of therapeutic functions with specific cancer markers. The allosteric self-splicing element is a powerful tool that significantly reduces the nonspecific cytotoxicity of therapeutic proteins.
Collapse
Affiliation(s)
- Min Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wenxin Chen
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuguo Dong
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yiyang Gu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuhong Ren
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
3
|
Fawwaz M, Mishiro K, Arwansyah A, Nishii R, Ogawa K. Synthesis and initial in vitro evaluation of olmutinib derivatives as prospective imaging probe for non-small cell lung cancer. BIOIMPACTS : BI 2023; 14:27774. [PMID: 38327635 PMCID: PMC10844591 DOI: 10.34172/bi.2023.27774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/18/2023] [Accepted: 08/05/2023] [Indexed: 02/09/2024]
Abstract
Introduction Imaging a non-small cell lung cancer (NSCLC) using radiolabeled tyrosine kinase inhibitors (TKIs) has attracted attention due to their unique interaction with the target epidermal growth factor receptor (EGFR). Olmutinib (OTB) is one of the third-generation EGFR TKIs, which selectively inhibit EGFR L858R/T790M mutation. In this study, we aim to estimate the interaction of the iodinated OTB (I-OTB)-receptor complex by molecular docking. Furthermore, we will synthesize the I-OTB and evaluate its activity toward EGFR L858R/T790M by in vitro cytotoxicity assay. Methods A molecular docking simulation was carried out using an AutoDock Vina program package to estimate the interaction of the ligand-receptor complex. The I-OTB, N-{3-iodo-5-[(2-{[4-(4-methylpiperazin-1-yl)phenyl]aminothieno{3,2-d}pyrimidin-4-yl)oxy]phenyl} acrylamide, was synthesized by introducing an iodine atom in the phenyl group in the 3-aryloxyanilide structure. The half inhibitory concentration (IC50) was determined by employing a 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H tetrazolium monosodium salt (WST-8) assay to evaluate the activity of I-OTB. Results The docking study exhibited that I-OTB could take an interaction similar to that of the parent compound. We successfully synthesized I-OTB and confirmed its structure by instrumental analysis. The binding energy of OTB and I-OTB in complex with EGFR T790M are -8.7 and -7.9 kcal/mol, respectively. The cytotoxicity assay showed that I-OTB also has an affinity towards the EGFR L858R/T790M mutation with the IC50 10.49 ± 5.64 𝜇M compared to the EGFR wild type with the IC50 over than 10 𝜇M. Conclusion The cytotoxicity effect of I-OTB was comparable to that of OTB. This result indicates that the iodine substituent in OTB did not alter the parent compound selectivity toward double mutations EGFR L858R/T790M. Therefore, I-OTB is prominent for radioiodination, and [123/124I] I-OTB may be a promising candidate for EGFR L858R/T790M mutation imaging.
Collapse
Affiliation(s)
- Muammar Fawwaz
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Muslim Indonesia, Urip Sumoharjo KM. 5, Makassar 90-231, Indonesia
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Arwansyah Arwansyah
- Department of Chemistry Education, Faculty of Teacher Training and Education, Universitas Tadulako, Palu, Indonesia
| | - Ryuichi Nishii
- Biomedical Imaging Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Higashi-ku, Nagoya 461-8673, Japan
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
4
|
Pyrazole derivatives as potent EGFR inhibitors: synthesis, biological evaluation and in silico and biodistribution study. Future Med Chem 2022; 14:1755-1769. [PMID: 36524436 DOI: 10.4155/fmc-2022-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: Synthesis of pyrazole derivatives as EGFR inhibitors. Materials & methods: Cytotoxicity and EGFR inhibitory effect were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and EGFR kits, respectively. The biodistribution of radioiodinated compound nanoparticles in tumor-bearing mice was studied. Results: The IC50 values of compound 4a against HepG2 cells and EGFR were 0.15 ± 0.03 and 0.31 ± 0.008 μM, respectively, while those of erlotinib were 0.73 ± 0.04 and 0.11 ± 0.008 μM, respectively. The binding scores of compound 4a and erlotinib to EGFR were -9.52 and -10.23 Kcal/mol, respectively. The maximum tumor uptake of radioiodinated compound after intravenous nanoparticle injection was 6.7 ± 0.3% radioactivity/g. Conclusion: Compound 4a is a promising antitumor agent with a potential EGFR inhibitory effect.
Collapse
|
5
|
Yi X, Wang Z, Hu X, Yu A. Affinity probes based on small-molecule inhibitors for tumor imaging. Front Oncol 2022; 12:1028493. [PMID: 36387103 PMCID: PMC9647038 DOI: 10.3389/fonc.2022.1028493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
Methods for molecular imaging of target areas, including optical imaging, radionuclide imaging, magnetic resonance imaging and other imaging technologies, are helpful for the early diagnosis and precise treatment of cancers. In addition to cancer management, small-molecule inhibitors are also used for developing cancer target probes since they act as the tight-binding ligands of overexpressed proteins in cancer cells. This review aims to summarize the structural designs of affinity probes based on small-molecule inhibitors from the aspects of the inhibitor, linker, dye and radionuclide, and discusses the influence of the modification of these structures on affinity and pharmacokinetics. We also present examples of inhibitor affinity probes in clinical applications, and these summaries will provide insights for future research and clinical translations.
Collapse
Affiliation(s)
| | | | - Xiang Hu
- *Correspondence: Aixi Yu, ; Xiang Hu,
| | - Aixi Yu
- *Correspondence: Aixi Yu, ; Xiang Hu,
| |
Collapse
|
6
|
China’s radiopharmaceuticals on expressway: 2014–2021. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2021-1137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This review provides an essential overview on the progress of rapidly-developing China’s radiopharmaceuticals in recent years (2014–2021). Our discussion reflects on efforts to develop potential, preclinical, and in-clinical radiopharmaceuticals including the following areas: (1) brain imaging agents, (2) cardiovascular imaging agents, (3) infection and inflammation imaging agents, (4) tumor radiopharmaceuticals, and (5) boron delivery agents (a class of radiopharmaceutical prodrug) for neutron capture therapy. Especially, the progress in basic research, including new radiolabeling methodology, is highlighted from a standpoint of radiopharmaceutical chemistry. Meanwhile, we briefly reflect on the recent major events related to radiopharmaceuticals along with the distribution of major R&D forces (universities, institutions, facilities, and companies), clinical study status, and national regulatory supports. We conclude with a brief commentary on remaining limitations and emerging opportunities for China’s radiopharmaceuticals.
Collapse
|
7
|
Zhang Z, Wang X, Ye J, Liu H, Fang J, Zhang M, Li Y, Huang J, Zhang D, Wang J, Zhang X. Development and Preclinical Evaluation of Radiolabeled Covalent G12C-Specific Inhibitors for Direct Imaging of the Oncogenic KRAS Mutant. Mol Pharm 2021; 18:3509-3518. [PMID: 34410132 DOI: 10.1021/acs.molpharmaceut.1c00426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although KRAS has been an important target for many cancers, direct inhibition of oncogenic RAS remains challenging. Until recently, covalent KRAS G12C-specific inhibitors have been developed and progressed to the clinics. Nevertheless, not all patients benefit from these covalent inhibitors. At present, identification of candidates for this treatment requires tissue biopsies and gene sequencing, which are invasive, time-consuming, and could be of insufficient quality and limited predictive value owing to tumor heterogeneity. The use of noninvasive molecular imaging techniques such as PET and SPECT for spying KRAS G12C mutation in tumors provide a promising strategy for circumventing these hurdles. In the present study, based on the covalent G12C-specific inhibitor ARS-1620, we sought to develop radiolabeled small molecules for direct imaging of the KRAS mutation status in tumors. [131I]I-ARS-1620 and [18F]F-ARS-1620 were successfully prepared with high radiochemical yield, radiochemical purity, and molar activity. In vitro and in vivo studies have demonstrated the affinity, specificity, and capacity of [131I]I-ARS-1620 for direct imaging of the oncogenic KRAS G12C mutant. This initial attempt allows us to directly screen the KRAS G12C mutant for the first time in vivo.
Collapse
Affiliation(s)
- Zhe Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaobo Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jiajun Ye
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Huanhuan Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jianyang Fang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Mingru Zhang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yesen Li
- Department of Nuclear Medicine & Minnan PET Center, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Jinxiong Huang
- Department of Nuclear Medicine & Minnan PET Center, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Deliang Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
8
|
Abstract
Molecular imaging enables both spatial and temporal understanding of the complex biologic systems underlying carcinogenesis and malignant spread. Single-photon emission tomography (SPECT) is a versatile nuclear imaging-based technique with ideal properties to study these processes in vivo in small animal models, as well as to identify potential drug candidates and characterize their antitumor action and potential adverse effects. Small animal SPECT and SPECT-CT (single-photon emission tomography combined with computer tomography) systems continue to evolve, as do the numerous SPECT radiopharmaceutical agents, allowing unprecedented sensitivity and quantitative molecular imaging capabilities. Several of these advances, their specific applications in oncology as well as new areas of exploration are highlighted in this chapter.
Collapse
Affiliation(s)
- Benjamin L Franc
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, H2232, MC 5281, Stanford, CA, 94305-5105, USA.
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Robert Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Carina Mari Aparici
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, H2232, MC 5281, Stanford, CA, 94305-5105, USA
| |
Collapse
|
9
|
Ahmadpour S, Hosseinimehr SJ. Recent developments in peptide-based SPECT radiopharmaceuticals for breast tumor targeting. Life Sci 2019; 239:116870. [DOI: 10.1016/j.lfs.2019.116870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022]
|
10
|
Gao F, Peng C, Zhuang R, Guo Z, Liu H, Huang L, Li H, Xu D, Wen X, Fang J, Zhang X. 18F-labeled ethisterone derivative for progesterone receptor targeted PET imaging of breast cancer. Nucl Med Biol 2019; 72-73:62-69. [PMID: 31330414 DOI: 10.1016/j.nucmedbio.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/11/2019] [Accepted: 07/06/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE A novel radiolabeled probe 1‑(17‑[18F]fluoro‑3,6,9,12,15‑pentaoxaheptadecyl‑1H‑1,2,3‑triazole testosterone ([18F]FPTT) was synthesized and evaluated for PET imaging of progesterone receptor (PR)-positive breast cancer. METHODS The ethinyl group of ethisterone, a PR targeting pharmacophore, was coupled with azide modified PEG-OTs by click chemistry to obtain the labeling precursor. The final [18F]FPTT was synthesized by a one-step nucleophilic substitution reaction with 18F. The in vitro stabilities of [18F]FPTT in saline or rat serum were determined after 2 h incubation. Then the in vitro cell binding, ex vivo biodistribution and in vivo imaging of [18F]FPTT were further investigated to evaluate the PR targeting ability and feasibility for the diagnosis of PR-positive breast cancer with PET imaging. RESULTS [18F]FPTT was obtained in high decay-corrected radiochemical yield (78 ± 9%) at the end of synthesis. It had high radiochemical purity (>98%) after HPLC purification and good in vitro stability. The molar activity of [18F]FPTT was calculated as 17 GBq/μmol. The microPET imaging of [18F]FPTT in tumor-bearing mice showed much higher tumor uptake in PR-positive MCF-7 tumor (3.9 ± 0.20%ID/g) than that of PR-negative MDA-MB-231 tumor (1.3 ± 0.08%ID/g). The high MCF-7 tumor uptake could be specifically inhibited by blocking with ethisterone (1.3 ± 0.11%ID/g) or [19F]FPTT (2.20 ± 0.17%ID/g), respectively. The biodistribution in estrogen-primed female SD rats of [18F]FPTT showed high uterus and ovary uptakes (8.31 ± 1.74%ID/g and 3.79 ± 0.82%ID/g at 1 h post-injection). The specific uptakes of uterus and ovary in normal rats were 3.52 ± 0.29%ID/g and 3.22 ± 0.50%ID/g respectively and could be inhibited by co-injecting of ethisterone. CONCLUSION A novel [18F]FPTT probe based on ethisterone modification could be a potential diagnostic agent for PR-positive breast cancer.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chenyu Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Huanhuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lumei Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hua Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Duo Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xuejun Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jianyang Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
11
|
Gao F, Peng C, Li J, Zhuang R, Guo Z, Xu D, Su X, Zhang X. Radioiodinated progesterone derivative for progesterone receptor targeting with enhanced nucleus uptake via phenylboronic acid conjugation. J Labelled Comp Radiopharm 2019; 62:301-309. [PMID: 31032992 DOI: 10.1002/jlcr.3741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/13/2019] [Accepted: 03/26/2019] [Indexed: 11/06/2022]
Abstract
A novel 131 I-radiolabeled probe with aromatic boronate motif (131 I-EIPBA) was designed to target progesterone receptor (PR)-positive breast cancer with enhanced nucleus uptake. Acetylene progesterone was conjugated with pegylated phenylboronic acid via click reaction and radiolabeled with 131 I to afford 131 I-EIPBA. Meanwhile, 131 I-EIPB without boronate was prepared as control agent. After determination of the lipophilicity and stability of these tracers, in vitro cell uptake studies and in vivo biodistribution in rats were performed to verify the enhanced nucleus uptake and PR targeting ability of 131 I-EIPBA. 131 I-EIPBA was obtained with moderate radiochemical yield (40.35 ± 3.52%) and high radiochemical purity (>98%). As expected, the high binding affinity (39.58 nM) of 131 I-EIPBA for PR was determined by cell binding assay. The internalization ratio of 131 I-EIPBA was remarkably higher than that of 131 I-EIPB in PR-positive MCF-7 cells. Furthermore, the enhanced nucleus uptake of 131 I-EIPBA (0.59 ± 0.02%) was found to be significantly higher than that of 131 I-EIPB (0.13 ± 0.01%) in MCF-7 cells. A novel 131 I-EIPBA compound was developed for PR targeting with improved cellular nucleus uptake. Furthermore, the introduction of aromatic boronate motif provides a worthwhile strategy for enhancing the nuclear receptor targeting of tracers.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Chenyu Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Jindian Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Duo Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Xinhui Su
- Department of Nuclear Medicine, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
12
|
Gu X, Wei Y, Fan Q, Sun H, Cheng R, Zhong Z, Deng C. cRGD-decorated biodegradable polytyrosine nanoparticles for robust encapsulation and targeted delivery of doxorubicin to colorectal cancer in vivo. J Control Release 2019; 301:110-118. [PMID: 30898610 DOI: 10.1016/j.jconrel.2019.03.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
The clinical success of nanomedicines demands on the development of simple biodegradable nanocarriers that can efficiently and stably encapsulate chemotherapeutics while quickly release the payloads into target cancer cells. Herein, we report that cRGD-decorated biodegradable polytyrosine nanoparticles (cRGD-PTN) boost encapsulation and targeted delivery of doxorubicin (DOX) to colorectal cancer in vivo. The co-assembly of poly(ethylene glycol)-poly(L-tyrosine) (PEG-PTyr) and cRGD-functionalized PEG-PTyr (mol/mol, 80/20) yielded small-sized cRGD-PTN of 70 nm. Interestingly, cRGD-PTN exhibited an ultra-high DOX encapsulation with drug loading contents ranging from 18.5 to 54.1 wt%. DOX-loaded cRGD-PTN (cRGD-PTN-DOX) was highly stable against dilution, serum, and Triton X-100 surfactant, while quickly released DOX in HCT-116 cancer cells, likely resulting from enzymatic degradation of PTyr. Flow cytometry, confocal microscopy and MTT assays displayed that cRGD-PTN-DOX was efficiently internalized into αvβ5 overexpressing HCT-116 colorectal cancer cells, rapidly released DOX into the nuclei, and induced several folds better antitumor activity than non-targeted PTN-DOX and clinically used liposomal DOX (Lipo-DOX). SPECT/CT imaging revealed strong tumor accumulation of 125I-labeled cRGD-PTN, which was 2.8-fold higher than 125I-labeled PTN. Notably, cRGD-PTN-DOX exhibited over 5 times better toleration than Lipo-DOX and significantly more effective inhibition of HCT-116 colorectal tumor than non-targeted PTN-DOX control, affording markedly improved survival rate in HCT-116 tumor-bearing mice with depleting side effects at 6 or 12 mg DOX equiv./kg. cRGD-PTN-DOX with great simplicity, robust drug encapsulation and efficient nucleic drug release appears promising for targeted chemotherapy of colorectal tumor.
Collapse
Affiliation(s)
- Xiaolei Gu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yaohua Wei
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Qianyi Fan
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Ru Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| |
Collapse
|
13
|
Wen X, Shi C, Xu D, Zhang P, Li Z, Li J, Su X, Zhuang R, Liu T, Guo Z, Zhang X. Radioiodinated Portable Albumin Binder as a Versatile Agent for in Vivo Imaging with Single-Photon Emission Computed Tomography. Mol Pharm 2019; 16:816-824. [PMID: 30604976 DOI: 10.1021/acs.molpharmaceut.8b01116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, radioiodinated 4-( p-iodophenyl)butyric acid ([131I]IBA) was synthesized and evaluated as a portable albumin-binder for potential applications in single photon emission computed tomography imaging of blood pool, tumor, and lymph node with significantly improved pharmacokinetic properties. The [131I]IBA was prepared under the catalyst of Cu2O/1,10-phenanthroline. After that, the albumin-binding capability of [131I]IBA was tested in vitro, ex vivo, and in vivo, respectively. [131I]IBA was obtained with very high radiolabeling yield (>99%) and good radiochemical purity (>98%) within 10 min. It binds to albumin effectively with high affinity (IC50= 46.5 μM) and has good stability. The results of biodistribution indicated that the [131I]IBA was mainly accumulated in blood with good retention (10.51 ± 2.58%ID/g at 30 min p.i. and 4.63 ± 0.17%ID/g at 4 h p.i.). In the SPECT imaging of mice models with [131I]IBA, blood pool, lymph node, and tumors could be imaged clearly with high target-to-background ratio. Overall, the radioiodinated albumin binder of [131I]IBA with long blood half-life and excellent stability could be used to decorate diversified albumin-binding radioligands and developed as a versatile theranostic agent.
Collapse
Affiliation(s)
- Xuejun Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , 4221-116 Xiang'An South Road , Xiamen 361102 , China
| | - Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , 4221-116 Xiang'An South Road , Xiamen 361102 , China
| | - Duo Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , 4221-116 Xiang'An South Road , Xiamen 361102 , China
| | - Pu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , 4221-116 Xiang'An South Road , Xiamen 361102 , China
| | - Zizhen Li
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences , Xiamen University , Xiamen 361102 , China
| | - Jindian Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , 4221-116 Xiang'An South Road , Xiamen 361102 , China
| | - Xinhui Su
- Zhongshan Hospital Affiliated to Xiamen University , Hubin South Road , Xiamen 361004 , China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , 4221-116 Xiang'An South Road , Xiamen 361102 , China
| | - Ting Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , 4221-116 Xiang'An South Road , Xiamen 361102 , China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , 4221-116 Xiang'An South Road , Xiamen 361102 , China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , 4221-116 Xiang'An South Road , Xiamen 361102 , China
| |
Collapse
|
14
|
Wu M, Shu J. Multimodal Molecular Imaging: Current Status and Future Directions. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:1382183. [PMID: 29967571 PMCID: PMC6008764 DOI: 10.1155/2018/1382183] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/11/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
Abstract
Molecular imaging has emerged at the end of the last century as an interdisciplinary method involving in vivo imaging and molecular biology aiming at identifying living biological processes at a cellular and molecular level in a noninvasive manner. It has a profound role in determining disease changes and facilitating drug research and development, thus creating new medical modalities to monitor human health. At present, a variety of different molecular imaging techniques have their advantages, disadvantages, and limitations. In order to overcome these shortcomings, researchers combine two or more detection techniques to create a new imaging mode, such as multimodal molecular imaging, to obtain a better result and more information regarding monitoring, diagnosis, and treatment. In this review, we first describe the classic molecular imaging technology and its key advantages, and then, we offer some of the latest multimodal molecular imaging modes. Finally, we summarize the great challenges, the future development, and the great potential in this field.
Collapse
Affiliation(s)
- Min Wu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|