1
|
Karim F, Ngo A, Danh TB, Delaney BA, Liang C, Serrano GE, Beach TG, Mukherjee J. Reduction in [ 18F]Nifene Binding, a PET imaging Probe for α4β2* Nicotinic acetylcholinergic receptors in Hippocampus-Subiculum of postmortem human Alzheimer's disease brain. Brain Res 2025; 1857:149600. [PMID: 40154862 DOI: 10.1016/j.brainres.2025.149600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/20/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Nicotinic acetylcholinergic receptors (nAChRs), including the α4β2* subtype are involved in cognition, learning and memory and may be adversely affected in Alzheimer's disease (AD). In our efforts to consider translational use of [18F]nifene PET in AD, we report quantitative autoradiographic evaluation of α4β2* nAChRs using hippocampus-subiculum (HP-SUB) from cognitively normal (CN) and AD subjects. Brain slices were incubated in [18F]nifene for α4β2* nAChRs and adjacent sections were tested with [18F]flotaza for Aβ plaques and [125I]IPPI for tau. Anti-Aβ and anti-tau immunostaining were carried out on adjacent slices. Regions of interest were drawn and binding of [18F]nifene, [18F]flotaza and [125I]IPPI were quantified.All CN subjects exhibited significant [18F]nifene binding in the HP-SUB regions. Average [18F]nifene ratios of SUB to HP was 1.9, suggesting higher α4β2* nAChRs in the SUB versus HP regions. [18F]nifene binding did not change with aging in the female subjects, while the male subjects exhibited a weak positive correlation. There was a significant decrease in the binding of [18F]nifene in AD subjects compared to CN. Braak stage comparisons showed a decrease of [18F]nifene in stages V and VI, while [18F]flotaza and [125I]IPPI increased significantly. A negative correlation was observed between [18F]nifene vs [18F]flotaza and [18F]nifene vs [125I]IPPI across Braak stages I-VI. These findings suggest that α4β2* nAChR availability was effectively measured by [18F]nifene in the HP-SUB and was adversely affected by the presence of Aβ plaques and tau.
Collapse
Affiliation(s)
- Fariha Karim
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA.
| | - Allyson Ngo
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA.
| | - Tram B Danh
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA.
| | - Brooke A Delaney
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA.
| | - Christopher Liang
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA.
| | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA.
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA.
| | - Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
2
|
Mills KA, Kuwabara H, Du Y, Gomez G, Motley CS, Skorobogatova Y, Spiro E, Coughlin JM, Lesniak W, Brandt J, Kamath V, Pomper MG, Smith GS. Cortical α4β2-nicotinic acetylcholine receptors and cognitive decline in Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2025; 15:374-386. [PMID: 39973509 DOI: 10.1177/1877718x241313373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundAutopsy and in vivo molecular imaging studies suggest altered binding of the α4β2-nicotinic cholinergic receptor (α4β2-nAChR) with cognitive dysfunction in Parkinson's disease (PD).ObjectiveTo determine the relationship between cortical and hippocampal binding of the α4β2-nAChR with [18F]XTRA PET, a high-affinity radiotracer that enables quantification of α4β2-nAChR in these regions, and cognitive function in individuals with PD.MethodsIndividuals with PD (N = 32) and age-similar, controls without PD or dementia (N = 10) completed a cognitive assessment and one 90-min, [18F]XTRA PET scan. Metabolite-corrected arterial input function radioactivity time-activity curves were generated to obtain total distribution volume (VT) across 12 regions of interest (ROIs). [18F]XTRA binding was compared 1) between controls and people with PD and 2) between controls, persons with PD with normal cognition (PD-NC), and persons with PD with MCI (PD-MCI).Results[18F]XTRA binding was higher in the occipital cortex of the combined group of PD participants compared to age-similar controls. No regions showed lower binding in PD. VT with, but not without, partial volume correction was different between controls, PD-NC, and PD-MCI groups, and this was driven by higher binding in PD-MCI compared to controls. Regression of regional VT on cognitive domain T-scores, adjusting for age, showed that worse performance in visual-spatial memory tasks was associated with higher VT in the precuneus and the entire parietal cortex.ConclusionsHigher α4β2-nAChR binding in posterior cortical regions is found in PD and associated with worse visual perception and memory, possibly due to lower receptor occupancy by endogenous acetylcholine.
Collapse
Affiliation(s)
- Kelly A Mills
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiroto Kuwabara
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yong Du
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gabriela Gomez
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chelsie S Motley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yana Skorobogatova
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ergi Spiro
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer M Coughlin
- Johns Hopkins Brain Health Program, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wojciech Lesniak
- Department of Radiology, University of Texas Southwestern School of Medicine, Dallas, TX, USA
| | - Jason Brandt
- Division of Medical Psychology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vidya Kamath
- Division of Medical Psychology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin G Pomper
- Department of Radiology, University of Texas Southwestern School of Medicine, Dallas, TX, USA
| | - Gwenn S Smith
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Niu J, Zhong Y, Jin C, Cen P, Wang J, Cui C, Xue L, Cui X, Tian M, Zhang H. Positron Emission Tomography Imaging of Synaptic Dysfunction in Parkinson's Disease. Neurosci Bull 2024; 40:743-758. [PMID: 38483697 PMCID: PMC11178751 DOI: 10.1007/s12264-024-01188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/09/2023] [Indexed: 06/15/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases with a complex pathogenesis. Aggregations formed by abnormal deposition of alpha-synuclein (αSyn) lead to synapse dysfunction of the dopamine and non-dopamine systems. The loss of dopaminergic neurons and concomitant alterations in non-dopaminergic function in PD constitute its primary pathological manifestation. Positron emission tomography (PET), as a representative molecular imaging technique, enables the non-invasive visualization, characterization, and quantification of biological processes at cellular and molecular levels. Imaging synaptic function with PET would provide insights into the mechanisms underlying PD and facilitate the optimization of clinical management. In this review, we focus on the synaptic dysfunction associated with the αSyn pathology of PD, summarize various related targets and radiopharmaceuticals, and discuss applications and perspectives of PET imaging of synaptic dysfunction in PD.
Collapse
Affiliation(s)
- Jiaqi Niu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Chunyi Cui
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Le Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Xingyue Cui
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, 200040, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310014, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310014, China.
| |
Collapse
|
4
|
Zhang JJ, Fu H, Lin R, Zhou J, Haider A, Fang W, Elghazawy NH, Rong J, Chen J, Li Y, Ran C, Collier TL, Chen Z, Liang SH. Imaging Cholinergic Receptors in the Brain by Positron Emission Tomography. J Med Chem 2023; 66:10889-10916. [PMID: 37583063 PMCID: PMC10461233 DOI: 10.1021/acs.jmedchem.3c00573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 08/17/2023]
Abstract
Cholinergic receptors represent a promising class of diagnostic and therapeutic targets due to their significant involvement in cognitive decline associated with neurological disorders and neurodegenerative diseases as well as cardiovascular impairment. Positron emission tomography (PET) is a noninvasive molecular imaging tool that has helped to shed light on the roles these receptors play in disease development and their diverse functions throughout the central nervous system (CNS). In recent years, there has been a notable advancement in the development of PET probes targeting cholinergic receptors. The purpose of this review is to provide a comprehensive overview of the recent progress in the development of these PET probes for cholinergic receptors with a specific focus on ligand structure, radiochemistry, and pharmacology as well as in vivo performance and applications in neuroimaging. The review covers the structural design, pharmacological properties, radiosynthesis approaches, and preclinical and clinical evaluations of current state-of-the-art PET probes for cholinergic receptors.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hualong Fu
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ruofan Lin
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingyin Zhou
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ahmed Haider
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Weiwei Fang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Nehal H. Elghazawy
- Department
of Pharmaceutical, Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Jian Rong
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jiahui Chen
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Yinlong Li
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chongzhao Ran
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02114, United States
| | - Thomas L. Collier
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Zhen Chen
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Steven H. Liang
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| |
Collapse
|
5
|
Wang X, Wang T, Fan X, Zhang Z, Wang Y, Li Z. A Molecular Toolbox of Positron Emission Tomography Tracers for General Anesthesia Mechanism Research. J Med Chem 2023; 66:6463-6497. [PMID: 37145921 DOI: 10.1021/acs.jmedchem.2c01965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
With appropriate radiotracers, positron emission tomography (PET) allows direct or indirect monitoring of the spatial and temporal distribution of anesthetics, neurotransmitters, and biomarkers, making it an indispensable tool for studying the general anesthesia mechanism. In this Perspective, PET tracers that have been recruited in general anesthesia research are introduced in the following order: 1) 11C/18F-labeled anesthetics, i.e., PET tracers made from inhaled and intravenous anesthetics; 2) PET tracers targeting anesthesia-related receptors, e.g., neurotransmitters and voltage-gated ion channels; and 3) PET tracers for studying anesthesia-related neurophysiological effects and neurotoxicity. The radiosynthesis, pharmacodynamics, and pharmacokinetics of the above PET tracers are mainly discussed to provide a practical molecular toolbox for radiochemists, anesthesiologists, and those who are interested in general anesthesia.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Tao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaowei Fan
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
6
|
Tumor-to-blood ratio for assessment of fibroblast activation protein receptor density in pancreatic cancer using [ 68Ga]Ga-FAPI-04. Eur J Nucl Med Mol Imaging 2023; 50:929-936. [PMID: 36334106 DOI: 10.1007/s00259-022-06010-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE [68Ga]Ga-FAPI PET/CT has been widely used in clinical diagnosis and radiopharmaceutical therapy. In this study, tumor-to-blood ratio (TBR) was evaluated as a powerful tool for semiquantitative assessment of [68Ga]Ga-FAPI-04 tumor uptake and as an effective index for tumors with high FAP expression in theranostics. METHODS Nine patients with pancreatic cancer underwent a 60-min dynamic PET/CT scan by total-body PET/CT (with a long AFOV of 194 cm) after injection of [68Ga]Ga-FAPI-04. After dynamic PET/CT scan, three patients received chemotherapy and underwent the second dynamic scan to evaluate treatment response. Time-activity curves (TACs) were obtained by drawing regions of interest for primary pancreatic lesions and metastatic lesions. The lesion TACs were fitted using four compartment models by the software PMOD PKIN kinetic modeling. The preferred pharmacokinetic model for [68Ga]Ga-FAPI-04 was evaluated based on the Akaike information criterion. The correlations between simplified methods for quantification of [68Ga]Ga-FAPI-04 (SUVs; tumor-to-blood ratios [TBRs]) and the total distribution volume (Vt) estimates obtained from pharmacokinetic analysis were calculated. RESULTS In total, 9 primary lesions and 25 metastatic lesions were evaluated. The reversible two-tissue compartment model (2TCM) was the most appropriate model among the four compartment models. The total distribution volume Vt values derived from 2TCM varied significantly in pathological lesions and background regions. A strong positive correlation was observed between TBRmean and Vt from the 2TCM model in pathological lesions (R2=0.92, P<0.001). The relative difference range for TBRmean was 2.1% compared to the reduction rate of Vt in the patients who were treated with chemotherapy. CONCLUSIONS A strong positive correlation was observed between TBRmean and Vt for [68Ga]Ga-FAPI-04. TBRmean reflects FAP receptor density better than SUVmean and SUVmax, and would be the preferred measurement tool for semiquantitative assessment of [68Ga]Ga-FAPI-04 tumor uptake and as a means for evaluating treatment response.
Collapse
|
7
|
Tiepolt S, Meyer PM, Patt M, Deuther-Conrad W, Hesse S, Barthel H, Sabri O. PET Imaging of Cholinergic Neurotransmission in Neurodegenerative Disorders. J Nucl Med 2022; 63:33S-44S. [PMID: 35649648 DOI: 10.2967/jnumed.121.263198] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
As a neuromodulator, the neurotransmitter acetylcholine plays an important role in cognitive, mood, locomotor, sleep/wake, and olfactory functions. In the pathophysiology of most neurodegenerative diseases, such as Alzheimer disease (AD) or Lewy body disorder (LBD), cholinergic receptors, transporters, or enzymes are involved and relevant as imaging targets. The aim of this review is to summarize current knowledge on PET imaging of cholinergic neurotransmission in neurodegenerative diseases. For PET imaging of presynaptic vesicular acetylcholine transporters (VAChT), (-)-18F-fluoroethoxybenzovesamicol (18F-FEOBV) was the first PET ligand that could be successfully translated to clinical application. Since then, the number of 18F-FEOBV PET investigations on patients with AD or LBD has grown rapidly and provided novel, important findings concerning the pathophysiology of AD and LBD. Regarding the α4β2 nicotinic acetylcholine receptors (nAChRs), various second-generation PET ligands, such as 18F-nifene, 18F-AZAN, 18F-XTRA, (-)-18F-flubatine, and (+)-18F-flubatine, were developed and successfully translated to human application. In neurodegenerative diseases such as AD and LBD, PET imaging of α4β2 nAChRs is of special value for monitoring disease progression and drugs directed to α4β2 nAChRs. For PET of α7 nAChR, 18F-ASEM and 11C-MeQAA were successfully applied in mild cognitive impairment and AD, respectively. The highest potential for α7 nAChR PET is seen in staging, in evaluating disease progression, and in therapy monitoring. PET of selective muscarinic acetylcholine receptors (mAChRs) is still in an early stage, as the development of subtype-selective radioligands is complicated. Promising radioligands to image mAChR subtypes M1 (11C-LSN3172176), M2 (18F-FP-TZTP), and M4 (11C-MK-6884) were developed and successfully translated to humans. PET imaging of mAChRs is relevant for the assessment and monitoring of therapies in AD and LBD. PET of acetylcholine esterase activity has been investigated since the 1990s. Many PET studies with 11C-PMP and 11C-MP4A demonstrated cortical cholinergic dysfunction in dementia associated with AD and LBD. Recent studies indicated a solid relationship between subcortical and cortical cholinergic dysfunction and noncognitive dysfunctions such as balance and gait in LBD. Taken together, PET of distinct components of cholinergic neurotransmission is of great interest for diagnosis, disease monitoring, and therapy monitoring and to gain insight into the pathophysiology of different neurodegenerative disorders.
Collapse
Affiliation(s)
- Solveig Tiepolt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Philipp M Meyer
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | | | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| |
Collapse
|
8
|
Cumming P, Gründer G, Brinson Z, Wong DF. Applications, Advances, and Limitations of Molecular Imaging of Brain Receptors. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Thaker AA, Chien AL, Dubroff JG. Frontiers in Neuroscience Imaging: Whole-Body PET. PET Clin 2020; 16:137-146. [PMID: 33160927 DOI: 10.1016/j.cpet.2020.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Since its inception, PET imaging of the nervous system and neuropsychiatric disease has focused on the brain. Although this has resulted in many important contributions to basic science and clinical medicine, PET has not been used to explore nervous system physiology and disease throughout the remainder of the body. Our understanding of neurologic disorders has also changed during this period, and we are beginning to realize that many neuropsychiatric diseases manifest throughout the entire body. Thus, whole-body PET imaging with the Explorer instrument represents an exciting tool to address important questions in pathophysiology and develop novel pharmacologic strategies.
Collapse
Affiliation(s)
- Ashesh A Thaker
- Department of Radiology, University of Colorado Anschutz Medical Campus, 12401 E 17th Ave, Aurora, CO 80045, USA
| | - Austin L Chien
- Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Jacob G Dubroff
- Division of Nuclear Medicine and Clinical Molecular Imaging, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Ghura S, Gross R, Jordan-Sciutto K, Dubroff J, Schnoll R, Collman RG, Ashare RL. Bidirectional Associations among Nicotine and Tobacco Smoke, NeuroHIV, and Antiretroviral Therapy. J Neuroimmune Pharmacol 2019; 15:694-714. [PMID: 31834620 DOI: 10.1007/s11481-019-09897-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022]
Abstract
People living with HIV (PLWH) in the antiretroviral therapy (ART) era may lose more life-years to tobacco use than to HIV. Yet, smoking rates are more than twice as high among PLWH than the general population, contributing not just to mortality but to other adverse health outcomes, including neurocognitive deficits (neuroHIV). There is growing evidence that synergy with chronic inflammation and immune dysregulation that persists despite ART may be one mechanism by which tobacco smoking contributes to neuroHIV. This review will summarize the differential effects of nicotine vs tobacco smoking on inflammation in addition to the effects of tobacco smoke components on HIV disease progression. We will also discuss biomarkers of inflammation via neuroimaging as well as biomarkers of nicotine dependence (e.g., nicotine metabolite ratio). Tobacco smoking and nicotine may impact ART drug metabolism and conversely, certain ARTs may impact nicotine metabolism. Thus, we will review these bidirectional relationships and how they may contribute to neuroHIV and other adverse outcomes. We will also discuss the effects of tobacco use on the interaction between peripheral organs (lungs, heart, kidney) and subsequent CNS function in the context of HIV. Lastly, given the dramatic rise in the use of electronic nicotine delivery systems, we will discuss the implications of vaping on these processes. Despite the growing recognition of the importance of addressing tobacco use among PLWH, more research is necessary at both the preclinical and clinical level to disentangle the potentially synergistic effects of tobacco use, nicotine, HIV, cognition and immune dysregulation, as well as identify optimal approaches to reduce tobacco use. Graphical Abstract Proposed model of the relationships among HIV, ART, smoking, inflammation, and neurocognition. Solid lines represent relationships supported by evidence. Dashed lines represent relationships for which there is not enough evidence to make a conclusion. (a) HIV infection produces elevated levels of inflammation even among virally suppressed individuals. (b) HIV is associated with deficits in cognition function. (c) Smoking rates are higher among PLWH, compared to the general population. (d) The nicotine metabolite ratio (NMR) is associated with smoking behavior. (e) HIV and tobacco use are both associated with higher rates of psychiatric comorbidities, such as depression, and elevated levels of chronic stress. These factors may represent other mechanisms linking HIV and tobacco use. (f) The relationship between nicotine, tobacco smoking, and inflammation is complex, but it is well-established that smoking induces inflammation; the evidence for nicotine as anti-inflammatory is supported in some studies, but not others. (g) The relationship between tobacco use and neurocognition may differ for the effects of nicotine (acute nicotine use may have beneficial effects) vs. tobacco smoking (chronic use may impair cognition). (h) Elevated levels of inflammation may be associated with deficits in cognition. (i) PLWH may metabolize nicotine faster than those without HIV; the mechanism is not yet known and the finding needs validation in larger samples. We also hypothesize that if HIV-infection increases nicotine metabolism, then we should observe an attenuation effect once ART is initiated. (j) It is possible that the increase in NMR is due to ART effects on CYP2A6. (k) We hypothesize that faster nicotine metabolism may result in higher levels of inflammation since nicotine has anti-inflammatory properties.
Collapse
Affiliation(s)
- Shivesh Ghura
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Gross
- Division of Infectious Diseases, University of Pennsylvania, Philadelphia, PA, USA.,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob Dubroff
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Schnoll
- Department of Psychiatry, University of Pennsylvania, 3535 Market Street, Suite, Philadelphia, PA, 4100, USA
| | - Ronald G Collman
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca L Ashare
- Department of Psychiatry, University of Pennsylvania, 3535 Market Street, Suite, Philadelphia, PA, 4100, USA.
| |
Collapse
|
11
|
Tiepolt S, Patt M, Aghakhanyan G, Meyer PM, Hesse S, Barthel H, Sabri O. Current radiotracers to image neurodegenerative diseases. EJNMMI Radiopharm Chem 2019; 4:17. [PMID: 31659510 PMCID: PMC6660543 DOI: 10.1186/s41181-019-0070-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
The term of neurodegenerative diseases covers a heterogeneous group of disorders that are distinguished by progressive degeneration of the structure and function of the nervous system such as dementias, movement disorders, motor neuron disorders, as well as some prion disorders. In recent years, a paradigm shift started for the diagnosis of neurodegenerative diseases, for which successively clinical testing is supplemented by biomarker information. In research scenarios, it was even proposed recently to substitute the current syndromic by a biological definition of Alzheimer's diseases. PET examinations with various radiotracers play an important role in providing non-invasive biomarkers and co-morbidity information in neurodegeneration. Information on co-morbidity, e.g. Aβ plaques and Lewy-bodies or Aβ plaques in patients with aphasia or the absence of Aβ plaques in clinical AD patients are of interest to expand our knowledge about the pathogenesis of different phenotypically defined neurodegenerative diseases. Moreover, this information is also important in therapeutic trials targeting histopathological abnormalities.The aim of this review is to present an overview of the currently available radiotracers for imaging neurodegenerative diseases in research and in routine clinical settings. In this context, we also provide a short summary of the most frequent neurodegenerative diseases from a nuclear medicine point of view, their clinical and pathophysiological as well as nuclear imaging characteristics, and the resulting need for new radiotracers.
Collapse
Affiliation(s)
- Solveig Tiepolt
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Gayane Aghakhanyan
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Philipp M. Meyer
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| |
Collapse
|
12
|
Högel H, Rissanen E, Vuorimaa A, Airas L. Positron emission tomography imaging in evaluation of MS pathology in vivo. Mult Scler 2018; 24:1399-1412. [DOI: 10.1177/1352458518791680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Positron emission tomography (PET) gives an opportunity to quantitate the expression of specific molecular targets in vivo and longitudinally in brain and thus enhances our possibilities to understand and follow up multiple sclerosis (MS)-related pathology. For successful PET imaging, one needs a relevant target molecule within the brain, to which a blood–brain barrier–penetrating specific radioligand will bind. 18-kDa translocator protein (TSPO)-binding radioligands have been used to detect activated microglial cells at different stages of MS, and remyelination has been measured using amyloid PET. Several PET ligands for the detection of other inflammatory targets, besides TSPO, have been developed but not yet been used for imaging MS patients. Finally, synaptic density evaluation has been successfully tested in human subjects and gives opportunities for the evaluation of the development of cortical and deep gray matter pathology in MS. This review will discuss PET imaging modalities relevant for MS today.
Collapse
Affiliation(s)
- Heidi Högel
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Rissanen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Anna Vuorimaa
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Laura Airas
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
13
|
Narayanaswami V, Dahl K, Bernard-Gauthier V, Josephson L, Cumming P, Vasdev N. Emerging PET Radiotracers and Targets for Imaging of Neuroinflammation in Neurodegenerative Diseases: Outlook Beyond TSPO. Mol Imaging 2018; 17:1536012118792317. [PMID: 30203712 PMCID: PMC6134492 DOI: 10.1177/1536012118792317] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/31/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022] Open
Abstract
The dynamic and multicellular processes of neuroinflammation are mediated by the nonneuronal cells of the central nervous system, which include astrocytes and the brain's resident macrophages, microglia. Although initiation of an inflammatory response may be beneficial in response to injury of the nervous system, chronic or maladaptive neuroinflammation can have harmful outcomes in many neurological diseases. An acute neuroinflammatory response is protective when activated neuroglia facilitate tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. On the other hand, chronic neuroglial activation is a major pathological mechanism in neurodegenerative diseases, likely contributing to neuronal dysfunction, injury, and disease progression. Therefore, the development of specific and sensitive probes for positron emission tomography (PET) studies of neuroinflammation is attracting immense scientific and clinical interest. An early phase of this research emphasized PET studies of the prototypical imaging biomarker of glial activation, translocator protein-18 kDa (TSPO), which presents difficulties for quantitation and lacks absolute cellular specificity. Many alternate molecular targets present themselves for PET imaging of neuroinflammation in vivo, including enzymes, intracellular signaling molecules as well as ionotropic, G-protein coupled, and immunoglobulin receptors. We now review the lead structures in radiotracer development for PET studies of neuroinflammation targets for neurodegenerative diseases extending beyond TSPO, including glycogen synthase kinase 3, monoamine oxidase-B, reactive oxygen species, imidazoline-2 binding sites, cyclooxygenase, the phospholipase A2/arachidonic acid pathway, sphingosine-1-phosphate receptor-1, cannabinoid-2 receptor, the chemokine receptor CX3CR1, purinergic receptors: P2X7 and P2Y12, the receptor for advanced glycation end products, Mer tyrosine kinase, and triggering receptor expressed on myeloid cells-1. We provide a brief overview of the cellular expression and function of these targets, noting their selectivity for astrocytes and/or microglia, and highlight the classes of PET radiotracers that have been investigated in early-stage preclinical or clinical research studies of neuroinflammation.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Dahl
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Vadim Bernard-Gauthier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Paul Cumming
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|