1
|
Alyamany R, El Fakih R, Alnughmush A, Albabtain A, Kharfan-Dabaja MA, Aljurf M. A comprehensive review of the role of bone marrow biopsy and PET-CT in the evaluation of bone marrow involvement in adults newly diagnosed with DLBCL. Front Oncol 2024; 14:1301979. [PMID: 38577334 PMCID: PMC10991722 DOI: 10.3389/fonc.2024.1301979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is one of the most prevalent subtypes of non-Hodgkin lymphoma (NHL) and is known for commonly infiltrating extra-nodal sites. The involvement of the bone marrow by lymphoma cells significantly impacts the staging, treatment, and prognosis among the extra-nodal sites in DLBCL. Bone marrow biopsy has been considered the standard diagnostic procedure for detecting bone marrow involvement. However, advancements in imaging techniques, such as positron emission tomography-computed tomography (PET-CT), have shown an improved ability to detect bone marrow involvement, making the need for bone marrow biopsy debatable. This review aims to emphasize the importance of bone marrow evaluation in adult patients newly diagnosed with DLBCL and suggest an optimal diagnostic approach to identify bone marrow involvement in these patients.
Collapse
Affiliation(s)
- Ruah Alyamany
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Riad El Fakih
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ahmed Alnughmush
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdulwahab Albabtain
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohamed A. Kharfan-Dabaja
- Division of Hematology-Oncology, Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, FL, United States
| | - Mahmoud Aljurf
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Ouvrard E, Kaseb A, Poterszman N, Porot C, Somme F, Imperiale A. Nuclear medicine imaging for bone metastases assessment: what else besides bone scintigraphy in the era of personalized medicine? Front Med (Lausanne) 2024; 10:1320574. [PMID: 38288299 PMCID: PMC10823373 DOI: 10.3389/fmed.2023.1320574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Accurate detection and reliable assessment of therapeutic responses in bone metastases are imperative for guiding treatment decisions, preserving quality of life, and ultimately enhancing overall survival. Nuclear imaging has historically played a pivotal role in this realm, offering a diverse range of radiotracers and imaging modalities. While the conventional bone scan using 99mTc marked bisphosphonates has remained widely utilized, its diagnostic performance is hindered by certain limitations. Positron emission tomography, particularly when coupled with computed tomography, provides improved spatial resolution and diagnostic performance with various pathology-specific radiotracers. This review aims to evaluate the performance of different nuclear imaging modalities in clinical practice for detecting and monitoring the therapeutic responses in bone metastases of diverse origins, addressing their limitations and implications for image interpretation.
Collapse
Affiliation(s)
- Eric Ouvrard
- Nuclear Medicine and Molecular Imaging, Institut de Cancérologie Strasbourg Europe (ICANS), University Hospitals of Strasbourg, University of Strasbourg, Strasbourg, France
| | - Ashjan Kaseb
- Nuclear Medicine and Molecular Imaging, Institut de Cancérologie Strasbourg Europe (ICANS), University Hospitals of Strasbourg, University of Strasbourg, Strasbourg, France
- Radiology, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Nathan Poterszman
- Nuclear Medicine and Molecular Imaging, Institut de Cancérologie Strasbourg Europe (ICANS), University Hospitals of Strasbourg, University of Strasbourg, Strasbourg, France
| | - Clémence Porot
- Radiopharmacy, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Francois Somme
- Nuclear Medicine and Molecular Imaging, Institut de Cancérologie Strasbourg Europe (ICANS), University Hospitals of Strasbourg, University of Strasbourg, Strasbourg, France
| | - Alessio Imperiale
- Nuclear Medicine and Molecular Imaging, Institut de Cancérologie Strasbourg Europe (ICANS), University Hospitals of Strasbourg, University of Strasbourg, Strasbourg, France
- IPHC, UMR 7178, CNRS/Unistra, Strasbourg, France
| |
Collapse
|
3
|
Castorina L, Comis AD, Prestifilippo A, Quartuccio N, Panareo S, Filippi L, Castorina S, Giuffrida D. Innovations in Positron Emission Tomography and State of the Art in the Evaluation of Breast Cancer Treatment Response. J Clin Med 2023; 13:154. [PMID: 38202160 PMCID: PMC10779934 DOI: 10.3390/jcm13010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
The advent of hybrid Positron Emission Tomography/Computed Tomography (PET/CT) and PET/Magnetic Resonance Imaging (MRI) scanners resulted in an increased clinical relevance of nuclear medicine in oncology. The use of [18F]-Fluorodeoxyglucose ([18F]FDG) has also made it possible to study tumors (including breast cancer) from not only a dimensional perspective but also from a metabolic point of view. In particular, the use of [18F]FDG PET allowed early confirmation of the efficacy or failure of therapy. The purpose of this review was to assess the literature concerning the response to various therapies for different subtypes of breast cancer through PET. We start by summarizing studies that investigate the validation of PET/CT for the assessment of the response to therapy in breast cancer; then, we present studies that compare PET imaging (including PET devices dedicated to the breast) with CT and MRI, focusing on the identification of the most useful parameters obtainable from PET/CT. We also focus on novel non-FDG radiotracers, as they allow for the acquisition of information on specific aspects of the new therapies.
Collapse
Affiliation(s)
- Luigi Castorina
- Nuclear Medicine Outpatient Unit, REM Radiotherapy Srl, Via Penninanzzo 11, 95029 Viagrande, Italy;
| | - Alessio Danilo Comis
- Nuclear Medicine Outpatient Unit, REM Radiotherapy Srl, Via Penninanzzo 11, 95029 Viagrande, Italy;
| | - Angela Prestifilippo
- Department of Oncology, IOM Mediterranean Oncology Institute, Via Penninanzzo 7, 95029 Viagrande, Italy; (A.P.); (D.G.)
| | - Natale Quartuccio
- Nuclear Medicine Unit, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy;
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, 41124 Modena, Italy;
| | - Luca Filippi
- Nuclear Medicine Unit, Department of Oncohaematology, Fondazione PTV Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy;
| | - Serena Castorina
- Nuclear Medicine Unit, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, 95123 Catania, Italy
| | - Dario Giuffrida
- Department of Oncology, IOM Mediterranean Oncology Institute, Via Penninanzzo 7, 95029 Viagrande, Italy; (A.P.); (D.G.)
| |
Collapse
|
4
|
Hardcastle N, Liu Y, Siva S, David S. [ 18F]NaF PET/CT imaging of response to single fraction SABR to bone metastases from breast cancer. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1197397. [PMID: 39380960 PMCID: PMC11460292 DOI: 10.3389/fnume.2023.1197397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2024]
Abstract
Breast cancer commonly metastasises to the skeleton, and stereotactic ablative body radiation therapy (SABR) is an emerging treatment for oligometastatic disease. Accurately imaging bone metastases and their response to treatment is challenging. [18F]NaF-PET has a higher sensitivity and specificity than conventional bone scans for detecting breast cancer bone metastases. In this pre-defined secondary analysis of a prospective trial, we evaluated the change in [18F]NaF uptake after SABR. Patients with oligometastatic breast cancer received a single fraction of 20 Gy to up to three bone metastases. [18F]NaF-PET was acquired before and 12 months after SABR. Pre- and post-treatment [18F]NaF-PET images were registered to the treatment planning CT. The relative change in tumour SUVmax and SUVmean was quantified. The intersection of each of the radiation therapy isodose contours with a non-tumour bone was created. The change in SUVmean in sub-volumes of non-tumour bone receiving doses of 0-20 Gy was quantified. In total, 14 patients, with 17 bone metastases, were available for analysis. A total of 15 metastases exhibited a reduction in SUVmax; the median reduction was 42% and the maximum reduction 82%. An increased absolute reduction in SUVmax was observed with higher pre-treatment SUVmax. One patient exhibited increased SUVmax after treatment, which was attributed to normal peri-tumoural bone regeneration in the context of a bone metastasis. There was a median reduction of 15%-34% for non-tumour bone in each dose level.
Collapse
Affiliation(s)
- Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Yang Liu
- Western Health Victoria, Melbourne, VIC, Australia
| | - Shankar Siva
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Steven David
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Tian A, Lv H, Liu W, Zhao J, Zhao S, Wang K, Song C. Pseudoprogression after advanced first-line endocrine therapy in metastatic breast cancer with bone metastasis: A case report. Front Oncol 2023; 12:1099164. [PMID: 36686812 PMCID: PMC9845761 DOI: 10.3389/fonc.2022.1099164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Approximately 75% of patients with advanced breast cancer develop bone metastasis, which significantly affects both the quality of life and the survival rate of patients. Accurate determination of the status of bone metastases is important for developing treatment strategies and the prognosis of the disease. Here, we report the case of a 33-year-old patient with advanced metastatic breast cancer (MBC) and multiple bone metastases, in which advanced first-line endocrine therapy and second-line chemotherapy were both considered unsuccessful according to the efficacy evaluation by conventional imaging. Considering the possibility of bone pseudoprogression, the original endocrine scheme was reapplied, and bone metastases achieved a great response of non-complete response (CR)/non-progressive disease (PD). This case showed that, in the course of therapy for the disease, if bone scintigraphy (BS) shows increased lesion density or new lesions, this probably indicates a favorable response (osteoblastic repair of osteolytic lesions) to therapy, and not the worsening of metastatic lesions, called bone pseudoprogression. This paper will provide new insights into strategies for the treatment of bone metastasis and shows the significance of distinguishing osteoblastic bone repair from real bone lesion progression in clinical settings.
Collapse
Affiliation(s)
- Aijuan Tian
- Department of Nuclear Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Huiyun Lv
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Wei Liu
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jinbo Zhao
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shanshan Zhao
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Kainan Wang
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Chen Song
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China,*Correspondence: Chen Song,
| |
Collapse
|
6
|
Cook GJR. Imaging of Bone Metastases in Breast Cancer. Semin Nucl Med 2022; 52:531-541. [PMID: 35236615 PMCID: PMC7616189 DOI: 10.1053/j.semnuclmed.2022.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Bone metastases are a common site of spread in advanced breast cancer and responsible for morbidity and high health care costs. Imaging contributes to staging and response assessment of the skeleton and has been instrumental in guiding patient management for several decades. Historically this has been with radiographs, computed tomography and bone scans. More recently, molecular and hybrid imaging methods have undergone significant development, including the addition of single photon emission computed tomography/computed tomography to the bone scan, positron emission tomography, with bone-specific and tumor-specific tracers, and magnetic resonance imaging with complementary functional diffusion-weighted imaging. These have allowed different aspects of the abnormal biology associated with bone metastases to be explored. There is ability to interrogate the bone microenvironment with bone-specific tracers and cancer cell characteristics with tumor-specific methods that complement morphological appearances on computed tomography or magnetic resonance imaging. Alongside the advent of novel, more effective and nuanced therapies for bone metastases in breast cancer, there is accumulating evidence that the developments in imaging allow more sensitive and specific detection of bone metastases as well as more accurate and earlier assessment of treatment response leading to improvements in patient management.
Collapse
Affiliation(s)
- Gary J R Cook
- Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; King's College London & Guy's and St Thomas' PET Centre, St Thomas' Hospital, London, UK.
| |
Collapse
|
7
|
Skawran S, Messerli M, Kotasidis F, Trinckauf J, Weyermann C, Kudura K, Ferraro DA, Pitteloud J, Treyer V, Maurer A, Huellner MW, Burger IA. Can Dynamic Whole-Body FDG PET Imaging Differentiate between Malignant and Inflammatory Lesions? Life (Basel) 2022; 12:life12091350. [PMID: 36143386 PMCID: PMC9501027 DOI: 10.3390/life12091350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Investigation of the clinical feasibility of dynamic whole-body (WB) [18F]FDG PET, including standardized uptake value (SUV), rate of irreversible uptake (Ki), and apparent distribution volume (Vd) in physiologic tissues, and comparison between inflammatory/infectious and cancer lesions. Methods: Twenty-four patients were prospectively included to undergo dynamic WB [18F]FDG PET/CT for clinically indicated re-/staging of oncological diseases. Parametric maps of Ki and Vd were generated using Patlak analysis alongside SUV images. Maximum parameter values (SUVmax, Kimax, and Vdmax) were measured in liver parenchyma and in malignant or inflammatory/infectious lesions. Lesion-to-background ratios (LBRs) were calculated by dividing the measurements by their respective mean in the liver tissue. Results: Seventy-seven clinical target lesions were identified, 60 malignant and 17 inflammatory/infectious. Kimax was significantly higher in cancer than in inflammatory/infections lesions (3.0 vs. 2.0, p = 0.002) while LBRs of SUVmax, Kimax, and Vdmax did not differ significantly between the etiologies: LBR (SUVmax) 3.3 vs. 2.9, p = 0.06; LBR (Kimax) 5.0 vs. 4.4, p = 0.05, LBR (Vdmax) 1.1 vs. 1.0, p = 0.18). LBR of inflammatory/infectious and cancer lesions was higher in Kimax than in SUVmax (4.5 vs. 3.2, p < 0.001). LBRs of Kimax and SUVmax showed a strong correlation (Spearman’s rho = 0.83, p < 0.001). Conclusions: Dynamic WB [18F]FDG PET/CT is feasible in a clinical setting. LBRs of Kimax were higher than SUVmax. Kimax was higher in malignant than in inflammatory/infectious lesions but demonstrated a large overlap between the etiologies.
Collapse
Affiliation(s)
- Stephan Skawran
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Michael Messerli
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | | | - Josephine Trinckauf
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Corina Weyermann
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ken Kudura
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Claraspital, 4058 Basel, Switzerland
| | - Daniela A. Ferraro
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Janique Pitteloud
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Alexander Maurer
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Martin W. Huellner
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Irene A. Burger
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Department of Nuclear Medicine, Kantonsspital Baden, 5404 Baden, Switzerland
- Correspondence:
| |
Collapse
|
8
|
Puri T, Frost ML, Cook GJ, Blake GM. [ 18F] Sodium Fluoride PET Kinetic Parameters in Bone Imaging. Tomography 2021; 7:843-854. [PMID: 34941643 PMCID: PMC8708178 DOI: 10.3390/tomography7040071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
This report describes the significance of the kinetic parameters (k-values) obtained from the analysis of dynamic positron emission tomography (PET) scans using the Hawkins model describing the pharmacokinetics of sodium fluoride ([18F]NaF) to understand bone physiology. Dynamic [18F]NaF PET scans may be useful as an imaging biomarker in early phase clinical trials of novel drugs in development by permitting early detection of treatment-response signals that may help avoid late-stage attrition.
Collapse
Affiliation(s)
- Tanuj Puri
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK;
| | - Michelle L. Frost
- Institute of Cancer Research Clinical Trials & Statistics Unit (ICR-CTSU), Institute of Cancer Research, Sutton SM2 5NG, UK;
| | - Gary J. Cook
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK;
| | - Glen M. Blake
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK;
- Correspondence: ; Tel.: +44-7762717295
| |
Collapse
|
9
|
Paravastu SS, Hasani N, Farhadi F, Collins MT, Edenbrandt L, Summers RM, Saboury B. Applications of Artificial Intelligence in 18F-Sodium Fluoride Positron Emission Tomography/Computed Tomography:: Current State and Future Directions. PET Clin 2021; 17:115-135. [PMID: 34809861 DOI: 10.1016/j.cpet.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This review discusses the current state of artificial intelligence (AI) in 18F-NaF-PET/CT imaging and the potential applications to come in diagnosis, prognostication, and improvement of care in patients with bone diseases, with emphasis on the role of AI algorithms in CT bone segmentation, relying on their prevalence in medical imaging and utility in the extraction of spatial information in combined PET/CT studies.
Collapse
Affiliation(s)
- Sriram S Paravastu
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), 30 Convent Dr., Building 30, Room 228 MSC 4320, Bethesda, MD 20892, USA
| | - Navid Hasani
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; University of Queensland Faculty of Medicine, Ochsner Clinical School, New Orleans, LA 70121, USA
| | - Faraz Farhadi
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), 30 Convent Dr., Building 30, Room 228 MSC 4320, Bethesda, MD 20892, USA
| | - Lars Edenbrandt
- Department of Clinical Physiology, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Ronald M Summers
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland- Baltimore County, Baltimore, MD, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Puri T, Siddique MM, Frost ML, Moore AEB, Blake GM. A Short Dynamic Scan Method of Measuring Bone Metabolic Flux Using [ 18F]NaF PET. Tomography 2021; 7:623-635. [PMID: 34842815 PMCID: PMC8628944 DOI: 10.3390/tomography7040053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
[18F]NaF PET measurements of bone metabolic flux (Ki) are conventionally obtained with 60-min dynamic scans analysed using the Hawkins model. However, long scan times make this method expensive and uncomfortable for subjects. Therefore, we evaluated and compared measurements of Ki with shorter scan times analysed with fixed values of the Hawkins model rate constants. The scans were acquired in a trial in 30 postmenopausal women, half treated with teriparatide (TPT) and half untreated. Sixty-minute PET-CT scans of both hips were acquired at baseline and week 12 after injection with 180 MBq [18F]NaF. Scans were analysed using the Hawkins model by fitting bone time–activity curves at seven volumes of interest (VOIs) with a semi-population arterial input function. The model was re-run with fixed rate-constants for dynamic scan times from 0–12 min increasing in 4-min steps up to 0–60 min. Using the Hawkins model with fixed rate-constants, Ki measurements with statistical power equivalent or superior to conventionally analysed 60-min dynamic scans were obtained with scan times as short as 12 min.
Collapse
Affiliation(s)
- Tanuj Puri
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor Lambeth Wing, St. Thomas’ Hospital, London SE1 7EH, UK;
| | - Musib M. Siddique
- Radcliffe Department of Medicine, Level 6 West Wing, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK;
| | - Michelle L. Frost
- Institute of Cancer Research Clinical Trials & Statistics Unit (ICR-CTSU), Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK;
| | - Amelia E. B. Moore
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor Lambeth Wing, St. Thomas’ Hospital, London SE1 7EH, UK;
| | - Glen M. Blake
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor Lambeth Wing, St. Thomas’ Hospital, London SE1 7EH, UK;
- Correspondence: ; Tel.: +44-77-6271-7295
| |
Collapse
|
11
|
Boers J, de Vries EFJ, Glaudemans AWJM, Hospers GAP, Schröder CP. Application of PET Tracers in Molecular Imaging for Breast Cancer. Curr Oncol Rep 2020; 22:85. [PMID: 32627087 PMCID: PMC7335757 DOI: 10.1007/s11912-020-00940-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Molecular imaging with positron emission tomography (PET) is a powerful tool to visualize breast cancer characteristics. Nonetheless, implementation of PET imaging into cancer care is challenging, and essential steps have been outlined in the international "imaging biomarker roadmap." In this review, we identify hurdles and provide recommendations for implementation of PET biomarkers in breast cancer care, focusing on the PET tracers 2-[18F]-fluoro-2-deoxyglucose ([18F]-FDG), sodium [18F]-fluoride ([18F]-NaF), 16α-[18F]-fluoroestradiol ([18F]-FES), and [89Zr]-trastuzumab. RECENT FINDINGS Technical validity of [18F]-FDG, [18F]-NaF, and [18F]-FES is established and supported by international guidelines. However, support for clinical validity and utility is still pending for these PET tracers in breast cancer, due to variable endpoints and procedures in clinical studies. Assessment of clinical validity and utility is essential towards implementation; however, these steps are still lacking for PET biomarkers in breast cancer. This could be solved by adding PET biomarkers to randomized trials, development of imaging data warehouses, and harmonization of endpoints and procedures.
Collapse
Affiliation(s)
- Jorianne Boers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Erik F J de Vries
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Geke A P Hospers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Carolina P Schröder
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
12
|
Cook GJR, Goh V. Molecular Imaging of Bone Metastases and Their Response to Therapy. J Nucl Med 2020; 61:799-806. [PMID: 32245899 DOI: 10.2967/jnumed.119.234260] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
Bone metastases are common, especially in more prevalent malignancies such as breast and prostate cancer. They cause significant morbidity and draw on health-care resources. Molecular and hybrid imaging techniques, including SPECT/CT, PET/CT, and whole-body MRI with diffusion-weighted imaging, have improved diagnostic accuracy in staging the skeleton compared with previous standard imaging methods, allowing earlier tailored treatment. With the introduction of several effective treatment options, it is now even more important to detect and monitor response in bone metastases accurately. Conventional imaging, including radiographs, CT, MRI, and bone scintigraphy, are recognized as being insensitive and nonspecific for response monitoring in a clinically relevant time frame. Early reports of molecular and hybrid imaging techniques, as well as whole-body MRI, promise an earlier and more accurate prediction of response versus nonresponse but have yet to be adopted routinely in clinical practice. We summarize the role of new molecular and hybrid imaging methods, including SPECT/CT, PET/CT, and whole-body MRI. These modalities are associated with improvements in diagnostic accuracy for the staging and response assessment of skeletal metastases over standard imaging methods, being able to quantify biologic processes related to the bone microenvironment as well as tumor cells. The described improvements in the imaging of bone metastases and their response to therapy have led to adoption of some of these methods into routine clinical practice in some centers. These methods also provide a better way to assess the treatment response of bone metastases in clinical trials.
Collapse
Affiliation(s)
- Gary J R Cook
- Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Vicky Goh
- Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
13
|
Doot RK. Practical Methods for Estimating Metabolic Flux (Ki) to Assess Response to Therapy via Static PET Scans. J Nucl Med 2019; 60:320-321. [PMID: 30683760 DOI: 10.2967/jnumed.118.220913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/15/2019] [Indexed: 11/16/2022] Open
Affiliation(s)
- Robert K Doot
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|