1
|
dos Santos Loureiro GG, Duarte Couto P, Gambini Gonzalez JP, Alonso Nuñez O. Comparative Evaluation of ( 18 F)AlF-PSMA-HBED-CC and 68 Ga-PSMA-HBED-CC in Staging Intermediate-/High-Risk Prostate Cancer: A Prospective Study. World J Nucl Med 2025; 24:118-127. [PMID: 40336848 PMCID: PMC12055253 DOI: 10.1055/s-0045-1801842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Objective 68 Ga-PSMA-HBED-CC positron emission tomography (PET)/computed tomography (CT) represents a clinically relevant technique for the evaluation of prostate cancer (PCa) patients, whereas 18 F-AIF-PSMA-HBED-CC is a novel tracer produced in our center, with suitable radiochemical purity for clinical purposes. We prospectively compared the diagnostic values of both tracers for the detection of metastatic disease in patients with intermediate-/high-risk PCa at initial staging. Materials and Methods Sixty-six patients (mean age: 63 years; range: 52-78 years) with PCa at initial staging (Gleason score ≥6; median prostate-specific antigen [PSA]: 10 ng/mL; range:1.7-152 ng/mL) prospectively underwent routine 68 Ga-PSMA-11 and 18 F-AlF-PSMA-11 PET/CT scanning with a 64-slice PET/CT scan with time-of-flight (TOF) correction. We measured the maximum standardized uptake value (SUVmax) and lesion-to-background ratio (LBR) in all coincidentally detected lesions. Open prostatectomy and pelvic lymph node dissection were performed in nonmetastatic patients. Histopathology, correlative imaging, and/or clinical follow-up were considered the gold standard. Follow-up was conducted at least 4 months after PET/CT scanning (median: 6.4 months; range: 4-11 months). Sensitivity, specificity, and predictive values were calculated. Results The overall detection rate was 85% (56/66) for both tracers. At least one suspicious lesion indicating potential PCa metastasis was detected in 20 (30%) and 21 (32%) of 66 patients for 68 Ga-PSMA-11 and 18 F-AIF-PSMA-11 tracers, respectively. A total of 145 extra-prostatic lesions were detected in the bone ( n = 56), lymph nodes ( n = 88), and lung ( n = 1) by at least one radiopharmaceutical: 131 (90%) for 68 Ga-PSMA-11 and 123 (85%) for 18 F-AlF-PSMA-11. In concordant lesions, a significant correlation was found between the SUVmax of both tracers ( r = 0.90, p = 0.001). The SUVmax and LBR for 18 F-AlF-PSMA-11 were higher in bone foci ( n = 39) compared with 68 Ga-PSMA-11 (7.2 vs. 8.9 and 14 vs. 13, respectively, p = 0.02). For the detection of systemic metastasis, the sensitivity values were the same for both techniques: 0.90 (95% confidence interval [CI]: 0.68-0.98). We calculated specificities of 0.96 (95% CI: 0.85-0.99) and 0.94 (95% CI: 0.82-0.98) for 68 Ga-PSMA-11 and 18 F-AlF-PSMA-11, respectively. Conclusions 68 Ga-PSMA-11 and 18 F-AlF-PSMA-11 PET/CT seem to be clinically equivalent imaging techniques for the assessment of primary intermediate-/high-risk PCa with promising potential for the detection of metastatic spread that would impact patient management.
Collapse
Affiliation(s)
- Gerardo Gabriel dos Santos Loureiro
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
- Nuclear Medicine and Molecular Imaging Centre, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | | | - Juan Pablo Gambini Gonzalez
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
- Nuclear Medicine and Molecular Imaging Centre, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Omar Alonso Nuñez
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
- Nuclear Medicine and Molecular Imaging Centre, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Futatsugi M, Miyazaki A, Kanai Y, Kondo N, Temma T. Fluorine-18-Labeled Positron Emission Tomography Probe Targeting Activated p38α: Design, Synthesis, and In Vivo Evaluation in Rodents. Pharmaceuticals (Basel) 2025; 18:600. [PMID: 40284035 PMCID: PMC12030359 DOI: 10.3390/ph18040600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The kinase p38α, a member of the mitogen-activated protein kinase (MAPK) family, is activated by external stimuli and plays a crucial role in inflammation, tumor growth, and metabolic disorders. In particular, p38α is involved in thermogenesis and the metabolism of glucose in brown adipose tissue (BAT), and it contributes to the suppression of obesity and diabetes. The noninvasive imaging of activated p38α could help elucidate diverse pathological processes, including metabolic and inflammatory conditions. This study aimed to develop and evaluate a novel fluorine-18-labeled positron emission tomography (PET) probe for imaging activated p38α in vivo. Methods: We designed 6-(4-[18F]fluoro-2-fluorophenoxy)-8-methyl-2-(tetrahydro-2H-pyran-4-ylamino)-pyrido[2,3-d]pyrimidin-7(8H)-one ([18F]R1487) by replacing a fluorine atom in R1487, which is a highly selective p38α inhibitor, with 18F. A tributylstannyl precursor was reacted with [18F]KF in the presence of a copper catalyst to synthesize [18F]R1487. Biodistribution studies and PET/computed tomography (CT) were performed on normal mice to evaluate the in vivo potential of [18F]R1487. Results: [18F]R1487 was obtained with a decay-corrected radiochemical conversion of 30.6 ± 5.6% and a decay-corrected radiochemical yield of 6.9 ± 3.6% with a radiochemical purity of >99% after reversed-phase high-performance liquid chromatography purification. The biodistribution study demonstrated high and rapid radioactivity accumulation in BAT (16.3 ± 2.7 %ID/g at 5 min post-injection), with a consistently high BAT-to-blood ratio (>5 over 2 h post-injection). PET/CT imaging successfully visualized BAT with high contrast. Conclusions: These results suggest that [18F]R1487 is a promising PET probe for imaging activated p38α in vivo, which has potential applications for pathophysiological conditions such as inflammation, cancer, and metabolic disorders.
Collapse
Affiliation(s)
- Mikiya Futatsugi
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan; (M.F.); (A.M.); (N.K.)
| | - Anna Miyazaki
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan; (M.F.); (A.M.); (N.K.)
| | - Yasukazu Kanai
- Kansai BNCT Medical Center, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan;
| | - Naoya Kondo
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan; (M.F.); (A.M.); (N.K.)
- Division of Fundamental Technology Development, Near InfraRed Photo-ImmunoTherapy Research Institute, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Osaka, Japan
| | - Takashi Temma
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan; (M.F.); (A.M.); (N.K.)
| |
Collapse
|
3
|
Hong H, Zhang Y, Qiao J, Zhang W, Zhu L, Xu J. Radiosynthesis and preclinical evaluation of [ 18F]AlF-labeled HBED-CC-FAPI derivatives for imaging of cancer-associated fibroblasts. J Pharm Anal 2025; 15:101107. [PMID: 40026355 PMCID: PMC11869948 DOI: 10.1016/j.jpha.2024.101107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 03/05/2025] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Haiyan Hong
- Department of Nuclear Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong, 519000, China
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China
| | - Yan Zhang
- Department of Nuclear Medicine, Beijing Tsinghua Changgung Hospital (School of Clinical Medicine, Tsinghua University), Beijing, 102218, China
| | - Jinping Qiao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Wensheng Zhang
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Jiehua Xu
- Department of Nuclear Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong, 519000, China
| |
Collapse
|
4
|
Miyazaki A, Kanai Y, Wakamori K, Mizuguchi S, Futatsugi M, Hirano F, Kondo N, Temma T. Synthesis and evaluation of [ 18F]FBNAF, a STAT3-targeting probe, for PET imaging of tumor microenvironment. EJNMMI Radiopharm Chem 2024; 9:46. [PMID: 38834900 DOI: 10.1186/s41181-024-00276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) is a protein that regulates cell proliferation and differentiation, and it is attracting attention as a new index for evaluating cancer pathophysiology, as its activation has been highly correlated with the development and growth of tumors. With the development of STAT3 inhibitors, the demand for imaging probes will intensify. Noninvasive STAT3 imaging can help determine the cancer status and predict the efficacy of STAT3 inhibitors. In this study, we aimed to develop an imaging probe targeting STAT3 and synthesized [18F]FBNAF, which was derived from a STAT3-selective inhibitor as the lead compound, followed by in vitro and in vivo evaluations of [18F]FBNAF in positron emission tomography for STAT3. RESULTS The results revealed that FBNAF concentration-dependently inhibited STAT3 phosphorylation, similar to the lead compound, thereby supporting radiosynthesis. [18F]FBNAF was easily synthesized from the pinacol boronate ester precursor with suitable radiochemical conversion (46%), radiochemical yield (6.0%), and radiochemical purity (> 97%). [18F]FBNAF exhibited high stability in vitro and in vivo, and radioactivity accumulated in tumor tissues expressing STAT3 with an increasing tumor/blood ratio over time, peaking at 2.6 ± 0.8 at 120 min after injection in tumor-bearing mice. Tumor radioactivity was significantly reduced by the coinjection of a STAT3-selective inhibitor. Furthermore, the localization of radioactivity was almost consistent with STAT3 expression based on ex vivo autoradiography and immunohistochemistry using adjacent tumor sections. CONCLUSIONS Thus, [18F]FBNAF could be the first promising STAT3-targeting probe for PET imaging. A STAT3 imaging probe provides meaningful information on STAT3-associated cancer conditions and in tumor microenvironment.
Collapse
Affiliation(s)
- Anna Miyazaki
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yasukazu Kanai
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
- BNCT Joint Clinical Institute, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan
| | - Keita Wakamori
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Serina Mizuguchi
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Mikiya Futatsugi
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Fuko Hirano
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Naoya Kondo
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Takashi Temma
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| |
Collapse
|
5
|
Smith NJ, Green MA, Bahler CD, Tann M, Territo W, Smith AM, Hutchins GD. Comparison of tracer kinetic models for 68Ga-PSMA-11 PET in intermediate-risk primary prostate cancer patients. EJNMMI Res 2024; 14:6. [PMID: 38198060 PMCID: PMC10781928 DOI: 10.1186/s13550-023-01066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND 68Ga-PSMA-11 positron emission tomography enables the detection of primary, recurrent, and metastatic prostate cancer. Regional radiopharmaceutical uptake is generally evaluated in static images and quantified as standard uptake values (SUVs) for clinical decision-making. However, analysis of dynamic images characterizing both tracer uptake and pharmacokinetics may offer added insights into the underlying tissue pathophysiology. This study was undertaken to evaluate the suitability of various kinetic models for 68Ga-PSMA-11 PET analysis. Twenty-three lesions in 18 patients were included in a retrospective kinetic evaluation of 55-min dynamic 68Ga-PSMA-11 pre-prostatectomy PET scans from patients with biopsy-demonstrated intermediate- to high-risk prostate cancer. Three kinetic models-a reversible one-tissue compartment model, an irreversible two-tissue compartment model, and a reversible two-tissue compartment model, were evaluated for their goodness of fit to lesion and normal reference prostate time-activity curves. Kinetic parameters obtained through graphical analysis and tracer kinetic modeling techniques were compared for reference prostate tissue and lesion regions of interest. RESULTS Supported by goodness of fit and information loss criteria, the irreversible two-tissue compartment model optimally fit the time-activity curves. Lesions exhibited significant differences in kinetic rate constants (K1, k2, k3, Ki) and semiquantitative measures (SUV and %ID/kg) when compared with reference prostatic tissue. The two-tissue irreversible tracer kinetic model was consistently appropriate across prostatic zones. CONCLUSIONS An irreversible tracer kinetic model is appropriate for dynamic analysis of 68Ga-PSMA-11 PET images. Kinetic parameters estimated by Patlak graphical analysis or full compartmental analysis can distinguish tumor from normal prostate tissue.
Collapse
Affiliation(s)
- Nathaniel J Smith
- Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, IN, 46202, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Mark A Green
- Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, IN, 46202, USA
| | - Clinton D Bahler
- Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, IN, 46202, USA
| | - Mark Tann
- Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, IN, 46202, USA
| | - Wendy Territo
- Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, IN, 46202, USA
| | - Anne M Smith
- Siemens Medical Solutions USA, Inc., Knoxville, TN, USA
| | - Gary D Hutchins
- Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, IN, 46202, USA
| |
Collapse
|
6
|
Smith NJ, Green MA, Bahler CD, Tann M, Territo W, Smith AM, Hutchins GD. Comparison of Tracer Kinetic Models for 68Ga-PSMA-11 PET in Intermediate Risk Primary Prostate Cancer Patients. RESEARCH SQUARE 2023:rs.3.rs-3420161. [PMID: 37961116 PMCID: PMC10635384 DOI: 10.21203/rs.3.rs-3420161/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
BACKGROUND 68Ga-PSMA-11 positron emission tomography enables the detection of primary, recurrent, and metastatic prostate cancer. Regional radiopharmaceutical uptake is generally evaluated in static images and quantified as standard uptake values (SUV) for clinical decision-making. However, analysis of dynamic images characterizing both tracer uptake and pharmacokinetics may offer added insights into the underlying tissue pathophysiology. This study was undertaken to evaluate the suitability of various kinetic models for 68Ga-PSMA-11 PET analysis. Twenty-three lesions in 18 patients were included in a retrospective kinetic evaluation of 55-minute dynamic 68Ga-PSMA-11 pre-prostatectomy PET scans from patients with biopsy-demonstrated intermediate to high-risk prostate cancer. A reversible one-tissue compartment model, irreversible two-tissue compartment model, and a reversible two-tissue compartment model were evaluated for their goodness-of-fit to lesion and normal reference prostate time-activity curves. Kinetic parameters obtained through graphical analysis and tracer kinetic modeling techniques were compared for reference prostate tissue and lesion regions of interest. RESULTS Supported by goodness-of-fit and information loss criteria, the irreversible two-tissue compartment model was selected as optimally fitting the time-activity curves. Lesions exhibited significant differences in kinetic rate constants (K1, k2, k3, Ki) and semiquantitative measures (SUV) when compared with reference prostatic tissue. The two-tissue irreversible tracer kinetic model was consistently appropriate across prostatic zones. CONCLUSIONS An irreversible tracer kinetic model is appropriate for dynamic analysis of 68Ga-PSMA-11 PET images. Kinetic parameters estimated by Patlak graphical analysis or full compartmental analysis can distinguish tumor from normal prostate tissue.
Collapse
Affiliation(s)
| | | | | | - Mark Tann
- Indiana University School of Medicine
| | | | - Anne M Smith
- Siemens Medical Solutions USA Inc: Siemens Healthcare USA
| | | |
Collapse
|
7
|
Radiochemistry with {Al18F}2+: Current status and optimization perspectives for efficient radiofluorination by complexation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Preclinical comparative study of [ 18F]AlF-PSMA-11 and [ 18F]PSMA-1007 in varying PSMA expressing tumors. Sci Rep 2022; 12:15744. [PMID: 36130980 PMCID: PMC9492661 DOI: 10.1038/s41598-022-20060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
A wide variety of 18F-labeled PSMA-targeting PET radiotracers have been developed, including [18F]AlF-PSMA-11. As there is only limited data on the comparison with other 18F-labeled PSMA PET tracers, a comparative preclinical study between [18F]AlF-PSMA-11 and [18F]PSMA-1007 was conducted. Mice with varying PSMA expressing tumors (C4-2, 22Rv1 and PC-3, each n = 5) underwent two PET/CT scans with both [18F]AlF-PSMA-11 and [18F]PSMA-1007. Ten additional mice bearing C4-2 xenografts were subjected to ex vivo biodistribution with either [18F]AlF-PSMA-11 (n = 5) or [18F]PSMA-1007 (n = 5). Absolute SUVmean and SUVmax values were significantly higher for [18F]PSMA-1007 scans in both C4-2 tumors (p < 0.01) and 22Rv1 tumors (p < 0.01). In C4-2 xenograft bearing mice, the tumor-to-organ ratios did not significantly differ between [18F]AlF-PSMA-11 and [18F]PSMA-1007 for liver, muscle, blood and salivary glands (p > 0.05). However, in 22Rv1 xenograft bearing mice, all tumor-to-organ ratios were higher for [18F]AlF-PSMA-11 (p < 0.01). In healthy organs, [18F]PSMA-1007 uptake was higher in the liver, gallbladder, small intestines and glands. Biodistribution data confirmed the increased uptake in the heart, small intestines and liver with [18F]PSMA-1007. Absolute tumor uptake was higher with [18F]PSMA-1007 in all tumors. Tumor-to-organ ratios did not differ significantly in high PSMA expressing tumors, but were higher for [18F]AlF-PSMA-11 in low PSMA expressing tumors. Furthermore, [18F]PSMA-1007 showed higher uptake in healthy organs.
Collapse
|
9
|
Hoareau R, Bach-Gansmo T, Cumming P, Olberg DE. A new automated and putatively versatile synthesis of the PSMA-ligand derivative [ 18F]DCFPyL using the FASTlab TM synthesizer. EJNMMI Radiopharm Chem 2022; 7:10. [PMID: 35507241 PMCID: PMC9068851 DOI: 10.1186/s41181-022-00157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/03/2022] [Indexed: 11/24/2022] Open
Abstract
Background Noninvasive molecular imaging using peptides and biomolecules labelled with positron emitters has become important for detection of cancer and other diseases with PET (positron emission tomography). The positron emitting radionuclide fluorine-18 is widely available in high yield from cyclotrons and has favorable decay (t1/2 109.7 min) and imaging properties. 18F-Labelling of biomolecules and peptides for use as radiotracers is customarily achieved in a two-step approach, which can be challenging to automate. 6-[18F]Fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester ([18F]F-Py-TFP) is a versatile 18F-prosthetic group for this purpose, which can be rapidly be produced in an one-step approach on solid support. This work details an automated procedure on the cassette-based GE FASTlab™ platform for the labeling of a peptidomimetic, exemplified by the case of using the Glu-CO-Lys motif to produce [18F]DCFPyL, a ligand targeting the prostate specific membrane antigen (PSMA). Results From fluorine-18 delivery a fully automated two-step radiosynthesis of [18F]DCFPyL was completed in 56 min with an overall end of synthesis yield as high as 37% using solid phase extraction (SPE) purification on the GE FASTlab™ platform. Conclusions Putatively, this radiolabeling methodology is inherently amenable to automation with a diverse set of synthesis modules, and it should generalize for production of a broad spectrum of biomolecule-based radiotracers for use in PET imaging.
Collapse
Affiliation(s)
| | | | - Paul Cumming
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia.,Institute of Nuclear Medicine, Inelspital, University of Bern, Bern, Switzerland
| | - Dag Erlend Olberg
- Norsk Medisinsk Syklotronsenter AS, Postboks 4950, 0424, Nydalen, Oslo, Norway. .,School of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
10
|
Shahrokhi P, Masteri Farahani A, Tamaddondar M, Rezazadeh F. The utility of radiolabeled PSMA ligands for tumor imaging. Chem Biol Drug Des 2021; 99:136-161. [PMID: 34472217 DOI: 10.1111/cbdd.13946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is a glycosylated type-II transmembrane protein expressed in prostatic tissue and significantly overexpressed in several prostate cancer cells. Despite its name, PSMA has also been reported to be overexpressed in endothelial cells of benign and malignant non-prostate disease. So its clinical use was extended to detection, staging, and therapy of various tumor types. Recently small molecules targeting PSMA have been developed as imaging probes for diagnosis of several malignancies. Preliminary studies are emerging improved diagnostic sensitivity and specificity of PSMA imaging, leading to a change in patient management. In this review, we evaluated the first preclinical and clinical studies on PSMA ligands resulting future perspectives radiolabeled PSMA in staging and molecular characterization, based on histopathologic examinations of PSMA expression.
Collapse
Affiliation(s)
- Pejman Shahrokhi
- Nuclear Medicine Center, Payambar Azam Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Arezou Masteri Farahani
- Nuclear Medicine Center, Payambar Azam Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Mohammad Tamaddondar
- Nephrology Department, Payambar Azam Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Farzaneh Rezazadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
Archibald SJ, Allott L. The aluminium-[ 18F]fluoride revolution: simple radiochemistry with a big impact for radiolabelled biomolecules. EJNMMI Radiopharm Chem 2021; 6:30. [PMID: 34436693 PMCID: PMC8390636 DOI: 10.1186/s41181-021-00141-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
The aluminium-[18F]fluoride ([18F]AlF) radiolabelling method combines the favourable decay characteristics of fluorine-18 with the convenience and familiarity of metal-based radiochemistry and has been used to parallel gallium-68 radiopharmaceutical developments. As such, the [18F]AlF method is popular and widely implemented in the development of radiopharmaceuticals for the clinic. In this review, we capture the current status of [18F]AlF-based technology and reflect upon its impact on nuclear medicine, as well as offering our perspective on what the future holds for this unique radiolabelling method.
Collapse
Affiliation(s)
- Stephen J Archibald
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK.,Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Castle Road, Cottingham, HU16 5JQ, UK
| | - Louis Allott
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK. .,Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK. .,Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Castle Road, Cottingham, HU16 5JQ, UK.
| |
Collapse
|
12
|
Vázquez SM, Endepols H, Fischer T, Tawadros SG, Hohberg M, Zimmermanns B, Dietlein F, Neumaier B, Drzezga A, Dietlein M, Schomäcker K. Translational Development of a Zr-89-Labeled Inhibitor of Prostate-specific Membrane Antigen for PET Imaging in Prostate Cancer. Mol Imaging Biol 2021; 24:115-125. [PMID: 34370181 PMCID: PMC8760230 DOI: 10.1007/s11307-021-01632-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022]
Abstract
Purpose We present here a Zr-89-labeled inhibitor of prostate-specific membrane antigen (PSMA) as a complement to the already established F-18- or Ga-68-ligands. Procedures The precursor PSMA-DFO (ABX) was used for Zr-89-labeling. This is not an antibody, but a peptide analogue of the precursor for the production of [177Lu]Lu-PSMA-617. The ligand [89Zr]Zr-PSMA-DFO was compared with [68Ga]Ga-PSMA-11 and [18F]F-JK-PSMA-7 in vitro by determination of the Kd value, cellular uptake, internalization in LNCaP cells, biodistribution studies with LNCaP prostate tumor xenografts in mice, and in vivo by small-animal PET imaging in LNCaP tumor mouse models. A first-in-human PET was performed with [89Zr]Zr-PSMA-DFO on a patient presenting with a biochemical recurrence after brachytherapy and an ambiguous intraprostatic finding with [18F]F-JK-PSMA-7 but histologically benign cells in a prostate biopsy 7 months previously. Results [89Zr]Zr-PSMA-DFO was prepared with a radiochemical purity ≥ 99.9% and a very high in vitro stability for up to 7 days at 37 °C. All radiotracers showed similar specific cellular binding and internalization, in vitro and comparable tumor uptake in biodistribution experiments during the first 5 h. The [89Zr]Zr-PSMA-DFO achieved significantly higher tumor/background ratios in LNCaP tumor xenografts (tumor/blood: 309 ± 89, tumor/muscle: 450 ± 38) after 24 h than [68Ga]Ga-PSMA-11 (tumor/blood: 112 ± 57, tumor/muscle: 58 ± 36) or [18F]F-JK-PSMA-7 (tumor/blood: 175 ± 30, tumor/muscle: 114 ± 14) after 4 h (p < 0.01). Small-animal PET imaging demonstrated in vivo that tumor visualization with [89Zr]Zr-PSMA-DFO is comparable to [68Ga]Ga-PSMA-11 or [18F]F-JK-PSMA-7 at early time points (1 h p.i.) and that PET scans up to 48 h p.i. clearly visualized the tumor at late time points. A late [89Zr]Zr-PSMA-DFO PET scan on a patient with biochemical recurrence (BCR) had demonstrated intensive tracer accumulation in the right (SUVmax 13.25, 48 h p.i.) and in the left prostate lobe (SUV max 9.47), a repeat biopsy revealed cancer cells on both sides. Conclusion [89Zr]Zr-PSMA-DFO is a promising PSMA PET tracer for detection of tumor areas with lower PSMA expression and thus warrants further clinical evaluation. Supplementary Information The online version contains supplementary material available at 10.1007/s11307-021-01632-x.
Collapse
Affiliation(s)
- Sergio Muñoz Vázquez
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Kerpener Str. 62 50937, Cologne, Germany
| | - Heike Endepols
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Kerpener Str. 62 50937, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Str. 62 50937, Cologne, Germany.,Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße 52428, Jülich, Germany
| | - Thomas Fischer
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Kerpener Str. 62 50937, Cologne, Germany
| | - Samir-Ghali Tawadros
- Faculty of Medicine and University Hospital Cologne, Center for Experimental Medicine (CEM), University of Cologne, Robert-Koch-Straße 10 50931, Cologne, Germany
| | - Melanie Hohberg
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Kerpener Str. 62 50937, Cologne, Germany
| | - Beate Zimmermanns
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Kerpener Str. 62 50937, Cologne, Germany
| | - Felix Dietlein
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Kerpener Str. 62 50937, Cologne, Germany.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Bernd Neumaier
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Str. 62 50937, Cologne, Germany.,Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße 52428, Jülich, Germany
| | - Alexander Drzezga
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Kerpener Str. 62 50937, Cologne, Germany
| | - Markus Dietlein
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Kerpener Str. 62 50937, Cologne, Germany
| | - Klaus Schomäcker
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Kerpener Str. 62 50937, Cologne, Germany.
| |
Collapse
|
13
|
García-Pardo J, Novio F, Nador F, Cavaliere I, Suárez-García S, Lope-Piedrafita S, Candiota AP, Romero-Gimenez J, Rodríguez-Galván B, Bové J, Vila M, Lorenzo J, Ruiz-Molina D. Bioinspired Theranostic Coordination Polymer Nanoparticles for Intranasal Dopamine Replacement in Parkinson's Disease. ACS NANO 2021; 15:8592-8609. [PMID: 33885286 PMCID: PMC8558863 DOI: 10.1021/acsnano.1c00453] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/12/2021] [Indexed: 05/07/2023]
Abstract
Dopamine (DA) is one of the main neurotransmitters found in the central nervous system and has a vital role in the function of dopaminergic (DArgic) neurons. A progressive loss of this specific subset of cells is one of the hallmarks of age-related neurodegenerative disorders such as Parkinson's disease (PD). Symptomatic therapy for PD has been centered in the precursor l-DOPA administration, an amino acid precursor of DA that crosses the blood-brain barrier (BBB) while DA does not, although this approach presents medium- to long-term side effects. To overcome this limitation, DA-nanoencapsulation therapies are actively being searched as an alternative for DA replacement. However, overcoming the low yield of encapsulation and/or poor biodistribution/bioavailability of DA is still a current challenge. Herein, we report the synthesis of a family of neuromelanin bioinspired polymeric nanoparticles. Our system is based on the encapsulation of DA within nanoparticles through its reversible coordination complexation to iron metal nodes polymerized with a bis-imidazol ligand. Our methodology, in addition to being simple and inexpensive, results in DA loading efficiencies of up to 60%. In vitro, DA nanoscale coordination polymers (DA-NCPs) exhibited lower toxicity, degradation kinetics, and enhanced uptake by BE(2)-M17 DArgic cells compared to free DA. Direct infusion of the particles in the ventricle of rats in vivo showed a rapid distribution within the brain of healthy rats, leading to an increase in striatal DA levels. More importantly, after 4 days of nasal administrations with DA-NCPs equivalent to 200 μg of the free drug per day, the number and duration of apomorphine-induced rotations was significantly lower from that in either vehicle or DA-treated rats performed for comparison purposes. Overall, this study demonstrates the advantages of using nanostructured DA for DA-replacement therapy.
Collapse
Affiliation(s)
- Javier García-Pardo
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Departament
de Bioquímica i Biologia Molecular, Unitat de Bioquímica
de Biociències, Edifici C, Universitat
Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Fernando Novio
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Universitat Autònoma
de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Fabiana Nador
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Ivana Cavaliere
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Salvio Suárez-García
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Silvia Lope-Piedrafita
- Centro
de Investigacion Biomédica en Red en Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain
- Servei de Ressonància Magnètica
Nuclear, Institut de Neurociències,
Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Spain
| | - Ana Paula Candiota
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Departament
de Bioquímica i Biologia Molecular, Unitat de Bioquímica
de Biociències, Edifici C, Universitat
Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro
de Investigacion Biomédica en Red en Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain
| | - Jordi Romero-Gimenez
- Neurodegenerative
Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Edifici Collserola Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron,
129, 08035 Barcelona, Spain
| | - Beatriz Rodríguez-Galván
- Neurodegenerative
Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Edifici Collserola Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron,
129, 08035 Barcelona, Spain
| | - Jordi Bové
- Neurodegenerative
Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Edifici Collserola Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron,
129, 08035 Barcelona, Spain
| | - Miquel Vila
- Servei de Ressonància Magnètica
Nuclear, Institut de Neurociències,
Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Spain
- Neurodegenerative
Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Edifici Collserola Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron,
129, 08035 Barcelona, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain
| | - Julia Lorenzo
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Departament
de Bioquímica i Biologia Molecular, Unitat de Bioquímica
de Biociències, Edifici C, Universitat
Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Daniel Ruiz-Molina
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
14
|
Zhou W, Huang S, Jiang Y, Hu K, Wang L, Han Y, Wu H. Automatic radiosynthesis and preclinical evaluation of 18F-AlF-PSMA-NF as a potential PET probe for prostate cancer imaging. Amino Acids 2021; 53:929-938. [PMID: 34014365 DOI: 10.1007/s00726-021-02997-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/30/2021] [Indexed: 12/24/2022]
Abstract
Facile automatic production is important for the application of prostate-specific membrane antigen (PSMA) tracers in clinical practice. We developed a new 18F-AlF-labelled PSMA probe-18F-AlF-PSMA-NF-and explore its automated production method and potential value in clinical settings. 18F-AlF-PSMA-NF was prepared using an automated method with dimethylformamide (DMF) as the solvent in a positron emission tomography (PET)-MF-2 V-IT-I synthesizer. Tracer characteristics were examined both in vitro and in vivo. Micro-PET/computed tomography (CT) was performed to investigate the utility of 18F-AlF-PSMA-NF for imaging PSMA-positive tumours in vivo. 18F-AlF-PSMA-NF was prepared automatically within 35 min with a non-attenuation correction yield of 37.9 ± 11.2%. The tracer was hydrophilic, had a high affinity for PSMA (Kd = 2.58 ± 0.81 nM), and showed stability in both in vitro and in vivo conditions. In the cellular experiments, 18F-AlF-PSMA-NF uptake in PSMA-positive LNCaP cells was significantly higher than that in PSMA-negative PC-3 cells (P < 0.001), and could be blocked by excess ZJ-43-a PSMA inhibitor (P < 0.001). LNCaP tumours were clearly visualized by 18F-AlF-PSMA-NF on micro-PET/CT, with a high level of uptake (13.72 ± 2.01 percent injected dose per gram of tissue [%ID/g]) and high tumour/muscle ratio (close to 50:1). The PSMA-positive LNCaP tumours had a significantly higher uptake than PSMA-negative PC-3 tumours (13.72 ± 2.01%ID/g vs. 1.07 ± 0.48%ID/g, t = 10.382, P < 0.001), and could be blocked by ZJ-43 (13.72 ± 2.01%ID/g vs. 2.77 ± 1.44%ID/g, t = 8.14, P < 0.001). A new 18F-AlF-labelled PSMA probe-18F-AlF-PSMA-NF-was successfully developed and can be prepared automatically. It has the biological characteristics resembling that of a PSMA-based probe and can potentially be used in clinical settings.
Collapse
Affiliation(s)
- Wenlan Zhou
- Department of NanFang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China
| | - Shun Huang
- Department of NanFang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China
| | - Yanping Jiang
- Department of NanFang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China
| | - Kongzhen Hu
- Department of NanFang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China
| | - Lijuan Wang
- Department of NanFang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China
| | - Yanjiang Han
- Department of NanFang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China
| | - Hubing Wu
- Department of NanFang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
15
|
Zha Z, Choi SR, Ploessl K, Alexoff D, Zhao R, Zhu L, Kung HF. Radiolabeling Optimization and Preclinical Evaluation of the New PSMA Imaging Agent [ 18F]AlF-P16-093. Bioconjug Chem 2021; 32:1017-1026. [PMID: 33872489 DOI: 10.1021/acs.bioconjchem.1c00177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Prostate-specific membrane antigen (PSMA)-targeted radioligands have played an increasing role in the diagnosis of prostate cancer. [68Ga]Ga-P16-093 is a PSMA-targeting agent for positron emission tomography imaging, currently under a Phase 2 clinical trial. In the present study, P16-093 was labeled with 18F via [18F]AlF2+ complex formation, and the biological properties of [18F]AlF-P16-093 were evaluated. Optimization of radiolabeling efficiency was performed by testing a series of parameters, including the amount of free ligand; the amount of Al3+; and the influence of solvent, pH, temperature, reaction time, and reaction volume. Optimal labeling results were achieved at pH 5 by reacting at 60 °C for 15 min in a vial containing 74-370 MBq of [18F]fluoride, 46 nmol of P16-093, 40 nmol of AlCl3·6 H2O, and 50% EtOH. [18F]AlF-P16-093 was prepared with a non-decay-corrected radiochemical yield of 54.4 ± 4.4% (n = 9) within 30 min (final radiochemical purity ≥95%). In vitro, [18F]AlF-P16-093 showed PSMA-specific high uptakes in PIP-PC3 cells. The binding affinity of [18F]AlF-P16-093 to PSMA was determined as Kd of 12.4 ± 2.0 nM. The tumor uptake in mice with a xenografted PSMA-expressing PIP-PC3 tumor was high (18.8 ± 5.14% ID/g at 1 h postinjection) and retained without washout for 2 h. In addition, tumor uptake was almost completely blocked by coinjecting a PSMA inhibitor, 2-PMPA. The bone activity at 1 h post injection was higher with [18F]AlF-P16-093 (2.83 ± 0.49% ID/g) in comparison to that of [68Ga]Ga-P16-093 (0.26 ± 0.07% ID/g). In summary, an efficient and simple radiosynthesis of [18F]AlF-P16-093 was achieved. [18F]AlF-P16-093 showed desirable in vivo pharmacokinetics and excellent PSMA-targeting properties for imaging PSMA expression in prostate cancer.
Collapse
Affiliation(s)
- Zhihao Zha
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Seok Rye Choi
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Karl Ploessl
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - David Alexoff
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Ruiyue Zhao
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lin Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Hank F Kung
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Synthesis and preclinical evaluation of an Al 18F radiofluorinated bivalent PSMA ligand. Eur J Med Chem 2021; 221:113502. [PMID: 33965863 DOI: 10.1016/j.ejmech.2021.113502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 11/22/2022]
Abstract
Prostate-specific membrane antigen (PSMA) has become as an outstanding prostate cancer-related target for diagnostic imaging and targeted radiotherapy. Clinical studies on a few PSMA radiotracers are currently underway to determine their efficacy as imaging agents to detect prostate cancer. To improve tumor retention and tumor-to-normal tissue contrast, we herein report the synthesis and preclinical evaluation of an Al18F-labeled bivalent PSMA ligand (18F-Bi-PSMA). 18F-Bi-PSMA was successful automated preparation and in vitro evaluation showed that 18F-Bi-PSMA was potent binding affinity, high specificity, and rapid internalization in PSMA-expressing cells. Biodistribution studies revealed a high and specific tumor uptake of 20.5 ± 3.5 %ID/g in 22Rv1 tumor-bearing mice. Furthermore, compared to the clinically used monomeric PSMA-targeting tracers, 68Ga-PSMA-11 and 18F-PSMA-1007, 18F-Bi-PSMA exhibited improved pharmacokinetics and higher tumor uptake, as well as better tumor-to-normal tissue contrast, resulting in considerably high imaging quality. Our findings indicated that the bivalent PSMA radioligand, 18F-Bi-PSMA, was successfully synthesized and ideal imaging properties.
Collapse
|
17
|
Standardization of the [ 68Ga]Ga-PSMA-11 Radiolabeling Protocol in an Automatic Synthesis Module: Assessments for PET Imaging of Prostate Cancer. Pharmaceuticals (Basel) 2021; 14:ph14050385. [PMID: 33918987 PMCID: PMC8142994 DOI: 10.3390/ph14050385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) is a glycoprotein present in the prostate, that is overexpressed in prostate cancer (PCa). Recently, PSMA-directed radiopharmaceuticals have been developed, allowing the pinpointing of tumors with the Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) imaging techniques. The aim of the present work was to standardize and validate an automatic synthesis module-based radiolabeling protocol for [68Ga]Ga-PSMA-11, as well as to produce a radiopharmaceutical for PET imaging of PCa malignancies. [68Ga]Ga-PSMA-11 was evaluated to determine the radiochemical purity (RCP), stability in saline solution and serum, lipophilicity, affinity to serum proteins, binding and internalization to lymph node carcinoma of the prostate (LNCaP) cells, and ex vivo biodistribution in mice. The radiopharmaceutical was produced with an RCP of 99.06 ± 0.10%, which was assessed with reversed-phase high-performance liquid chromatography (RP-HPLC). The product was stable in saline solution for up to 4 h (RCP > 98%) and in serum for up to 1 h (RCP > 95%). The lipophilicity was determined as -3.80 ± 0.15, while the serum protein binding (SPB) was <17%. The percentages of binding to LNCaP cells were 4.07 ± 0.51% (30 min) and 4.56 ± 0.46% (60 min), while 19.22 ± 2.73% (30 min) and 16.85 ± 1.34% (60 min) of bound material was internalized. High accumulation of [68Ga]Ga-PSMA-11 was observed in the kidneys, spleen, and tumor, with a tumor-to-contralateral-muscle ratio of >8.5 and a tumor-to-blood ratio of >3.5. In conclusion, an automatic synthesis module-based radiolabeling protocol for [68Ga]Ga-PSMA-11 was standardized and the product was evaluated, thus verifying its characteristics for PET imaging of PCa tumors in a clinical environment.
Collapse
|
18
|
Intra-individual dynamic comparison of 18F-PSMA-11 and 68Ga-PSMA-11 in LNCaP xenograft bearing mice. Sci Rep 2020; 10:21068. [PMID: 33273603 PMCID: PMC7713063 DOI: 10.1038/s41598-020-78273-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
Recently, a 18F-labeled derivative of the widely used 68Ga-PSMA-11 was developed for PET imaging of prostate cancer. Although 18F-PSMA-11 has already been evaluated in a Phase I and Phase II clinical trial, preclinical evaluation of this radiotracer is important for further understanding its dynamic behavior. Saturation binding experiments were conducted by incubation of LNCaP cells with 18F-PSMA-11 or 68Ga-PSMA-11 for 1 h, followed by determination of the specific and aspecific binding. Mice bearing LNCaP or PC-3 xenografts each received ± 3.7 MBq 18F-PSMA-11 and 68Ga-PSMA-11 followed by dynamic acquisition of 2.5 h as well as ± 15 MBq 18F-FDG followed by static acquisition at 1 h post injection (p.i.). Uptake was evaluated by comparison of uptake parameters (SUVmean, SUVmax, TBRmean and TBRmax). Mice underwent ex vivo biodistribution where 18F-PSMA-11 activity was measures in excretory organs (kidneys, bladder and liver) as well as bone fragments (femur, humerus, sternum and skull) to evaluate bone uptake. The dissociation constant (Kd) of 18F-PSMA-11 and 68Ga-PSMA-11 was 2.95 ± 0.87 nM and 0.49 ± 0.20 nM, respectively. Uptake parameters were significantly higher in LNCaP compared to PC-3 xenografts for both 18F-PSMA-11 and 68Ga-PSMA-11, while no difference was found for 18F-FDG uptake (except for SUVmax). Tumor uptake of 18F-PSMA-11 showed a similar trend over time as 68Ga-PSMA-11, although all uptake parameter curves of the latter were considerably lower. When comparing early (60 min p.i.) to delayed (150 min p.i.) imaging for both radiotracers individually, TBRmean and TBRmax were significantly higher at the later timepoint, as well as the SUVmax of 68Ga-PSMA-11. The highest %ID/g was determined in the kidneys (94.0 ± 13.6%ID/g 1 h p.i.) and the bladder (6.48 ± 2.18%ID/g 1 h p.i.). No significant increase in bone uptake was seen between 1 and 2 h p.i. Both radiotracers showed high affinity for the PSMA receptor. Over time, all uptake parameters were higher for 18F-PSMA-11 compared to 68Ga-PSMA-11. Delayed imaging with the latter may improve tumor visualization, while no additional benefits could be found for late 18F-PSMA-11 imaging. Ex vivo biodistribution demonstrated fast renal clearance of 18F-PSMA-11 as well as no significant increase in bone uptake.
Collapse
|
19
|
Ioppolo JA, Nezich RA, Richardson KL, Morandeau L, Leedman PJ, Price RI. Direct in vivo comparison of [18F]PSMA-1007 with [68Ga]Ga-PSMA-11 and [18F]AlF-PSMA-11 in mice bearing PSMA-expressing xenografts. Appl Radiat Isot 2020; 161:109164. [DOI: 10.1016/j.apradiso.2020.109164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022]
|
20
|
Lin M, Ta RT, Kairemo K, Le DB, Ravizzini GC. Prostate-Specific Membrane Antigen-Targeted Radiopharmaceuticals in Diagnosis and Therapy of Prostate Cancer: Current Status and Future Perspectives. Cancer Biother Radiopharm 2020; 36:237-251. [PMID: 32589458 DOI: 10.1089/cbr.2020.3603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is the most common cancer to affect men in the United States and the second most common cancer in men worldwide. Prostate-specific membrane antigen (PSMA)-based positron emission tomography (PET) imaging has become increasingly popular as a novel molecular imaging technique capable of improving the clinical management of patients with prostate cancer. To date, several 68Ga and 18F-labeled PSMA-targeted molecules have shown promising results in imaging patients with recurrent prostate cancer using PET/computed tomography (PET/CT). Studies of involving PSMA-targeted radiopharmaceuticals also suggest a higher sensitivity and specificity, along with an improved detection rate over conventional imaging (CT scan and methylene diphosphonate bone scintigraphy) and 11C/18F-choline PET/CT. In addition, PSMA-617 and PSMA I&T ligands can be labeled with α- and β-emitters (e.g., 225Ac, 90Y, and 177Lu) and serve as a theranostic tool for patients with metastatic prostate cancer. While the clinical impact of such concept remains to be verified, the preliminary results of PSMA molecular radiotherapy are very encouraging. Herein, we highlighted the current status of development and future perspectives of PSMA-targeted radiopharmaceuticals and their clinical applications.
Collapse
Affiliation(s)
- Mai Lin
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert T Ta
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kalevi Kairemo
- Department of Nuclear Medicine and Molecular Radiotherapy, Docrates Cancer Center, Helsinki, Finland.,Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dao B Le
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gregory C Ravizzini
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
21
|
Allott L, Aboagye EO. Chemistry Considerations for the Clinical Translation of Oncology PET Radiopharmaceuticals. Mol Pharm 2020; 17:2245-2259. [DOI: 10.1021/acs.molpharmaceut.0c00328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Louis Allott
- Comprehensive Cancer Imaging Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | - Eric O. Aboagye
- Comprehensive Cancer Imaging Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
22
|
Werner RA, Derlin T, Lapa C, Sheikbahaei S, Higuchi T, Giesel FL, Behr S, Drzezga A, Kimura H, Buck AK, Bengel FM, Pomper MG, Gorin MA, Rowe SP. 18F-Labeled, PSMA-Targeted Radiotracers: Leveraging the Advantages of Radiofluorination for Prostate Cancer Molecular Imaging. Theranostics 2020; 10:1-16. [PMID: 31903102 PMCID: PMC6929634 DOI: 10.7150/thno.37894] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA)-targeted PET imaging for prostate cancer with 68Ga-labeled compounds has rapidly become adopted as part of routine clinical care in many parts of the world. However, recent years have witnessed the start of a shift from 68Ga- to 18F-labeled PSMA-targeted compounds. The latter imaging agents have several key advantages, which may lay the groundwork for an even more widespread adoption into the clinic. First, facilitated delivery from distant suppliers expands the availability of PET radiopharmaceuticals in smaller hospitals operating a PET center but lacking the patient volume to justify an onsite 68Ge/68Ga generator. Thus, such an approach meets the increasing demand for PSMA-targeted PET imaging in areas with lower population density and may even lead to cost-savings compared to in-house production. Moreover, 18F-labeled radiotracers have a higher positron yield and lower positron energy, which in turn decreases image noise, improves contrast resolution, and maximizes the likelihood of detecting subtle lesions. In addition, the longer half-life of 110 min allows for improved delayed imaging protocols and flexibility in study design, which may further increase diagnostic accuracy. Moreover, such compounds can be distributed to sites which are not allowed to produce radiotracers on-site due to regulatory issues or to centers without access to a cyclotron. In light of these advantageous characteristics, 18F-labeled PSMA-targeted PET radiotracers may play an important role in both optimizing this transformative imaging modality and making it widely available. We have aimed to provide a concise overview of emerging 18F-labeled PSMA-targeted radiotracers undergoing active clinical development. Given the wide array of available radiotracers, comparative studies are needed to firmly establish the role of the available 18F-labeled compounds in the field of molecular PCa imaging, preferably in different clinical scenarios.
Collapse
Affiliation(s)
- Rudolf A. Werner
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Germany
| | - Sara Sheikbahaei
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Germany
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Frederik L. Giesel
- Department of Nuclear Medicine, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Spencer Behr
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital Cologne, Germany
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Germany
| | - Frank M. Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael A. Gorin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven P. Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Fersing C, Bouhlel A, Cantelli C, Garrigue P, Lisowski V, Guillet B. A Comprehensive Review of Non-Covalent Radiofluorination Approaches Using Aluminum [ 18F]fluoride: Will [ 18F]AlF Replace 68Ga for Metal Chelate Labeling? Molecules 2019; 24:E2866. [PMID: 31394799 PMCID: PMC6719958 DOI: 10.3390/molecules24162866] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
Due to its ideal physical properties, fluorine-18 turns out to be a key radionuclide for positron emission tomography (PET) imaging, for both preclinical and clinical applications. However, usual biomolecules radiofluorination procedures require the formation of covalent bonds with fluorinated prosthetic groups. This drawback makes radiofluorination impractical for routine radiolabeling, gallium-68 appearing to be much more convenient for the labeling of chelator-bearing PET probes. In response to this limitation, a recent expansion of the 18F chemical toolbox gave aluminum [18F]fluoride chemistry a real prominence since the late 2000s. This approach is based on the formation of an [18F][AlF]2+ cation, complexed with a 9-membered cyclic chelator such as NOTA, NODA or their analogs. Allowing a one-step radiofluorination in an aqueous medium, this technique combines fluorine-18 and non-covalent radiolabeling with the advantage of being very easy to implement. Since its first reports, [18F]AlF radiolabeling approach has been applied to a wide variety of potential PET imaging vectors, whether of peptidic, proteic, or small molecule structure. Most of these [18F]AlF-labeled tracers showed promising preclinical results and have reached the clinical evaluation stage for some of them. The aim of this report is to provide a comprehensive overview of [18F]AlF labeling applications through a description of the various [18F]AlF-labeled conjugates, from their radiosynthesis to their evaluation as PET imaging agents.
Collapse
Affiliation(s)
- Cyril Fersing
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France.
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, 34298 Montpellier CEDEX 5, France.
| | - Ahlem Bouhlel
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
| | - Christophe Cantelli
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Philippe Garrigue
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Benjamin Guillet
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| |
Collapse
|