1
|
Liu Y, Hanley T, Chen H, Long SR, Gambhir SS, Cheng Z, Wu JC, Fakhri GE, Anvari B, Zaman RT. Non-Invasive Photoacoustic Imaging of In Vivo Mice with Erythrocyte Derived Optical Nanoparticles to Detect CAD/MI. Sci Rep 2020; 10:5983. [PMID: 32249814 PMCID: PMC7136251 DOI: 10.1038/s41598-020-62868-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
Coronary artery disease (CAD) causes mortality and morbidity worldwide. We used near-infrared erythrocyte-derived transducers (NETs), a contrast agent, in combination with a photoacoustic imaging system to identify the locations of atherosclerotic lesions and occlusion due to myocardial-infarction (MI). NETs (≈90 nm diameter) were fabricated from hemoglobin-depleted mice erythrocyte-ghosts and doped with Indocyanine Green (ICG). Ten weeks old male C57BL/6 mice (n = 9) underwent left anterior descending (LAD) coronary artery ligation to mimic vulnerable atherosclerotic plaques and their rupture leading to MI. 150 µL of NETs (20 µM ICG,) was IV injected via tail vein 1-hour prior to photoacoustic (PA) and fluorescence in vivo imaging by exciting NETs at 800 nm and 650 nm, respectively. These results were verified with histochemical analysis. We observed ≈256-fold higher PA signal from the accumulated NETs in the coronary artery above the ligation. Fluorescence signals were detected in LAD coronary, thymus, and liver. Similar signals were observed when the chest was cut open. Atherosclerotic lesions exhibited inflammatory cells. Liver demonstrated normal portal tract, with no parenchymal necrosis, inflammation, fibrosis, or other pathologic changes, suggesting biocompatibility of NETs. Non-invasively detecting atherosclerotic plaques and stenosis using NETs may lay a groundwork for future clinical detection and improving CAD risk assessment.
Collapse
Affiliation(s)
- Yonggang Liu
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Taylor Hanley
- Department of Bioengineering, University of California, Riverside, CA, USA
| | - Hao Chen
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven R Long
- Department of Pathology, University of California, San Francisco, CA, United States
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhen Cheng
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Georges El Fakhri
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, CA, USA.
| | - Raiyan T Zaman
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Abstract
Most of the acute ischemic events, such as acute coronary syndromes and stroke, are attributed to vulnerable plaques. These lesions have common histological and pathophysiological features, including inflammatory cell infiltration, neo-angiogenesis, remodelling, haemorrhage predisposition, thin fibrous cap, large lipid core, and micro-calcifications. Early detection of the presence of a plaque prone to rupture could be life-saving for the patient; however, vulnerable plaques usually cause non-haemodynamically significant stenosis, and anatomical imaging techniques often underestimate, or may not even detect, these lesions. Although ultrasound techniques are currently considered as the "first-line" examinations for the diagnostic investigation and treatment monitoring in patients with atherosclerotic plaques, positron emission tomography (PET) imaging could open new horizons in the assessment of atherosclerosis, given its ability to visualize metabolic processes and provide molecular-functional evidence regarding vulnerable plaques. Moreover, modern hybrid imaging techniques, combining PET with computed tomography or magnetic resonance imaging, can evaluate simultaneously both functional and morphological parameters of the atherosclerotic plaques, and are expected to significantly expand their clinical role in the future. This review summarizes current research on the PET imaging of the vulnerable atherosclerotic plaques, outlining current and potential applications in the clinical setting.
Collapse
|