1
|
Santo G, di Santo G, Cicone F, Virgolini I. Peptide receptor radionuclide therapy with somatostatin analogs beyond gastroenteropancreatic neuroendocrine tumors. J Neuroendocrinol 2025; 37:e70013. [PMID: 40064181 PMCID: PMC11919479 DOI: 10.1111/jne.70013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Abstract
First isolated by Brazeau et al. in 1972, somatostatin (SST) is a neuropeptide known for regulating various signaling pathways through its specific cell surface receptors. Somatostatin receptors (SSTRs) comprise a family of five G protein-coupled receptors that are widely distributed across the human body and are expressed by various tumor types. The growing understanding of their clinical potential led to the introduction of both cold and radiolabeled somatostatin analogs (SSAs), which have revolutionized the management of several cancers, especially neuroendocrine tumors. As a direct consequence, advances in peptide receptor radionuclide therapy (PRRT) over the last 30 years led to the approval of 177Lu-DOTATATE for the treatment of gastroenteropancreatic neuroendocrine tumors (GEPNETs). Theoretically, any cancer patients whose tumors express SSTR, as demonstrated in vivo through SSTR-based molecular imaging, could be candidates for PRRT, especially those with limited treatment options. However, evidence on the efficacy of PRRT in non-GEPNET SSTR-expressing tumors is limited, and mainly derived from small retrospective studies. Given the limited therapeutic options for advanced/metastatic patients, there is a clear need for randomized trials to formally approve PRRT with SSAs for patients who may benefit from this treatment, particularly in certain types of neuroendocrine neoplasms such as lung carcinoids, paragangliomas, and meningiomas, where high rates of disease control (up to 80%) can be achieved. In addition, emerging evidence supports the potential of combination therapies, alpha emitters, and non-SSTR-based radionuclide therapy in tumors beyond GEPNET. This review aims to provide a comprehensive overview of PRRT's role in cancers beyond GEPNET, exploring new possibilities and future directions for most SSTR highly expressing tumors.
Collapse
Affiliation(s)
- Giulia Santo
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Gianpaolo di Santo
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Francesco Cicone
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Zavvar TS, Hörmann AA, Konijnenberg M, Kraihammer M, Mair C, Kronthaler A, Joosten L, Laverman P, Gruber L, di Santo G, Decristoforo C, Virgolini I, von Guggenberg E. Radiopharmaceutical formulation and preliminary clinical dosimetry of [ 177Lu]Lu-DOTA-MGS5 for application in peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging 2025; 52:1321-1331. [PMID: 39643727 PMCID: PMC11839890 DOI: 10.1007/s00259-024-06979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/01/2024] [Indexed: 12/09/2024]
Abstract
PURPOSE Radiolabelled minigastrin (MG) analogues targeting the cholecystokinin-2 receptor (CCK2R) have proven to be a promising approach for peptide receptor radionuclide therapy (PRRT). In this study, we report on the radiopharmaceutical development and standardization of the preparation of [177Lu]Lu-DOTA-MGS5 using an automated synthesis module. Furthermore, we present the preclinical tests required to move forward towards a first therapeutic clinical trial as well as preliminary clinical dosimetry data. METHODS Five individual batches of [177Lu]Lu-DOTA-MGS5 were synthesized and analysed according to predefined quality control specifications. Cell-based experiments and biodistribution studies were performed to evaluate the specific receptor binding and tumour uptake of the radiopharmaceutical formulation. A preclinical dosimetry study was carried out in tumour xenografted mice and a first dosimetry study was performed in a patient with small cell lung cancer. RESULTS The automated cassette-based production of [177Lu]Lu-DOTA-MGS5 resulted in a product with high radiochemical purity of > 98% and high stability. The new radiopharmaceutical showed a favourable biodistribution profile in A431-CCK2R xenografted BALB/c nude mice. Pharmacokinetic data obtained in mice and dosimetry extrapolation demonstrated the feasibility of PRRT. In the preliminary patient-specific dosimetry study, a low risk of toxicity was shown and a mean absorbed dose of 12.5 ± 10.2 (1.2-28) Gy/GBq was calculated for delineable tumour lesions. CONCLUSION The radiopharmaceutical development and the preclinical/clinical results support the initiation of a first clinical trial to evaluate the therapeutic potential of [177Lu]Lu-DOTA-MGS5 in PRRT.
Collapse
Affiliation(s)
- Taraneh Sadat Zavvar
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Anton Amadeus Hörmann
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Martin Kraihammer
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Christian Mair
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Ariane Kronthaler
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands
| | - Peter Laverman
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands
| | - Leonhard Gruber
- Department of Radiology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Gianpaolo di Santo
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | | |
Collapse
|
3
|
von Guggenberg E, di Santo G, Uprimny C, Bayerschmidt S, Warwitz B, Hörmann AA, Zavvar TS, Rangger C, Decristoforo C, Sviridenko A, Nilica B, Santo G, Virgolini IJ. Safety, Biodistribution, and Radiation Dosimetry of the 68Ga-Labeled Minigastrin Analog DOTA-MGS5 in Patients with Advanced Medullary Thyroid Cancer and Other Neuroendocrine Tumors. J Nucl Med 2025; 66:257-263. [PMID: 39819687 DOI: 10.2967/jnumed.124.268877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/02/2024] [Indexed: 01/19/2025] Open
Abstract
Several exploratory studies have demonstrated the feasibility of cholecystokinin-2 receptor (CCK2R) targeting in patients with medullary thyroid carcinoma (MTC) and other neuroendocrine tumors (NETs). We report the results of a prospective phase I/IIA pilot study (clinicaltrials.gov NCT06155994) conducted at our center with the 68Ga-labeled peptide analog DOTA-DGlu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1-Nal-Phe-NH2 (68Ga-DOTA-MGS5). Methods: Six patients with advanced MTC and 6 patients with gastroenteropancreatic and bronchopulmonary NETs confirmed by previous PET/CT imaging with other PET tracers received a single dose of 180 MBq of 68Ga-DOTA-MGS5. The first 6 patients enrolled in the study were included in the dosimetry evaluation, and safety was assessed in all 12 patients. PET/CT imaging was performed at different time points after injection to perform dosimetric calculations and to determine the optimal imaging time window. In addition, blood and urine samples were collected for pharmacokinetic assessments. Results: The administration of 68Ga-DOTA-MGS5 was well tolerated, with minor adverse drug reactions occurring only in 3 patients. 68Ga-DOTA-MGS5 was cleared rapidly from the blood, with less than 21% of the injected activity present in blood 215 ± 10 min after injection. Tracer elimination occurred mainly through the kidneys, with a cumulative urinary excretion greater than 40% 3 h after injection. A high percentage of intact radiopeptide was confirmed in plasma. The highest absorbed dose was found for the urinary bladder wall, the stomach wall, and the kidneys, with an effective dose of 0.023 ± 0.007 mSv/MBq. The time points of 1 and 2 h after injection proved to be optimal for PET/CT imaging. In the 6 patients included in the dosimetry evaluation, local metastasis was confirmed in 2 patients with advanced MTC, whereas only 1 of 4 patients with gastroenteropancreatic NETs was positive in 68Ga-DOTA-MGS5 PET/CT. Conclusion: Besides confirming the safety of administration, within the phase I part of the prospective clinical trial, an acceptable effective whole-body dose, an overall favorable biodistribution, and the feasibility of cholecystokinin-2 receptor imaging could be shown for 68Ga-DOTA-MGS5.
Collapse
Affiliation(s)
| | - Gianpaolo di Santo
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Uprimny
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Steffen Bayerschmidt
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Boris Warwitz
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Anton A Hörmann
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Taraneh S Zavvar
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christine Rangger
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Sviridenko
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Bernhard Nilica
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Giulia Santo
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Irene J Virgolini
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Holzleitner N, Vilangattil M, Swaidan A, Garcia-Prada CD, Taddio MF, Jeanjean P, Mona CE, Lapa C, Casini A, Günther T, Carlucci G. Preclinical evaluation of 225Ac-labeled minigastrin analog DOTA-CCK-66 for Targeted Alpha Therapy. Eur J Nucl Med Mol Imaging 2025; 52:458-468. [PMID: 39392495 PMCID: PMC11732879 DOI: 10.1007/s00259-024-06927-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024]
Abstract
The recently developed metabolically more stable minigastrin derivative, DOTA-CCK-66, displayed promising preclinical data when labeled either with 68Ga or 177Lu. First positron emission tomography/computed tomography (PET/CT) imaging using [68Ga]Ga-DOTA-CCK-66 in two patients suffering from medullary thyroid carcinoma (MTC) displayed a favorable biodistribution profile. Here, we aim to investigate the therapeutic potential of [225Ac]Ac-DOTA-CCK-66 as a targeted α-therapy (TAT) agent in a comparative treatment study of [177Lu]Lu- versus [225Ac]Ac-DOTA-CCK-66. METHODS Treatment studies were performed (3 groups, n = 5, AR42J tumor-bearing 394-NOD SCID mice). Control group animals were injected with [68Ga]Ga-DOTA-CCK-66 (1.1 MBq, PET/CT imaging), while treatment group animals received a single dose of either [177Lu]Lu-DOTA-CCK-66 (37 MBq, radioligand therapy (RLT)) or [225Ac]Ac-DOTA-CCK-66 (37 kBq, TAT). All animals' tumor volume and body weight were monitored twice a week until end-point criteria were reached. Blood samples were evaluated (VetScan VS2, Abaxis) once mice were sacrificed. RESULTS Upon treatment, an initial decline in tumor volume, followed by a significantly delayed tumor growth of treated cohorts, was observed. Mean survival of 177Lu- as well as 225Ac-treated animals was increased by 3- (37 ± 3 d) and 4.5-fold (54 ± 6 d), respectively, when compared to non-treated animals (12 ± 3 d). Blood sample analysis did not indicate toxic side effects to the liver, kidney, or stomach upon 177Lu and 225Ac-treatment. CONCLUSION We demonstrated a substantial therapeutic efficacy of 177Lu- and 225Ac-labeled DOTA-CCK-66. As expected, treatment with the latter resulted in the highest mean survival rates. These results indicate a high therapeutic potential of 225Ac-labeled DOTA-CCK-66 for TAT in MTC patient management.
Collapse
Affiliation(s)
- Nadine Holzleitner
- Chair of Pharmaceutical Radiochemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Walther-Meissner-Str. 3, 85748, Garching, Germany.
| | - Meryl Vilangattil
- Department of Molecular and Medical Pharmacology, Biomedical Cyclotron Facility, University of California Los Angeles, 780 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Abir Swaidan
- Department of Molecular and Medical Pharmacology, Biomedical Cyclotron Facility, University of California Los Angeles, 780 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Clara Diaz Garcia-Prada
- Department of Molecular and Medical Pharmacology, Biomedical Cyclotron Facility, University of California Los Angeles, 780 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Marco F Taddio
- Department of Molecular and Medical Pharmacology, Biomedical Cyclotron Facility, University of California Los Angeles, 780 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Pauline Jeanjean
- Department of Molecular and Medical Pharmacology, Biomedical Cyclotron Facility, University of California Los Angeles, 780 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Christine E Mona
- Department of Molecular and Medical Pharmacology, Biomedical Cyclotron Facility, University of California Los Angeles, 780 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Angela Casini
- Chair of Pharmaceutical Radiochemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Walther-Meissner-Str. 3, 85748, Garching, Germany
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Thomas Günther
- Chair of Pharmaceutical Radiochemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Walther-Meissner-Str. 3, 85748, Garching, Germany
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Giuseppe Carlucci
- Department of Molecular and Medical Pharmacology, Biomedical Cyclotron Facility, University of California Los Angeles, 780 Westwood Plaza, Los Angeles, CA, 90024, USA.
| |
Collapse
|
5
|
Viering O, Rinscheid A, Holzleitner N, Dierks A, Kircher M, Wienand G, Patt M, Wester HJ, Bundschuh RA, Günther T, Lapa C, Pfob CH. Biodistribution and Radiation Dosimetry for 68 Ga-DOTA-CCK-66, a Novel CCK 2 R-Targeting Compound for Imaging of Medullary Thyroid Cancer. Clin Nucl Med 2024; 49:1091-1097. [PMID: 39093043 DOI: 10.1097/rlu.0000000000005355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
ABSTRACT Cholecystokinin 2 receptor (CCK 2 R) is a promising target for imaging and treatment of medullary thyroid cancer due to its overexpression in over 90% of tumor cells. 68 Ga-DOTA-CCK-66 is a recently introduced PET tracer selective for CCK 2 R, which has shown favorable pharmacokinetics in vivo in preclinical experiments. In order to further investigate safety and suitability of this tracer in the human setting, whole-body distribution and radiation dosimetry were evaluated. PATIENTS AND METHODS Six patients with a history of medullary thyroid cancer were injected intravenously with 169 ± 19 MBq of 68 Ga-DOTA-CCK-66. Whole-body PET/CT scans were acquired at 10 minutes, 1 hour, 2 hours, and 4 hours after tracer injection. Time-activity curves per organ were determined, and mean organ-absorbed doses and effective doses were calculated using OLINDA/EXM. RESULTS Injection of a standard activity of 150 MBq of 68 Ga-DOTA-CCK-66 results in an effective dose of 4.5 ± 0.9 mSv. The highest absorbed organ doses were observed in the urinary bladder wall (40 mGy) and the stomach (15 mGy), followed by the kidneys (6 mGy), as well as the liver and the spleen (3 mGy each). CCK 2 R-expressing tumor manifestations could be detected in 2 of the 6 patients, including lymph node, bone, and liver metastases. CONCLUSIONS 68 Ga-DOTA-CCK-66 exhibits a favorable dosimetry. Beyond physiologic receptor expression of the stomach, no other relevant tracer accumulation could be observed, rendering this organ at risk in case of subsequent radioligand therapy using 177 Lu-DOTA-CCK-66.
Collapse
Affiliation(s)
- Oliver Viering
- From the Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Andreas Rinscheid
- Medical Physics and Radiation Protection, University Hospital Augsburg, Augsburg, Germany
| | - Nadine Holzleitner
- TUM School of Natural Sciences, Department of Chemistry, Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany
| | - Alexander Dierks
- From the Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Malte Kircher
- From the Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Georgine Wienand
- From the Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marianne Patt
- From the Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Hans-Jürgen Wester
- TUM School of Natural Sciences, Department of Chemistry, Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany
| | - Ralph A Bundschuh
- From the Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | | | | | - Christian H Pfob
- From the Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
6
|
Aloj L, Mansi R, De Luca S, Accardo A, Tesauro D, Morelli G. Radiolabeled peptides and their expanding role in clinical imaging and targeted cancer therapy. J Pept Sci 2024; 30:e3607. [PMID: 38710638 DOI: 10.1002/psc.3607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
There is an expanding body of evidence showing that synthetic peptides in combination with radioactive isotopes can be utilized for medical purposes. This area is of particular interest in oncology where applications in diagnosis and therapy are at different stages of development. We review the contributions in this area by the group originally founded by Carlo Pedone in Naples many years ago. We highlight the work of this group in the context of other developments in this area, focusing on three biologically relevant receptor systems: somatostatin, gastrin-releasing peptide, and cholecystokinin-2/gastrin receptors. We focus on key milestones, state of the art, and challenges in this area of research as well as the current and future outlook for expanding clinical applications.
Collapse
Affiliation(s)
- Luigi Aloj
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Stefania De Luca
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| | - Diego Tesauro
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| |
Collapse
|
7
|
Vettorato E, Verona M, Bellio G, Croci S, Filadi R, Bisio A, Spessot E, Andrighetto A, Maniglio D, Asti M, Marzaro G, Mastrotto F. Development and Validation of Novel Z-360-Based Macromolecules for the Active Targeting of CCK2-R. Mol Pharm 2024; 21:3848-3865. [PMID: 38959127 DOI: 10.1021/acs.molpharmaceut.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The cholecystokinin type 2 receptor (CCK2-R) represents an ideal target for cancer therapy since it is overexpressed in several tumors and is associated with poor prognosis. Nastorazepide (Z-360), a selective CCK2-R antagonist, has been widely investigated as a CCK2-R ligand for targeted therapy; however, its high hydrophobicity may represent a limit to cell selectivity and optimal in vivo biodistribution. Here, we present three new fluorescent Z-360 derivatives (IP-002G-Rho, IP-002L-Rho, and IP-002M-Rho) in which nastorazepide was linked, through spacers bearing different saccharides (glucose (G), lactose (L), and maltotriose (M)), to sulforhodamine B. A fourth compound (IP-002H-Rho) with no pendant sugar was also synthesized as a control. Through two-dimensional (2D) and three-dimensional (3D) in vitro studies, we evaluated the compound association with and selectivity for CCK2-R-overexpressing cells (A431-CCK2-R+) vs CCK2-R-underexpressing cells (A431 WT). 2D in vitro studies highlighted a progressive increase of IP-002x-Rho association with A431-CCK2-R+ cells according to the linker hydrophilicity, that is, maltotriose > lactose > glucose > hydrogen, with IP-002M-Rho showing a 2.4- and a 1.36-fold higher uptake than IP-002G-Rho and IP-002L-Rho, respectively. Unexpectedly, IP-002H-Rho showed a similar cell association to that of IP-002L-Rho but with no difference between the two tested cell lines. On the contrary, association with A431-CCK2-R+ cells as compared to the A431 WT was found to be 1.08-, 1.14-, and 1.37-fold higher for IP-002G-Rho, IP-002L-Rho, and IP-002M-Rho, respectively, proving IP-002M-Rho to be the best-performing compound, as also confirmed by competition studies. Trafficking studies on A431-CCK2-R+ cells incubated with IP-002M-Rho suggested the coexistence of receptor-mediated endocytosis and simple diffusion. On the contrary, a high and selective uptake of IP-002M-Rho by A431-CCK2-R+ cells only was observed on 3D scaffolds embedded with cells, underlining the importance of 3D models in in vitro preliminary evaluation.
Collapse
Affiliation(s)
- Elisa Vettorato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
- Legnaro National Laboratories, Italian Institute of Nuclear Physics (INFN), viale dell'Università, 2, 35020 Legnaro (Padova), Italy
| | - Marco Verona
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Greta Bellio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Stefania Croci
- Clinical Immunology, Allergy, and Advanced Biotechnologies Unit, AUSL-IRCCS of Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Eugenia Spessot
- Department of Industrial Engineering and BIOtech Research Center, University of Trento, via Delle Regole 101, 38123 Trento, Italy
| | - Alberto Andrighetto
- Legnaro National Laboratories, Italian Institute of Nuclear Physics (INFN), viale dell'Università, 2, 35020 Legnaro (Padova), Italy
| | - Devid Maniglio
- Department of Industrial Engineering and BIOtech Research Center, University of Trento, via Delle Regole 101, 38123 Trento, Italy
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS of Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
8
|
Santo G, Di Santo G, Virgolini I. Peptide Receptor Radionuclide Therapy of Neuroendocrine Tumors: Agonist, Antagonist and Alternatives. Semin Nucl Med 2024; 54:557-569. [PMID: 38490913 DOI: 10.1053/j.semnuclmed.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
Peptide receptor radionuclide therapy (PRRT) today is a well-established treatment strategy for patients with neuroendocrine tumors (NET). First performed already more than 30 years ago, PRRT was incorporated only in recent years into the major oncology guidelines, based on its proven efficacy and safety in clinical trials. Following the phase 3 NETTER-1 trial, which led to the final registration of the radiopharmaceutical Luthatera® for G1/G2 NET patients in 2017, the long-term results of the phase 3 NETTER-2 trial may pave the way for a new treatment option also for advanced G2/G3 patients as first-line therapy. The growing knowledge about the synergistic effect of combined therapies could also allow alternative (re)treatment options for NET patients, in order to create a tailored treatment strategy. The evolving thera(g)nostic concept could be applied for the identification of patients who might benefit from different image-guided treatment strategies. In this scenario, the use of dual tracer PET/CT in NET patients, using both [18F]F-FDG/[68Ga]Ga-DOTA-somatostatin analog (SSA) for diagnosis and follow-up, is under discussion and could also result in a powerful prognostic tool. In addition, alternative strategies based on different metabolic pathways, radioisotopes, or combinations of different medical approaches could be applied. A number of different promising "doors" could thus open in the near future for the treatment of NET patients - and the "key" will be thera(g)nostic!
Collapse
Affiliation(s)
- Giulia Santo
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria; Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Gianpaolo Di Santo
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
9
|
Hanu AR, Atanackovic J, Boyd C, Johnston EM, Waker AJ. Characterization and mapping of the neutron fields around Bruce Power's 177Lu isotope production system. Appl Radiat Isot 2024; 208:111284. [PMID: 38492278 DOI: 10.1016/j.apradiso.2024.111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/14/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Bruce Power operates a first-of-its-kind isotope production system (IPS) that enables continuous production of 177Lu within Canada Deuterium Uranium (CANDU) commercial power reactors. Located on the reactivity mechanisms deck of Unit 7, just outside of reactor containment but in close proximity to the primary heat transport (PHT) pumps, this facility offers unique advantages for 177Lu production. However, employees working in this area encounter a radiation hazard which consists primarily of photoneutrons. These originate from the base of the PHT pumps and are only present when the reactor is operating. This study evaluates neutron exposure at Bruce Power's IPS by using a nested neutron spectrometer (NNS) to determine the neutron energy spectra and absolute dosimetric quantities such as the ambient dose equivalent, H*(10). The results from the NNS are then compared to surveys performed by a portable neutron rem meter (Model NP-2 by Nuclear Research Corporation), routinely used by Bruce Power staff for workplace monitoring. While the Model NP-2 generally showed consistent results across locations, a 50% dose correction factor was identified when operators were harvesting 177Lu from the IPS. This finding highlights an opportunity to reduce the neutron dose that is assigned to operators when producing 177Lu.
Collapse
Affiliation(s)
- Andrei R Hanu
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Bruce Power, Tiverton, Ontario, Canada.
| | - Jovica Atanackovic
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Ontario Power Generation, Whitby, Ontario, Canada
| | - Craige Boyd
- Department of Energy and Nuclear Engineering, Ontario Tech University, Oshawa, Ontario, Canada
| | - Eric M Johnston
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Nuclear Innovation Institute, Port Elgin, Ontario, Canada
| | - Anthony J Waker
- Department of Energy and Nuclear Engineering, Ontario Tech University, Oshawa, Ontario, Canada
| |
Collapse
|
10
|
Modica R, Benevento E, Liccardi A, Cannavale G, Minotta R, DI Iasi G, Colao A. Recent advances and future challenges in the diagnosis of neuroendocrine neoplasms. Minerva Endocrinol (Torino) 2024; 49:158-174. [PMID: 38625065 DOI: 10.23736/s2724-6507.23.04140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Neuroendocrine neoplasms (NEN) are a heterogeneous group of malignancies with increasing incidence, whose diagnosis is usually delayed, negatively impacting on patients' prognosis. The latest advances in pathological classifications, biomarker identification and imaging techniques may provide early detection, leading to personalized treatment strategies. In this narrative review the recent developments in diagnosis of NEN are discussed including progresses in pathological classifications, biomarker and imaging. Furthermore, the challenges that lie ahead are investigated. By discussing the limitations of current approaches and addressing potential roadblocks, we hope to guide future research directions in this field. This article is proposed as a valuable resource for clinicians and researchers involved in the management of NEN. Update of pathological classifications and the availability of standardized templates in pathology and radiology represent a substantially improvement in diagnosis and communication among clinicians. Additional immunohistochemistry markers may now enrich pathological classifications, as well as miRNA profiling. New and multi-analytical circulating biomarkers, as liquid biopsy and NETest, are being proposed for diagnosis but their validation and availability should be improved. Radiological imaging strives for precise, non-invasive and less harmful technique to improve safety and quality of life in NEN patient. Nuclear medicine may benefit of somatostatin receptors' antagonists and membrane receptor analogues. Diagnosis in NEN still represents a challenge due to their complex biology and variable presentation. Further advancements are necessary to obtain early and minimally invasive diagnosis to improve patients' outcomes.
Collapse
Affiliation(s)
- Roberta Modica
- Unit of Endocrinology, Diabetology and Andrology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy -
| | - Elio Benevento
- Unit of Endocrinology, Diabetology and Andrology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Alessia Liccardi
- Unit of Endocrinology, Diabetology and Andrology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Cannavale
- Unit of Endocrinology, Diabetology and Andrology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Roberto Minotta
- Unit of Endocrinology, Diabetology and Andrology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Gianfranco DI Iasi
- Unit of Endocrinology, Diabetology and Andrology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Annamaria Colao
- Unit of Endocrinology, Diabetology and Andrology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
- UNESCO Chair "Education for Health and Sustainable Development", University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Xu Y, Chen J, Zhang Y, Zhang P. Recent Progress in Peptide-Based Molecular Probes for Disease Bioimaging. Biomacromolecules 2024; 25:2222-2242. [PMID: 38437161 DOI: 10.1021/acs.biomac.3c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Recent strides in molecular pathology have unveiled distinctive alterations at the molecular level throughout the onset and progression of diseases. Enhancing the in vivo visualization of these biomarkers is crucial for advancing disease classification, staging, and treatment strategies. Peptide-based molecular probes (PMPs) have emerged as versatile tools due to their exceptional ability to discern these molecular changes with unparalleled specificity and precision. In this Perspective, we first summarize the methodologies for crafting innovative functional peptides, emphasizing recent advancements in both peptide library technologies and computer-assisted peptide design approaches. Furthermore, we offer an overview of the latest advances in PMPs within the realm of biological imaging, showcasing their varied applications in diagnostic and therapeutic modalities. We also briefly address current challenges and potential future directions in this dynamic field.
Collapse
Affiliation(s)
- Ying Xu
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Junfan Chen
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Pengcheng Zhang
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
12
|
Rottenburger C, Hentschel M, Fürstner M, McDougall L, Kottoros D, Kaul F, Mansi R, Fani M, Vija AH, Schibli R, Geistlich S, Behe M, Christ ER, Wild D. In-vivo inhibition of neutral endopeptidase 1 results in higher absorbed tumor doses of [ 177Lu]Lu-PP-F11N in humans: the lumed phase 0b study. EJNMMI Res 2024; 14:37. [PMID: 38581480 PMCID: PMC10998826 DOI: 10.1186/s13550-024-01101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND A new generation of radiolabeled minigastrin analogs delivers low radiation doses to kidneys and are considered relatively stable due to less enzymatic degradation. Nevertheless, relatively low tumor radiation doses in patients indicate limited stability in humans. We aimed at evaluating the effect of sacubitril, an inhibitor of the neutral endopeptidase 1, on the stability and absorbed doses to tumors and organs by the cholecystokinin-2 receptor agonist [177Lu]Lu-PP-F11N in patients. In this prospective phase 0 study eight consecutive patients with advanced medullary thyroid carcinoma and a current somatostatin receptor subtype 2 PET/CT scan were included. Patients received two short infusions of ~ 1 GBq [177Lu]Lu-PP-F11N in an interval of ~ 4 weeks with and without Entresto® pretreatment in an open-label, randomized cross-over order. Entresto® was given at a single oral dose, containing 48.6 mg sacubitril. Adverse events were graded and quantitative SPECT/CT and blood sampling were performed. Absorbed doses to tumors and relevant organs were calculated. RESULTS Pretreatment with Entresto® showed no additional toxicity and increased the stability of [177Lu]Lu-PP-FF11N in blood significantly (p < 0.001). Median tumor-absorbed doses were 2.6-fold higher after Entresto® pretreatment (0.74 vs. 0.28 Gy/GBq, P = 0.03). At the same time, an increase of absorbed doses to stomach, kidneys and bone marrow was observed, resulting in a tumor-to-organ absorbed dose ratio not significantly different with and without Entresto®. CONCLUSIONS Premedication with Entresto® results in a relevant stabilization of [177Lu]Lu-PP-FF11N and consecutively increases radiation doses in tumors and organs. Trial registration clinicaltrails.gov, NCT03647657. Registered 20 August 2018.
Collapse
Affiliation(s)
- Christof Rottenburger
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Michael Hentschel
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Markus Fürstner
- Division of Medical Radiation Physics, Department of Radiation Oncology, Bern University Hospital, Bern, Switzerland
| | - Lisa McDougall
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Danijela Kottoros
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Felix Kaul
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Center for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
| | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, Basel, Switzerland
| | - Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, Basel, Switzerland
| | - A Hans Vija
- Molecular Imaging, Siemens Medical Solutions USA, Inc., Hoffman Estates, IL, USA
| | - Roger Schibli
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH, Zurich, Switzerland
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Susanne Geistlich
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Emanuel R Christ
- Center for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Division of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Damian Wild
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
- Center for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
13
|
Holzleitner N, Fischer S, Maniyankerikalam I, Beck R, Lapa C, Wester HJ, Günther T. Significant reduction of activity retention in the kidneys via optimized linker sequences in radiohybrid-based minigastrin analogs. EJNMMI Res 2024; 14:23. [PMID: 38429609 PMCID: PMC10907560 DOI: 10.1186/s13550-024-01087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND We recently introduced radiohybrid (rh)-based minigastrin analogs e.g., DOTA-rhCCK-18 (DOTA-D-Dap(p-SiFA)-(D-γ-Glu)8-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH2), that revealed substantially increased activity retention in the tumor. However, one major drawback of these first generation rh-based cholecystokinin-2 receptor (CCK-2R) ligands is their elevated activity levels in the kidneys, especially at later time points (24 h p.i.). Therefore, this study aimed to reduce kidney retention with regard to a therapeutic use via substitution of negatively charged D-glutamic acid moieties by hydrophilic uncharged polyethylene glycol (PEG) linkers of various length ((PEG)4 to (PEG)11). Furthermore, the influence of differently charged silicon-based fluoride acceptor (SiFA)-moieties (p-SiFA: neutral, SiFA-ipa: negatively charged, and SiFAlin: positively charged) on in vitro properties of minigastrin analogs was evaluated. Out of all compounds evaluated in vitro, the two most promising minigastrin analogs were further investigated in vivo. RESULTS CCK-2R affinity of most compounds evaluated was found to be in a range of 8-20 nM (by means of apparent IC50), while ligands containing a SiFA-ipa moiety displayed elevated IC50 values. Lipophilicity was noticeably lower for compounds containing a D-γ-glutamate (D-γ-Glu) moiety next to the D-Dap(SiFA) unit as compared to their counterparts lacking the additional negative charge. Within this study, combining the most favorable CCK-2R affinity and lipophilicity, [177/natLu]Lu-DOTA-rhCCK-70 (DOTA-D-Dap(p-SiFA)-D-γ-Glu-(PEG)7-D-γ-Glu-(PEG)3-Trp-(N-Me)Nle-Asp-1-Nal-NH2; IC50: 12.6 ± 2.0 nM; logD7.4: - 1.67 ± 0.08) and [177/natLu]Lu-DOTA-rhCCK-91 (DOTA-D-Dap(SiFAlin)-D-γ-Glu-(PEG)4-D-γ-Glu-(PEG)3-Trp-(N-Me)Nle-Asp-1-Nal-NH2; IC50: 8.6 ± 0.7 nM; logD7.4 = - 1.66 ± 0.07) were further evaluated in vivo. Biodistribution data of both compounds revealed significantly reduced (p < 0.0001) activity accumulation in the kidneys compared to [177Lu]Lu-DOTA-rhCCK-18 at 24 h p.i., leading to enhanced tumor-to-kidney ratios despite lower tumor uptake. However, overall tumor-to-background ratios of the novel compounds were lower than those of [177Lu]Lu-DOTA-rhCCK-18. CONCLUSION We could show that the reduction of negative charges within the linker section of radiohybrid-based minigastrin analogs led to decreased activity levels in the kidneys at 24 h p.i., while maintaining a good tumor uptake. Thus, favorable tumor-to-kidney ratios were accomplished in vivo. However, further optimization has to be done in order to improve tumor retention and general biodistribution profile.
Collapse
Affiliation(s)
- Nadine Holzleitner
- TUM School of Natural Sciences, Department of Chemistry, Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany.
| | - Sebastian Fischer
- TUM School of Natural Sciences, Department of Chemistry, Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany
| | - Isabel Maniyankerikalam
- TUM School of Natural Sciences, Department of Chemistry, Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany
| | - Roswitha Beck
- TUM School of Natural Sciences, Department of Chemistry, Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Bavaria, Germany
| | - Hans-Jürgen Wester
- TUM School of Natural Sciences, Department of Chemistry, Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany
| | - Thomas Günther
- TUM School of Natural Sciences, Department of Chemistry, Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany.
| |
Collapse
|
14
|
de Roode KE, Joosten L, Behe M. Towards the Magic Radioactive Bullet: Improving Targeted Radionuclide Therapy by Reducing the Renal Retention of Radioligands. Pharmaceuticals (Basel) 2024; 17:256. [PMID: 38399470 PMCID: PMC10892921 DOI: 10.3390/ph17020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Targeted radionuclide therapy (TRT) is an emerging field and has the potential to become a major pillar in effective cancer treatment. Several pharmaceuticals are already in routine use for treating cancer, and there is still a high potential for new compounds for this application. But, a major issue for many radiolabeled low-to-moderate-molecular-weight molecules is their clearance via the kidneys and their subsequent reuptake. High renal accumulation of radioactive compounds may lead to nephrotoxicity, and therefore, the kidneys are often the dose-limiting organs in TRT with these radioligands. Over the years, different strategies have been developed aiming for reduced kidney retention and enhanced therapeutic efficacy of radioligands. In this review, we will give an overview of the efforts and achievements of the used strategies, with focus on the therapeutic potential of low-to-moderate-molecular-weight molecules. Among the strategies discussed here is coadministration of compounds that compete for binding to the endocytic receptors in the proximal tubuli. In addition, the influence of altering the molecular design of radiolabeled ligands on pharmacokinetics is discussed, which includes changes in their physicochemical properties and implementation of cleavable linkers or albumin-binding moieties. Furthermore, we discuss the influence of chelator and radionuclide choice on reabsorption of radioligands by the kidneys.
Collapse
Affiliation(s)
- Kim E. de Roode
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
| | - Martin Behe
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
15
|
di Santo G, Santo G, Sviridenko A, Virgolini I. Peptide receptor radionuclide therapy combinations for neuroendocrine tumours in ongoing clinical trials: status 2023. Theranostics 2024; 14:940-953. [PMID: 38250038 PMCID: PMC10797289 DOI: 10.7150/thno.91268] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
A growing body of literature reports on the combined use of peptide receptor radionuclide therapy (PRRT) with other anti-tumuor therapies in order to anticipate synergistic effects with perhaps increased safety issues. Combination treatments to enhance PRRT outcome are based on improved tumour perfusion, upregulation of somatostatin receptors (SSTR), radiosensitization with DNA damaging agents or targeted therapies. Several Phase 1 or 2 trials are currently recruiting patients in combined regimens. The combination of PRRT with cytotoxic chemotherapy, capecitabine and temozolomide (CAPTEM), seems to become clinically useful especially in pancreatic neuroendocrine tumours (pNETs) with acceptable safety profile. Neoadjuvant PRRT prior to surgery, PRRT combinations of intravenous and intraarterial routes of application, combinations of PRRT with differently radiolabelled (alpha, beta, Auger) SSTR-targeting agonists and antagonists, inhibitors of immune checkpoints (ICIs), poly (ADP-ribose) polymerase-1 (PARP1i), tyrosine kinase (TKI), DNA-dependent protein kinase, ribonucleotide reductase or DNA methyltransferase (DMNT) are tested in currently ongoing clinical trials. The combination with [131I]I-MIBG in rare NETs (such as paraganglioma, pheochromocytoma) and new non-SSTR-targeting radioligands are used in the personalization process of treatment. The present review will provide an overview of the current status of ongoing PRRT combination treatments.
Collapse
Affiliation(s)
- Gianpaolo di Santo
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Giulia Santo
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Anna Sviridenko
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Gild ML, Clifton-Bligh RJ, Wirth LJ, Robinson BG. Medullary Thyroid Cancer: Updates and Challenges. Endocr Rev 2023; 44:934-946. [PMID: 37204852 PMCID: PMC10656709 DOI: 10.1210/endrev/bnad013] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/19/2023] [Accepted: 05/18/2023] [Indexed: 05/20/2023]
Abstract
A personalized approach to the management of medullary thyroid cancer (MTC) presents several challenges; however, in the past decade significant progress has been made in both diagnostic and treatment modalities. Germline rearranged in transfection (RET) testing in multiple endocrine neoplasia 2 and 3, and somatic RET testing in sporadic MTC have revolutionized the treatment options available to patients. Positron emission tomography imaging with novel radioligands has improved characterization of disease and a new international grading system can predict prognosis. Systemic therapy for persistent and metastatic disease has evolved significantly with targeted kinase therapy especially for those harboring germline or somatic RET variants. Selpercatinib and pralsetinib are highly selective RET kinase inhibitors that have shown improved progression-free survival with better tolerability than outcomes seen in earlier multikinase inhibitor studies. Here we discuss changes in paradigms for MTC patients: from determining RET alteration status upfront to novel techniques for the evaluation of this heterogenous disease. Successes and challenges with kinase inhibitor use will illustrate how managing this rare malignancy continues to evolve.
Collapse
Affiliation(s)
- Matti L Gild
- Faculty of Health and Medicine, University of Sydney, Sydney 2006, Australia
- Department of Diabetes and Endocrinology, Royal North Shore Hospital, Sydney 2065, Australia
- Cancer Genetics, Kolling Institute of Medical Research, Sydney 2065, Australia
| | - Roderick J Clifton-Bligh
- Faculty of Health and Medicine, University of Sydney, Sydney 2006, Australia
- Department of Diabetes and Endocrinology, Royal North Shore Hospital, Sydney 2065, Australia
- Cancer Genetics, Kolling Institute of Medical Research, Sydney 2065, Australia
| | - Lori J Wirth
- Department of Medicine, Massachusetts General Hospital, & Harvard Medical School, Boston 02114, USA
| | - Bruce G Robinson
- Faculty of Health and Medicine, University of Sydney, Sydney 2006, Australia
- Department of Diabetes and Endocrinology, Royal North Shore Hospital, Sydney 2065, Australia
- Cancer Genetics, Kolling Institute of Medical Research, Sydney 2065, Australia
| |
Collapse
|
17
|
Corlett A, Pinson JA, Rahimi MN, Zuylekom JV, Cullinane C, Blyth B, Thompson PE, Hutton CA, Roselt PD, Haskali MB. Development of Highly Potent Clinical Candidates for Theranostic Applications against Cholecystokinin-2 Receptor Positive Cancers. J Med Chem 2023; 66:10289-10303. [PMID: 37493526 DOI: 10.1021/acs.jmedchem.3c00377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Peptide receptor radionuclide therapy (PRRT) is a promising form of systemic radiation therapy designed to eradicate cancer. Cholecystokinin-2 receptor (CCK2R) is an important molecular target that is highly expressed in a range of cancers. This study describes the synthesis and in vivo characterization of a novel series of 177Lu-labeled peptides ([177Lu]Lu-2b-4b) in comparison with the reference CCK2R-targeting peptide CP04 ([177Lu]Lu-1b). [177Lu]Lu-1b-4b showed high chemical purity (HPLC ≥ 94%), low Log D7.4 (-4.09 to -4.55) with strong binding affinity to CCK2R (KD 0.097-1.61 nM), and relatively high protein binding (55.6-80.2%) and internalization (40-67%). Biodistribution studies of the novel 177Lu-labeled peptides in tumors (AR42J and A431-CCK2R) showed uptake one- to eight-fold greater than the reference compound CP04 at 1, 24, and 48 h. Rapid clearance and high tumor uptake and retention were established for [177Lu]Lu-2b-4b, making these compounds excellent candidates for theranostic applications against CCK2R-expressing tumors.
Collapse
Affiliation(s)
- Alicia Corlett
- Department of Nuclear Medicine, The Royal Melbourne Hospital, Parkville, Victoria, 3000, Australia
| | - Jo-Anne Pinson
- The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Marwa N Rahimi
- The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jessica Van Zuylekom
- Models of Cancer Translational Research Centre, The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Carleen Cullinane
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- The Centre for Molecular Imaging and Translational Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Benjamin Blyth
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Models of Cancer Translational Research Centre, The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Victoria 3052, Australia
| | - Craig A Hutton
- School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Peter D Roselt
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Mohammad B Haskali
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
18
|
George SC, Samuel EJJ. Developments in 177Lu-based radiopharmaceutical therapy and dosimetry. Front Chem 2023; 11:1218670. [PMID: 37583569 PMCID: PMC10424930 DOI: 10.3389/fchem.2023.1218670] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/27/2023] [Indexed: 08/17/2023] Open
Abstract
177Lu is a radioisotope that has become increasingly popular as a therapeutic agent for treating various conditions, including neuroendocrine tumors and metastatic prostate cancer. 177Lu-tagged radioligands are molecules precisely designed to target and bind to specific receptors or proteins characteristic of targeted cancer. This review paper will present an overview of the available 177Lu-labelled radioligands currently used to treat patients. Based on recurring, active, and completed clinical trials and other available literature, we evaluate current status, interests, and developments in assessing patient-specific dosimetry, which will define the future of this particular treatment modality. In addition, we will discuss the challenges and opportunities of the existing dosimetry standards to measure and calculate the radiation dose delivered to patients, which is essential for ensuring treatments' safety and efficacy. Finally, this article intends to provide an overview of the current state of 177Lu- tagged radioligand therapy and highlight the areas where further research can improve patient treatment outcomes.
Collapse
Affiliation(s)
- Siju C. George
- Radiation Oncology Department, Miami Cancer Institute, Baptist Health, Miami, FL, United States
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | | |
Collapse
|
19
|
Holzleitner N, Günther T, Daoud-Gadieh A, Lapa C, Wester HJ. Investigation of the structure-activity relationship at the N-terminal part of minigastrin analogs. EJNMMI Res 2023; 13:65. [PMID: 37421545 DOI: 10.1186/s13550-023-01016-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Over the last years, several strategies have been reported to improve the metabolic stability of minigastrin analogs. However, currently applied compounds still reveal limited in vitro and in vivo stability. We thus performed a glycine scan at the N-terminus of DOTA-MGS5 (DOTA-D-Glu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1-Nal) to systematically analyze the peptide structure. We substituted N-terminal amino acids by simple PEG spacers and investigated in vitro stability in human serum. Furthermore, we evaluated different modifications on its tetrapeptide binding sequence (H-Trp-(N-Me)Nle-Asp-1-Nal-NH2). RESULTS Affinity data of all glycine scan peptides were found to be in a low nanomolar range (4.2-8.5 nM). However, a truncated compound lacking the D-γ-Glu-Ala-Tyr sequence revealed a significant loss in CCK-2R affinity. Substitution of the D-γ-Glu-Ala-Tyr-Gly sequence of DOTA-γ-MGS5 (DOTA- D-γ-Glu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1-Nal-NH2) by polyethylene glycol (PEG) spacers of different length exhibited only a minor influence on CCK-2R affinity and lipophilicity. However, in vitro stability of the PEG-containing compounds was significantly decreased. In addition, we confirmed that the tetrapeptide sequence H-Trp-Asp-(N-Me)Nle-1-Nal-NH2 is indeed sufficient for high CCK-2R affinity. CONCLUSION We could demonstrate that a substitution of D-γ-Glu-Ala-Tyr-Gly by PEG spacers simplified the peptide structure of DOTA-MGS5 while high CCK-2R affinity and favorable lipophilicity were maintained. Nevertheless, further optimization with regard to metabolic stability must be carried out for these minigastrin analogs.
Collapse
Affiliation(s)
- Nadine Holzleitner
- Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Thomas Günther
- Department of Chemistry, Technical University of Munich, 85748, Garching, Germany.
| | - Amira Daoud-Gadieh
- Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Constantin Lapa
- Nuclear Medicine, University Hospital Augsburg, 86156, Augsburg, Germany
| | - Hans-Jürgen Wester
- Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
20
|
Adnan A, Basu S. Somatostatin Receptor Targeted PET-CT and Its Role in the Management and Theranostics of Gastroenteropancreatic Neuroendocrine Neoplasms. Diagnostics (Basel) 2023; 13:2154. [PMID: 37443548 DOI: 10.3390/diagnostics13132154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Somatostatin receptor (SSTR) agonist-based Positron Emission Tomography-Computed Tomography (PET-CT) imaging is nowadays the mainstay for the assessment and diagnostic imaging of neuroendocrine neoplasms (NEN), especially in well-differentiated neuroendocrine tumors (NET) (World Health Organization (WHO) grade I and II). Major clinical indications for SSTR imaging are primary staging and metastatic workup, especially (a) before surgery, (b) detection of unknown primary in metastatic NET, (c) patient selection for theranostics and appropriate therapy, especially peptide receptor radionuclide therapy (PRRT), while less major indications include treatment response evaluation on and disease prognostication. Dual tracer PET-CT imaging using SSTR targeted PET tracers, viz. [68Ga]Ga-DOTA-Tyr3-Octreotate (DOTA-TATE) and [68Ga]Ga-DOTA-NaI3-Octreotide (DOTA-NOC), and fluorodeoxyglucose (FDG), have recently gained widespread acceptance for better assessment of whole-body tumor biology compared to single-site histopathology, in terms of being non-invasive and the ability to assess inter- and intra-tumoral heterogeneity on a global scale. FDG uptake has been identified as independent adverse risk factor in various studies. Recently, somatostatin receptor antagonists have been shown to be more sensitive and specific in detecting the disease. The aim of this review article is to summarize the clinical importance of SSTR-based imaging in the clinical management of neuroendocrine and related tumors.
Collapse
Affiliation(s)
- Aadil Adnan
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, JerbaiWadia Road, Parel, Mumbai 400012, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, JerbaiWadia Road, Parel, Mumbai 400012, India
| |
Collapse
|
21
|
Lepareur N, Ramée B, Mougin-Degraef M, Bourgeois M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1733. [PMID: 37376181 DOI: 10.3390/pharmaceutics15061733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Targeted radionuclide therapy has become increasingly prominent as a nuclear medicine subspecialty. For many decades, treatment with radionuclides has been mainly restricted to the use of iodine-131 in thyroid disorders. Currently, radiopharmaceuticals, consisting of a radionuclide coupled to a vector that binds to a desired biological target with high specificity, are being developed. The objective is to be as selective as possible at the tumor level, while limiting the dose received at the healthy tissue level. In recent years, a better understanding of molecular mechanisms of cancer, as well as the appearance of innovative targeting agents (antibodies, peptides, and small molecules) and the availability of new radioisotopes, have enabled considerable advances in the field of vectorized internal radiotherapy with a better therapeutic efficacy, radiation safety and personalized treatments. For instance, targeting the tumor microenvironment, instead of the cancer cells, now appears particularly attractive. Several radiopharmaceuticals for therapeutic targeting have shown clinical value in several types of tumors and have been or will soon be approved and authorized for clinical use. Following their clinical and commercial success, research in that domain is particularly growing, with the clinical pipeline appearing as a promising target. This review aims to provide an overview of current research on targeting radionuclide therapy.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, 35000 Rennes, France
- Inserm, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR 1317, Univ Rennes, 35000 Rennes, France
| | - Barthélémy Ramée
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
| | - Marie Mougin-Degraef
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
| | - Mickaël Bourgeois
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
- Groupement d'Intérêt Public ARRONAX, 1 Rue Aronnax, 44817 Saint Herblain, France
| |
Collapse
|
22
|
Nock BA, Kanellopoulos P, Joosten L, Mansi R, Maina T. Peptide Radioligands in Cancer Theranostics: Agonists and Antagonists. Pharmaceuticals (Basel) 2023; 16:ph16050674. [PMID: 37242457 DOI: 10.3390/ph16050674] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The clinical success of radiolabeled somatostatin analogs in the diagnosis and therapy-"theranostics"-of tumors expressing the somatostatin subtype 2 receptor (SST2R) has paved the way for the development of a broader panel of peptide radioligands targeting different human tumors. This approach relies on the overexpression of other receptor-targets in different cancer types. In recent years, a shift in paradigm from internalizing agonists to antagonists has occurred. Thus, SST2R-antagonist radioligands were first shown to accumulate more efficiently in tumor lesions and clear faster from the background in animal models and patients. The switch to receptor antagonists was soon adopted in the field of radiolabeled bombesin (BBN). Unlike the stable cyclic octapeptides used in the case of somatostatin, BBN-like peptides are linear, fast to biodegradable and elicit adverse effects in the body. Thus, the advent of BBN-like antagonists provided an elegant way to obtain effective and safe radiotheranostics. Likewise, the pursuit of gastrin and exendin antagonist-based radioligands is advancing with exciting new outcomes on the horizon. In the present review, we discuss these developments with a focus on clinical results, commenting on challenges and opportunities for personalized treatment of cancer patients by means of state-of-the-art antagonist-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Berthold A Nock
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15310 Athens, Greece
| | | | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15310 Athens, Greece
| |
Collapse
|
23
|
Development of the First 18F-Labeled Radiohybrid-Based Minigastrin Derivative with High Target Affinity and Tumor Accumulation by Substitution of the Chelating Moiety. Pharmaceutics 2023; 15:pharmaceutics15030826. [PMID: 36986687 PMCID: PMC10054553 DOI: 10.3390/pharmaceutics15030826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
In order to optimize elevated kidney retention of previously reported minigastrin derivatives, we substituted (R)-DOTAGA by DOTA in (R)-DOTAGA-rhCCK-16/-18. CCK-2R-mediated internalization and affinity of the new compounds were determined using AR42J cells. Biodistribution and µSPECT/CT imaging studies at 1 and 24 h p.i. were carried out in AR42J tumor-bearing CB17-SCID mice. Both DOTA-containing minigastrin analogs exhibited 3- to 5-fold better IC50 values than their (R)-DOTAGA-counterparts. natLu-labeled peptides revealed higher CCK-2R affinity than their natGa-labeled analogs. In vivo, tumor uptake at 24 h p.i. of the most affine compound, [19F]F-[177Lu]Lu-DOTA-rhCCK-18, was 1.5- and 13-fold higher compared to its (R)-DOTAGA derivative and the reference compound, [177Lu]Lu-DOTA-PP-F11N, respectively. However, activity levels in the kidneys were elevated as well. At 1 h p.i., tumor and kidney accumulation of [19F]F-[177Lu]Lu-DOTA-rhCCK-18 and [18F]F-[natLu]Lu-DOTA-rhCCK-18 was high. We could demonstrate that the choice of chelators and radiometals has a significant impact on CCK-2R affinity and thus tumor uptake of minigastrin analogs. While elevated kidney retention of [19F]F-[177Lu]Lu-DOTA-rhCCK-18 has to be further addressed with regard to radioligand therapy, its radiohybrid analog, [18F]F-[natLu]Lu-DOTA-rhCCK-18, might be ideal for positron emission tomography (PET) imaging due to its high tumor accumulation at 1 h p.i. and the attractive physical properties of fluorine-18.
Collapse
|
24
|
Hörmann AA, Klingler M, Rangger C, Mair C, Joosten L, Franssen GM, Laverman P, von Guggenberg E. Effect of N-Terminal Peptide Modifications on In Vitro and In Vivo Properties of 177Lu-Labeled Peptide Analogs Targeting CCK2R. Pharmaceutics 2023; 15:pharmaceutics15030796. [PMID: 36986657 PMCID: PMC10058949 DOI: 10.3390/pharmaceutics15030796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The therapeutic potential of minigastrin (MG) analogs for the treatment of cholecystokinin-2 receptor (CCK2R)-expressing cancers is limited by poor in vivo stability or unfavorable accumulation in non-target tissues. Increased stability against metabolic degradation was achieved by modifying the C-terminal receptor-specific region. This modification led to significantly improved tumor targeting properties. In this study, further N-terminal peptide modifications were investigated. Two novel MG analogs were designed starting from the amino acid sequence of DOTA-MGS5 (DOTA-DGlu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1Nal-NH2). Introduction of a penta-DGlu moiety and replacement of the four N-terminal amino acids by a non-charged hydrophilic linker was investigated. Retained receptor binding was confirmed using two CCK2R-expressing cell lines. The effect on metabolic degradation of the new 177Lu-labeled peptides was studied in human serum in vitro, as well as in BALB/c mice in vivo. The tumor targeting properties of the radiolabeled peptides were assessed using BALB/c nude mice bearing receptor-positive and receptor-negative tumor xenografts. Both novel MG analogs were found to have strong receptor binding, enhanced stability, and high tumor uptake. Replacement of the four N-terminal amino acids by a non-charged hydrophilic linker lowered the absorption in the dose-limiting organs, whereas introduction of the penta-DGlu moiety increased uptake in renal tissue.
Collapse
Affiliation(s)
- Anton Amadeus Hörmann
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Maximilian Klingler
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Christine Rangger
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Christian Mair
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Gerben M. Franssen
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter Laverman
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Elisabeth von Guggenberg
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence: ; Tel.: +43-512-504-80960
| |
Collapse
|
25
|
Zavvar TS, Hörmann AA, Klingler M, Summer D, Rangger C, Desrues L, Castel H, Gandolfo P, von Guggenberg E. Effects of Side Chain and Peptide Bond Modifications on the Targeting Properties of Stabilized Minigastrin Analogs. Pharmaceuticals (Basel) 2023; 16:278. [PMID: 37052226 PMCID: PMC9959130 DOI: 10.3390/ph16020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Different attempts have been made in the past two decades to develop radiolabeled peptide conjugates with enhanced pharmacokinetic properties in order to improve the application for tumor imaging and peptide receptor radionuclide therapy (PRRT), which targets the cholecystokinin-2 receptor (CCK2R). In this paper, the influence of different side chain and peptide bond modifications has been explored for the minigastrin analog DOTA-DGlu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1Nal-NH2 (DOTA-MGS5). Based on this lead structure, five new derivatives were synthesized for radiolabeling with trivalent radiometals. Different chemical and biological properties of the new derivatives were analyzed. Receptor interaction of the peptide derivatives and cell internalization of the radiolabeled peptides were studied in A431-CCK2R cells. The stability of the radiolabeled peptides in vivo was investigated using BALB/c mice. Tumor targeting of all 111In-labeled peptide conjugates, and of a selected compound radiolabeled with gallium-68 and lutetium-177, was evaluated in BALB/c nude mice xenografted with A431-CCK2R and A431-mock cells. All 111In-labeled conjugates, except [111In]In-DOTA-[Phe8]MGS5, showed a high resistance against enzymatic degradation. A high receptor affinity with IC50 values in the low nanomolar range was confirmed for most of the peptide derivatives. The specific cell internalization over time was 35.3-47.3% for all radiopeptides 4 h after incubation. Only [111In]In-DOTA-MGS5[NHCH3] exhibited a lower cell internalization of 6.6 ± 2.8%. An overall improved resistance against enzymatic degradation was confirmed in vivo. Of the radiopeptides studied, [111In]In-DOTA-[(N-Me)1Nal8]MGS5 showed the most promising targeting properties, with significantly increased accumulation of radioactivity in A431-CCK2R xenografts (48.1 ± 9.2% IA/g) and reduced accumulation of radioactivity in stomach (4.2 ± 0.5% IA/g). However, in comparison with DOTA-MGS5, a higher influence on the targeting properties was observed for the change of radiometal, resulting in a tumor uptake of 15.67 ± 2.21% IA/g for [68Ga]Ga-DOTA-[(N-Me)1Nal8]MGS5 and 35.13 ± 6.32% IA/g for [177Lu]Lu-DOTA-[(N-Me)1Nal8]MGS5.
Collapse
Affiliation(s)
- Taraneh Sadat Zavvar
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anton Amadeus Hörmann
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Maximilian Klingler
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Dominik Summer
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Christine Rangger
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Laurence Desrues
- Inserm U1245, University Rouen Normandie, 76000 Rouen, France
- Institute of Research and Biomedical Innovation (IRIB), 76000 Rouen, France
| | - Hélène Castel
- Inserm U1245, University Rouen Normandie, 76000 Rouen, France
- Institute of Research and Biomedical Innovation (IRIB), 76000 Rouen, France
| | - Pierrick Gandolfo
- Inserm U1245, University Rouen Normandie, 76000 Rouen, France
- Institute of Research and Biomedical Innovation (IRIB), 76000 Rouen, France
| | | |
Collapse
|
26
|
Lezaic L, Erba PA, Decristoforo C, Zaletel K, Mikolajczak R, Maecke H, Maina T, Konijnenberg M, Kolenc P, Trofimiuk-Müldner M, Przybylik-Mazurek E, Virgolini I, de Jong M, Fröberg AC, Rangger C, Di Santo G, Skorkiewicz K, Garnuszek P, Solnica B, Nock BA, Fedak D, Gaweda P, Hubalewska-Dydejczyk A. [ 111In]In-CP04 as a novel cholecystokinin-2 receptor ligand with theranostic potential in patients with progressive or metastatic medullary thyroid cancer: final results of a GRAN-T-MTC Phase I clinical trial. Eur J Nucl Med Mol Imaging 2023; 50:892-907. [PMID: 36334104 PMCID: PMC9852173 DOI: 10.1007/s00259-022-05992-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Medullary thyroid cancer (MTC) is a rare malignant tumour of the parafollicular C-cells with an unpredictable clinical course and currently suboptimal diagnostic and therapeutic options, in particular in advanced disease. Overexpression of cholecystokinin-2 receptors (CCK2R) represents a promising avenue to diagnostic imaging and targeted therapy, ideally through a theranostic approach. MATERIALS AND METHODS A translational study (GRAN-T-MTC) conducted through a Phase I multicentre clinical trial of the indium-111 labelled CP04 ([111In]In-CP04), a CCK2R-seeking ligand was initiated with the goal of developing a theranostic compound. Patients with proven advanced/metastatic MTC or short calcitonin doubling time were enrolled. A two-step concept was developed through the use of low- and high-peptide mass (10 and 50 μg, respectively) for safety assessment, with the higher peptide mass considered appropriate for therapeutic application. Gelofusine was co-infused in a randomized fashion in the second step for the evaluation of potential reduction of the absorbed dose to the kidneys. Imaging for the purpose of biodistribution, dosimetry evaluation, and diagnostic assessment were performed as well as pre-, peri-, and postprocedural clinical and biochemical assessment. RESULTS Sixteen patients were enrolled. No serious adverse events after application of the compound at both peptide amounts were witnessed; transient tachycardia and flushing were observed in two patients. No changes in biochemistry and clinical status were observed on follow-up. Preliminary dosimetry assessment revealed the highest dose to urinary bladder, followed by the kidneys and stomach wall. The effective dose for 200 MBq of [111In]In-CP04 was estimated at 7±3 mSv and 7±1 mSv for 10 μg and 50 μg CP04, respectively. Administration of Gelofusine reduced the dose to the kidneys by 53%, resulting in the organ absorbed dose of 0.044±0.019 mSv/MBq. Projected absorbed dose to the kidneys with the use of [177Lu]Lu-CP04 was estimated at 0.9±0.4 Gy/7.4 GBq. [111In]In-CP04 scintigraphy was positive in 13 patients (detection rate of 81%) with superior diagnostic performance over conventional imaging. CONCLUSION In the present study, [111In]In-CP04 was shown to be a safe and effective radiopharmaceutical with promising theranostic characteristics for patients with advanced MTC.
Collapse
Affiliation(s)
- Luka Lezaic
- University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Paola Anna Erba
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technology in Medicine, University of Pisa, and Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Katja Zaletel
- University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Renata Mikolajczak
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Otwock-Świerk, Poland
| | | | - Theodosia Maina
- Molecular Radiopharmacy, INRASTES, NCSR Demokritos, Athens, Greece
| | | | - Petra Kolenc
- University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Malgorzata Trofimiuk-Müldner
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Jakubowskiego str. 2, 30-688, Krakow, Poland
| | - Elwira Przybylik-Mazurek
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Jakubowskiego str. 2, 30-688, Krakow, Poland
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Christine Rangger
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Gianpaolo Di Santo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | | | - Piotr Garnuszek
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Otwock-Świerk, Poland
| | - Bogdan Solnica
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Berthold A Nock
- Molecular Radiopharmacy, INRASTES, NCSR Demokritos, Athens, Greece
| | - Danuta Fedak
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Paulina Gaweda
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Alicja Hubalewska-Dydejczyk
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Jakubowskiego str. 2, 30-688, Krakow, Poland.
| |
Collapse
|
27
|
Grzmil M, Wiesmann F, Schibli R, Behe M. Targeting mTORC1 Activity to Improve Efficacy of Radioligand Therapy in Cancer. Cancers (Basel) 2022; 15:cancers15010017. [PMID: 36612012 PMCID: PMC9817840 DOI: 10.3390/cancers15010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Radioligand therapy (RLT) represents an effective strategy to treat malignancy by cancer-selective delivery of radioactivity following systemic application. Despite recent therapeutic successes, cancer radioresistance and insufficient delivery of the radioactive ligands, as well as cytotoxicity to healthy organs, significantly impairs clinical efficacy. To improve disease management while minimizing toxicity, in recent years, the combination of RLT with molecular targeted therapies against cancer signaling networks showed encouraging outcomes. Characterization of the key deregulated oncogenic signaling pathways revealed their convergence to activate the mammalian target of rapamycin (mTOR), in which signaling plays an essential role in the regulation of cancer growth and survival. Therapeutic interference with hyperactivated mTOR pathways was extensively studied and led to the development of mTOR inhibitors for clinical applications. In this review, we outline the regulation and oncogenic role of mTOR signaling, as well as recapitulate and discuss mTOR complex 1 (mTORC1) inhibition to improve the efficacy of RLT in cancer.
Collapse
Affiliation(s)
- Michal Grzmil
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Correspondence:
| | - Fabius Wiesmann
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
28
|
Holzleitner N, Günther T, Beck R, Lapa C, Wester HJ. Introduction of a SiFA Moiety into the D-Glutamate Chain of DOTA-PP-F11N Results in Radiohybrid-Based CCK-2R-Targeted Compounds with Improved Pharmacokinetics In Vivo. Pharmaceuticals (Basel) 2022; 15:ph15121467. [PMID: 36558917 PMCID: PMC9783573 DOI: 10.3390/ph15121467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
In order to enable 18F- and 177Lu-labelling within the same molecule, we introduced a silicon-based fluoride acceptor (SiFA) into the hexa-D-glutamate chain of DOTA-PP-F11N. In addition, minigastrin analogues with a prolonged as well as γ-linked D-glutamate chain were synthesised and evaluated. CCK-2R affinity (IC50, AR42J cells) and lipophilicity (logD7.4) were determined. Biodistribution studies at 24 h post-injection (p.i.) and µSPECT/CT imaging at 1, 4 and 24 h p.i. were carried out in AR42J tumour-bearing CB17-SCID mice. CCK-2R affinity of (R)-DOTAGA-rhCCK-1 to 18 was enhanced with increasing distance between the SiFA building block and the binding motif. Lipophilicity of [177Lu]Lu-(R)-DOTAGA-rhCCK-1 to 18 was higher compared to that of [177Lu]Lu-DOTA-PP-F11N and [177Lu]Lu-CP04. The respective α- and γ-linked rhCCK derivatives revealing the highest CCK-2R affinity were further evaluated in vivo. In comparison with [177Lu]Lu-DOTA-PP-F11N, [177Lu-]Lu-(R)-DOTAGA-rhCCK-9 and -16 exhibited three- to eight-fold increased activity levels in the tumour at 24 h p.i. However, activity levels in the kidneys were elevated as well. We could show that the introduction of a lipophilic SiFA moiety into the hydrophilic backbone of [177Lu]Lu-DOTA-PP-F11N led to a decelerated blood clearance and thus improved tumour retention. However, elevated kidney retention has to be addressed in future studies.
Collapse
Affiliation(s)
- Nadine Holzleitner
- Pharmaceutical Radiochemistry, Technical University of Munich, 85748 Garching, Germany
- Correspondence: (N.H.); (T.G.)
| | - Thomas Günther
- Pharmaceutical Radiochemistry, Technical University of Munich, 85748 Garching, Germany
- Correspondence: (N.H.); (T.G.)
| | - Roswitha Beck
- Pharmaceutical Radiochemistry, Technical University of Munich, 85748 Garching, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
29
|
Sun J, Huangfu Z, Yang J, Wang G, Hu K, Gao M, Zhong Z. Imaging-guided targeted radionuclide tumor therapy: From concept to clinical translation. Adv Drug Deliv Rev 2022; 190:114538. [PMID: 36162696 DOI: 10.1016/j.addr.2022.114538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 09/03/2022] [Accepted: 09/11/2022] [Indexed: 01/24/2023]
Abstract
Since the first introduction of sodium iodide I-131 for use with thyroid patients almost 80 years ago, more than 50 radiopharmaceuticals have reached the markets for a wide range of diseases, especially cancers. The nuclear medicine paradigm also shifts from solely molecular imaging or radionuclide therapy to imaging-guided radionuclide therapy, which is deemed a vital component of precision cancer therapy and an emerging medical modality for personalized medicine. The imaging-guided radionuclide therapy highlights the systematic integration of targeted nuclear diagnostics and radionuclide therapeutics. Regarding this, nuclear imaging serves to "visualize" the lesions and guide the therapeutic strategy, followed by administration of a precise patient specific dose of radiotherapeutics for treatment according to the absorbed dose to different organs and tumors calculated by dosimetry tools, and finally repeated imaging to predict the prognosis. This strategy leads to significantly enhanced therapeutic efficacy, improved patient outcomes, and manageable adverse events. In this review, we provide an overview of imaging-guided targeted radionuclide therapy for different tumors such as advanced prostate cancer and neuroendocrine tumors, with a focus on development of new radioligands and their preclinical and clinical results, and further discuss about challenges and future perspectives.
Collapse
Affiliation(s)
- Juan Sun
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhenyuan Huangfu
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiangtao Yang
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China.
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
| | - Mingyuan Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
30
|
Albumin-Mediated Size Exclusion Chromatography: The Apparent Molecular Weight of PSMA Radioligands as Novel Parameter to Estimate Their Blood Clearance Kinetics. Pharmaceuticals (Basel) 2022; 15:ph15091161. [PMID: 36145382 PMCID: PMC9500755 DOI: 10.3390/ph15091161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
A meticulously adjusted pharmacokinetic profile and especially fine-tuned blood clearance kinetics are key characteristics of therapeutic radiopharmaceuticals. We, therefore, aimed to develop a method that allowed the estimation of blood clearance kinetics in vitro. For this purpose, 177Lu-labeled PSMA radioligands were subjected to a SEC column with human serum albumin (HSA) dissolved in a mobile phase. The HSA-mediated retention time of each PSMA ligand generated by this novel 'albumin-mediated size exclusion chromatography' (AMSEC) was converted to a ligand-specific apparent molecular weight (MWapp), and a normalization accounting for unspecific interactions between individual radioligands and the SEC column matrix was applied. The resulting normalized MWapp,norm. could serve to estimate the blood clearance of renally excreted radioligands by means of their influence on the highly size-selective process of glomerular filtration (GF). Based on the correlation between MW and the glomerular sieving coefficients (GSCs) of a set of plasma proteins, GSCcalc values were calculated to assess the relative differences in the expected GF/blood clearance kinetics in vivo and to select lead candidates among the evaluated radioligands. Significant differences in the MWapp,norm. and GSCcalc values, even for stereoisomers, were found, indicating that AMSEC might be a valuable and high-resolution tool for the preclinical selection of therapeutic lead compounds for clinical translation.
Collapse
|
31
|
Saltiki K, Simeakis G, Karapanou O, Alevizaki M. MANAGEMENT OF ENDOCRINE DISEASE: Medullary thyroid cancer: from molecular biology and therapeutic pitfalls to future targeted treatment perspectives. Eur J Endocrinol 2022; 187:R53-R63. [PMID: 35895692 DOI: 10.1530/eje-22-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/06/2022] [Indexed: 11/08/2022]
Abstract
During the last decades, knowledge of the molecular biology in medullary thyroid carcinoma (MTC) and specifically on the role of rearranged during transfection (RET)-activating mutations in tumorigenesis has led to the evolution of novel targeted therapies, mainly tyrosine kinase inhibitors (TKIs). Vandetanib and cabozantinib have been approved for the management of metastatic progressive MTC. Two novel, highly selective RET inhibitors, selpercatinib and pralsetinib, have recently been approved for the treatment of RET-mutant MTCs and RET-fusion differentiated thyroid cancer. The administration of targeted therapies in MTC patients has changed the therapeutic strategies; however, in the majority of cases, there are no real data showing an improvement of prognosis by TKIs in MTC. Drug resistance remains the main reason for treatment failure. Thus, the understanding of the molecular landscape of tumorigenesis and the mechanisms underlying resistance to targeted therapies is of paramount importance for the further development of more efficient therapies for MTC. The present review focuses on the molecular pathways implicated in MTC tumorigenesis, the approved targeted therapies, the tumoral escape mechanisms, as well as the future perspectives for targeted therapy.
Collapse
Affiliation(s)
- Katerina Saltiki
- Thyroid Neoplasia Unit, Department of Clinical Therapeutics, National Kapodistrian University of Athens, Medical School, Athens, Greece
| | - George Simeakis
- Department of Endocrinology, 401 Military Hospital, Athens, Greece
| | - Olga Karapanou
- Department of Endocrinology, 401 Military Hospital, Athens, Greece
| | - Maria Alevizaki
- Thyroid Neoplasia Unit, Department of Clinical Therapeutics, National Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
32
|
Update on the Diagnosis and Management of Medullary Thyroid Cancer: What Has Changed in Recent Years? Cancers (Basel) 2022; 14:cancers14153643. [PMID: 35892901 PMCID: PMC9332800 DOI: 10.3390/cancers14153643] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is a neoplasm originating from parafollicular C cells. MTC is a rare disease, but its prognosis is less favorable than that of well-differentiated thyroid cancers. To improve the prognosis of patients with MTC, early diagnosis and prompt therapeutic management are crucial. In the following paper, recent advances in laboratory and imaging diagnostics and also pharmacological and surgical therapies of MTC are discussed. Currently, a thriving direction of development for laboratory diagnostics is immunohistochemistry. The primary imaging modality in the diagnosis of MTC is the ultrasound, but opportunities for development are seen primarily in nuclear medicine techniques. Surgical management is the primary method of treating MTCs. There are numerous publications concerning the stratification of particular lymph node compartments for removal. With the introduction of more effective methods of intraoperative parathyroid identification, the complication rate of surgical treatment may be reduced. The currently used pharmacotherapy is characterized by high toxicity. Moreover, the main limitation of current pharmacotherapy is the development of drug resistance. Currently, there is ongoing research on the use of tyrosine kinase inhibitors (TKIs), highly specific RET inhibitors, radiotherapy and immunotherapy. These new therapies may improve the prognosis of patients with MTCs.
Collapse
|
33
|
Refardt J, Hofland J, Wild D, Christ E. Molecular Imaging of Neuroendocrine Neoplasms. J Clin Endocrinol Metab 2022; 107:e2662-e2670. [PMID: 35380158 DOI: 10.1210/clinem/dgac207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 12/17/2022]
Abstract
The key for molecular imaging is the use of a radiotracer with a radioactive and a functional component. While the functional component targets a specific feature of the tumor, the radioactive component makes the target visible. Neuroendocrine neoplasms (NEN) are a diverse group of rare tumors that arise from neuroendocrine cells found mainly in the gastroenteropancreatic system, lung, thyroid, and adrenal glands. They are characterized by the expression of specific hormone receptors on the tumor cell surface, which makes them ideal targets for radiolabeled peptides. The most commonly expressed hormone receptors on NEN cells are the somatostatin receptors. They can be targeted for molecular imaging with various radiolabeled somatostatin analogs, but also with somatostatin antagonists, which have shown improved imaging quality. 18F-DOPA imaging has become a second-line imaging modality in NENs, with the exception of the evaluation of advanced medullary thyroid carcinoma. Alternatives for NENs with insufficient somatostatin receptor expression due to poor differentiation involve targeting glucose metabolism, which can also be used for prognosis. For the localization of the often-small insulinoma, glucagon-like peptide-1 (GLP-1) receptor imaging has become the new standard. Other alternatives involve metaiodobenzylguanidine and the molecular target C-X-C motif chemokine receptor-4. In addition, new radiopeptides targeting the fibroblast activation protein, the glucose-dependent insulinotropic polypeptide receptor and cholecystokinin-2 receptors have been identified in NENs and await further evaluation. This mini-review aims to provide an overview of the major molecular imaging modalities currently used in the field of NENs, and also to provide an outlook on future developments.
Collapse
Affiliation(s)
- Julie Refardt
- Department of Internal Medicine, Section of Endocrinology, ENETS Center of Excellence, Erasmus Medical Center, Rotterdam, the Netherlands
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Johannes Hofland
- Department of Internal Medicine, Section of Endocrinology, ENETS Center of Excellence, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Damian Wild
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Emanuel Christ
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
34
|
Christ E, Wild D, Refardt J. Molecular Imaging in neuroendocrine neoplasias. Presse Med 2022; 51:104115. [PMID: 35131317 DOI: 10.1016/j.lpm.2022.104115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/11/2022] [Accepted: 01/28/2022] [Indexed: 12/16/2022] Open
Abstract
Molecular imaging, which uses molecular targets due to the overexpression of specific peptide hormone receptors on the tumour surface, has become an indispensable diagnostic technique. Neuroendocrine neoplasms (NENs) especially differentiated NENs or neuroendocrine tumours (NETs) are a rare group of heterogeneous tumours, characterized by the expression of hormone receptors on the tumour cell surface. This property makes them receptive to diagnostic and therapeutic approaches (theranostics) using radiolabelled peptides. Amongst the known hormone receptors, somatostatin receptors (SSTR) are expressed on the majority of NETs and are therefore the most relevant receptors for theranostic approaches. Current research aims to medically upregulate their expression, while other focuses are on the use of different radiopeptides (64Cu and 67Cu) or somatostatin-antagonists instead of the established somatostatin agonists. The GLP-1 receptor is another clinically relevant target, as GLP-1-R imaging has become the new standard for the localisation of insulinomas. For staging and prognostic evaluation in dedifferentiated NENs, 18F-FDG-imaging is useful, but lacks a therapeutic counterpart. Further options for patients with insufficient expression of SSTR involve metaiodobenzylguanidine (MIBG) and the molecular target C-X-C motif chemokine receptor-4 (CXCR4). New targets such as the glucose-dependant insulinotropic polypeptide receptor (GIPR) and the fibroblast activation protein (FAP) have been identified in NENs recently and await further evaluation. For medullary thyroid cancer 18-F-DOPA imaging is standard, however this technique is rather second line for other NENs. In this area, the discovery of minigastrin, which targets the cholecystokinin-2 (CCK2) receptors in medullary thyroid carcinoma and foregut NENs, may improve future management. This review aims to provide an overview of the most commonly used functional imaging modalities for theranostics in NENs today and in the possible future.
Collapse
Affiliation(s)
- Emanuel Christ
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland; Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland.
| | - Damian Wild
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland; Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Julie Refardt
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland; Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
35
|
Angelousi A, Hayes AR, Chatzellis E, Kaltsas GA, Grossman AB. Metastatic medullary thyroid carcinoma: a new way forward. Endocr Relat Cancer 2022; 29:R85-R103. [PMID: 35521769 PMCID: PMC9175549 DOI: 10.1530/erc-21-0368] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022]
Abstract
Medullary thyroid carcinoma (MTC) is a rare malignancy comprising 1-2% of all thyroid cancers in the United States. Approximately 20% of cases are familial, secondary to a germline RET mutation, while the remaining 80% are sporadic and also harbour a somatic RET mutation in more than half of all cases. Up to 15-20% of patients will present with distant metastatic disease, and retrospective series report a 10-year survival of 10-40% from time of first metastasis. Historically, systemic therapies for metastatic MTC have been limited, and cytotoxic chemotherapy has demonstrated poor objective response rates. However, in the last decade, targeted therapies, particularly multitargeted tyrosine kinase inhibitors (TKIs), have demonstrated prolonged progression-free survival in advanced and progressive MTC. Both cabozantinib and vandetanib have been approved as first-line treatment options in many countries; nevertheless, their use is limited by high toxicity rates and dose reductions are often necessary. New generation TKIs, such as selpercatinib or pralsetinib, that exhibit selective activity against RET, have recently been approved as a second-line treatment option, and they exhibit a more favourable side-effect profile. Peptide receptor radionuclide therapy or immune checkpoint inhibitors may also constitute potential therapeutic options in specific clinical settings. In this review, we aim to present all current therapeutic options available for patients with progressive MTC, as well as new or as yet experimental treatments.
Collapse
Affiliation(s)
- Anna Angelousi
- Unit of Endocrinology, First Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Correspondence should be addressed to A Angelousi or A B Grossman: or
| | - Aimee R Hayes
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
| | - Eleftherios Chatzellis
- Endocrinology Diabetes and Metabolism Department, 251 Hellenic Air Force and VA General Hospital, Athens, Greece
| | - Gregory A Kaltsas
- First Department of Propaedeutic Internal Medicine, Laiko Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Ashley B Grossman
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
- Green Templeton College, University of Oxford, Oxford, UK
- Centre for Endocrinology, Barts and the London School of Medicine, London, UK
- Correspondence should be addressed to A Angelousi or A B Grossman: or
| |
Collapse
|
36
|
Nock BA, Kanellopoulos P, Chepurny OG, Rouchota M, Loudos G, Holz GG, Krenning EP, Maina T. Nonpeptidic Z360-Analogs Tagged with Trivalent Radiometals as Anti-CCK2R Cancer Theranostic Agents: A Preclinical Study. Pharmaceutics 2022; 14:pharmaceutics14030666. [PMID: 35336041 PMCID: PMC8954547 DOI: 10.3390/pharmaceutics14030666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Theranostic approaches in the management of cholecystokinin subtype 2 receptor (CCK2R)-positive tumors include radiolabeled gastrin and CCK motifs. Moving toward antagonist-based CCK2R-radioligands instead, we herein present three analogs of the nonpeptidic CCK2R-antagonist Z360, GAS1/2/3. Each was conjugated to a different chelator (DOTA, NODAGA or DOTAGA) for labeling with medically relevant trivalent radiometals (e.g., Ga-68, In-111, Lu-177) for potential use as anti-CCK2R cancer agents; (2) Methods: The in vitro properties of the thee analogs were compared in stably transfected HEK293-CCK2R cells. Biodistribution profiles were compared in SCID mice bearing twin HEK293-CCK2R and wtHEK293 tumors; (3) Results: The GAS1/2/3 analogs displayed high CCK2R-affinity (lower nM-range). The radioligands were fairly stable in vivo and selectively targeted the HEK293-CCK2R, but not the CCK2R-negative wtHEK293 tumors in mice. Their overall pharmacokinetic profile was found strongly dependent on the radiometal-chelate. Results could be visualized by SPECT/CT for the [111In]In-analogs; (4) Conclusions: The present study highlighted the high impact of the radiometal-chelate on the end-pharmacokinetics of a new series of Z360-based radioligands, revealing candidates with promising properties for clinical translation. It also provided the impetus for the development of a new class of nonpeptidic radioligands for CCK2R-targeted theranostics of human cancer.
Collapse
Affiliation(s)
- Berthold A. Nock
- Molecular Radiopharmacy, INRASTES, NCSR “Demokritos”, 15341 Athens, Greece; (B.A.N.); (P.K.)
| | | | - Oleg G. Chepurny
- Departments of Medicine and Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, NY 13210, USA and Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (O.G.C.); (G.G.H.)
| | - Maritina Rouchota
- BIOEMTECH, Lefkippos Attica Technology Park NCSR “Demokritos”, 15310 Athens, Greece; (M.R.); (G.L.)
| | - George Loudos
- BIOEMTECH, Lefkippos Attica Technology Park NCSR “Demokritos”, 15310 Athens, Greece; (M.R.); (G.L.)
| | - George G. Holz
- Departments of Medicine and Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, NY 13210, USA and Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (O.G.C.); (G.G.H.)
| | - Eric P. Krenning
- Cyclotron Rotterdam BV, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| | - Theodosia Maina
- Molecular Radiopharmacy, INRASTES, NCSR “Demokritos”, 15341 Athens, Greece; (B.A.N.); (P.K.)
- Correspondence: ; Tel.: +30-210-650-3908 or +30-210-650-3891
| |
Collapse
|
37
|
Giovanella L, Deandreis D, Vrachimis A, Campenni A, Petranovic Ovcaricek P. Molecular Imaging and Theragnostics of Thyroid Cancers. Cancers (Basel) 2022; 14:1272. [PMID: 35267580 PMCID: PMC8909041 DOI: 10.3390/cancers14051272] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Molecular imaging plays an important role in the evaluation and management of different thyroid cancer histotypes. The existing risk stratification models can be refined, by incorporation of tumor-specific molecular markers that have theranostic power, to optimize patient-specific (individualized) treatment decisions. Molecular imaging with varying radioisotopes of iodine (i.e., 131I, 123I, 124I) is an indispensable component of dynamic and theragnostic risk stratification of differentiated carcinoma (DTC) while [18F]F-fluorodeoxyglucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) helps in addressing disease aggressiveness, detects distant metastases, and risk-stratifies patients with radioiodine-refractory DTC, poorly differentiated and anaplastic thyroid cancers. For medullary thyroid cancer (MTC), a neuroendocrine tumor derived from thyroid C-cells, [18F]F-dihydroxyphenylalanine (6-[18F]FDOPA) PET/CT and/or [18F]FDG PET/CT can be used dependent on serum markers levels and kinetics. In addition to radioiodine therapy for DTC, some theragnostic approaches are promising for metastatic MTC as well. Moreover, new redifferentiation strategies are now available to restore uptake in radioiodine-refractory DTC while new theragnostic approaches showed promising preliminary results for advanced and aggressive forms of follicular-cell derived thyroid cancers (i.e., peptide receptor radiotherapy). In order to help clinicians put the role of molecular imaging into perspective, the appropriate role and emerging opportunities for molecular imaging and theragnostics in thyroid cancer are discussed in our present review.
Collapse
Affiliation(s)
- Luca Giovanella
- Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Desiree’ Deandreis
- Division of Nuclear Medicine, Department of Medical Sciences, AOU Città della Salute e della Scienza, University of Turin, 10126 Turin, Italy;
| | - Alexis Vrachimis
- Department of Nuclear Medicine, German Oncology Center, University Hospital of the European University, Limassol 4108, Cyprus;
| | - Alfredo Campenni
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98121 Messina, Italy;
| | - Petra Petranovic Ovcaricek
- Department of Oncology and Nuclear Medicine, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| |
Collapse
|
38
|
Maina T, Nock BA. Gamma camera imaging by radiolabeled gastrin/cholecystokinin analogs. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
39
|
Duan H, Iagaru A, Aparici CM. Radiotheranostics - Precision Medicine in Nuclear Medicine and Molecular Imaging. Nanotheranostics 2022; 6:103-117. [PMID: 34976584 PMCID: PMC8671964 DOI: 10.7150/ntno.64141] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
'See what you treat and treat what you see, at a molecular level', could be the motto of theranostics. The concept implies diagnosis (imaging) and treatment of cells (usually cancer) using the same molecule, thus guaranteeing a targeted cytotoxic approach of the imaged tumor cells while sparing healthy tissues. As the brilliant late Sam Gambhir would say, the imaging agent acts like a 'molecular spy' and reveals where the tumoral cells are located and the extent of disease burden (diagnosis). For treatment, the same 'molecular spy' docks to the same tumor cells, this time delivering cytotoxic doses of radiation (treatment). This duality represents the concept of a 'theranostic pair', which follows the scope and fundamental principles of targeted precision and personalized medicine. Although the term theranostic was noted in medical literature in the early 2000s, the principle is not at all new to nuclear medicine. The first example of theranostic dates back to 1941 when Dr. Saul Hertz first applied radioiodine for radionuclide treatment of thyroid cells in patients with hyperthyroidism. Ever since, theranostics has been an integral element of nuclear medicine and molecular imaging. The more we understand tumor biology and molecular pathology of carcinogenesis, including specific mutations and receptor expression profiles, the more specific these 'molecular spies' can be developed for diagnostic molecular imaging and subsequent radionuclide targeted therapy (radiotheranostics). The appropriate selection of the diagnostic and therapeutic radionuclide for the 'theranostic pair' is critical and takes into account not only the type of cytotoxic radiation emission, but also the linear energy transfer (LET), and the physical half-lives. Advances in radiochemistry and radiopharmacy with new radiolabeling techniques and chelators are revolutionizing the field. The landscape of cytotoxic systemic radionuclide treatments has dramatically expanded through the past decades thanks to all these advancements. This article discusses present and promising future theranostic applications for various types of diseases such as thyroid disorders, neuroendocrine tumors (NET), pediatric malignancies, and prostate cancer (PC), and provides an outlook for future perspectives.
Collapse
Affiliation(s)
| | | | - Carina Mari Aparici
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, Stanford, CA, USA
| |
Collapse
|
40
|
Jager EC, Broekman KE, Kruijff S, Links TP. State of the art and future directions in the systemic treatment of medullary thyroid cancer. Curr Opin Oncol 2022; 34:1-8. [PMID: 34669647 DOI: 10.1097/cco.0000000000000798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Systemic treatment is the only therapeutic option for patients with progressive, metastatic medullary thyroid cancer (MTC). Since the discovery of the rearranged during transfection (RET) proto-oncogene (100% hereditary, 60-90% sporadic MTC), research has focused on finding effective systemic therapies to target this mutation. This review surveys recent findings. RECENT FINDINGS Multikinase inhibitors are systemic agents targeting angiogenesis, inhibiting growth of tumor cells and cells in the tumor environment and healthy endothelium. In the phase III EXAM and ZETA trials, cabozantinib and vandetanib showed progression-free survival benefit, without evidence of prolonged overall survival. Selpercatinib and pralsetinib are kinase inhibitors with high specificity for RET; phase I and II studies showed overall response rates of 73% and 71% in first line, and 69% and 60% in second line treatment, respectively. Although resistance mechanisms to mutation-driven therapy will be a challenge in the future, phase III studies are ongoing and neo-adjuvant therapy with selpercatinib is being studied. SUMMARY The development of selective RET-inhibitors has expanded the therapeutic arsenal to control tumor growth in progressive MTC, with fewer adverse effects than multikinase inhibitors. Future studies should confirm their effectiveness, study neo-adjuvant strategies, and tackle resistance to these inhibitors, ultimately to improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Schelto Kruijff
- Department of Surgical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | | |
Collapse
|
41
|
Puerto M, Borson-Chazot F, Tabarin A. Updates on therapy for medullary thyroid cancer in 2021. ANNALES D'ENDOCRINOLOGIE 2021; 83:114-118. [PMID: 34921811 DOI: 10.1016/j.ando.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022]
Abstract
Medullary thyroid cancer (MTC) is a rare form of thyroid cancer, frequently linked to a germline or somatic mutation in the RET proto-oncogene. MTC has a good prognosis at the localized stage but prognosis is worse in case of metastases, although there is considerable heterogeneity in progression even in advanced stages. Classical chemotherapy shows little efficacy in this type of cancer. Over the last decade, new effective anti-cancer therapies, in particular multi-targeted tyrosine kinase inhibitors and selective anti-RET tyrosine kinase inhibitors, have changed the management of patients with advanced MTC. The aim of this review is to report the results of studies of these new treatments, and to update the state of knowledge from ongoing studies of treatments such as vectorized internal radiotherapy. In chronic forms, which are incurable but with slow progression, the development of new lines of treatment that can reduce the phenomena of acquired resistance is a major issue.
Collapse
Affiliation(s)
- Marie Puerto
- Hôpital Haut-Lévêque - CHU de Bordeaux, Endocrinology Department, 33600 Pessac, France
| | | | - Antoine Tabarin
- Hôpital Haut-Lévêque - CHU de Bordeaux, Endocrinology Department, 33600 Pessac, France
| |
Collapse
|
42
|
Grzmil M, Imobersteg S, Blanc A, Frank S, Schibli R, Béhé MP. Therapeutic Response of CCKBR-Positive Tumors to Combinatory Treatment with Everolimus and the Radiolabeled Minigastrin Analogue [177Lu]Lu-PP-F11N. Pharmaceutics 2021; 13:pharmaceutics13122156. [PMID: 34959437 PMCID: PMC8708304 DOI: 10.3390/pharmaceutics13122156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/28/2022] Open
Abstract
The inhibition of the mammalian target of rapamycin complex 1 (mTORC1) by everolimus (RAD001) was recently shown to enhance the tumor uptake of radiolabeled minigastrin. In this paper, we investigate if this finding can improve the in vivo therapeutic response to [177Lu]Lu-PP-F11N treatment. The N-terminal DOTA-conjugated gastrin analogue PP-F11N (DOTA-(DGlu)6-Ala-Tyr-Gly-Trp-Nle-Asp-Phe) was used to evaluate treatment efficacy in the human A431/CCKBR xenograft nude mouse model in combination with RAD001. Both RAD001 and [177Lu]Lu-PP-F11N single treatments as well as their combination inhibited tumor growth and increased survival. In concomitantly treated mice, the average tumor size and median survival time were significantly reduced and extended, respectively, as compared to the monotherapies. The histological analysis of kidney and stomach dissected after treatment with RAD001 and [177Lu]Lu-PP-F11N did not indicate significant adverse effects. In conclusion, our study data demonstrate the potential of mTORC1 inhibition to substantially improve the therapeutic efficacy of radiolabeled minigastrin analogues in CCKBR-positive cancers.
Collapse
Affiliation(s)
- Michal Grzmil
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland; (S.I.); (A.B.); (R.S.); (M.P.B.)
- Correspondence: ; Tel.: +41-56-310-28-57
| | - Stefan Imobersteg
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland; (S.I.); (A.B.); (R.S.); (M.P.B.)
| | - Alain Blanc
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland; (S.I.); (A.B.); (R.S.); (M.P.B.)
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University of Basel, 4031 Basel, Switzerland;
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland; (S.I.); (A.B.); (R.S.); (M.P.B.)
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin P. Béhé
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland; (S.I.); (A.B.); (R.S.); (M.P.B.)
| |
Collapse
|
43
|
Hayes AR, Crawford A, Al Riyami K, Tang C, Bomanji J, Baldeweg SE, Wild D, Morganstein D, Harry A, Grozinsky-Glasberg S, Oleinikov K, Khoo B, Caplin ME, Nicolas GP, Grossman AB. Metastatic Medullary Thyroid Cancer: The Role of 68Gallium-DOTA-Somatostatin Analogue PET/CT and Peptide Receptor Radionuclide Therapy. J Clin Endocrinol Metab 2021; 106:e4903-e4916. [PMID: 34379772 DOI: 10.1210/clinem/dgab588] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Metastatic medullary thyroid cancer (MTC) is a rare malignancy with minimal treatment options. Many, but not all, MTCs express somatostatin receptors. OBJECTIVE Our aim was to explore the role of 68Ga-DOTA-somatostatin analogue (SSA) positron emission tomography (PET)/computed tomography (CT) in patients with metastatic MTC and to determine their eligibility for peptide receptor radionuclide therapy (PRRT). METHODS We retrospectively identified patients with metastatic MTC who had 68Ga-DOTA-SSA PET/CT at 5 centers. We collected characteristics on contrast-enhanced CT, 68Ga-DOTA-SSA and 18F-FDG PET/CT. The efficacy of PRRT was explored in a subgroup of patients. Kaplan-Meier analysis was used to estimate time to treatment failure (TTF) and overall survival (OS). RESULTS Seventy-one patients were included (10 local recurrence, 61 distant disease). Of the patients with distant disease, 16 (26%) had ≥50% of disease sites with tracer avidity greater than background liver, including 10 (10/61, 16%) with >90%. In 19 patients with contemporaneous contrast-enhanced CT, no disease regions were independently identified on 68Ga-DOTA-SSA PET/CT. Thirty-five patients had an 18F-FDG PET/CT, with 18F-FDG positive/68Ga-DOTA-SSA negative metastases identified in 15 (43%). Twenty-one patients had PRRT with a median TTF of 14 months (95% CI 8-25) and a median OS of 63 months (95% CI 21-not reached). Of the entire cohort, the median OS was 323 months (95% CI 152-not reached). Predictors of poorer OS included a short calcitonin doubling-time (≤24 months), strong 18F-FDG avidity, and age ≥60 years. CONCLUSIONS The prevalence of high tumor avidity on 68Ga-DOTA-SSA PET/CT is low in the setting of metastatic MTC; nevertheless, PRRT may still be a viable treatment option in select patients.
Collapse
Affiliation(s)
- Aimee R Hayes
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
| | | | - Khulood Al Riyami
- Department of Nuclear Medicine, University College London Hospital, London, UK
- Department of Radiology, University College London Hospital, London, UK
| | - Christine Tang
- Department of Nuclear Medicine, University College London Hospital, London, UK
- Department of Radiology, University College London Hospital, London, UK
| | - Jamshed Bomanji
- Department of Nuclear Medicine, University College London Hospital, London, UK
| | - Stephanie E Baldeweg
- Department of Endocrinology, University College London Hospital, London, UK
- Division of Medicine, University College London, London, UK
| | - Damian Wild
- Division of Nuclear Medicine, ENETS Centre of Excellence, University Hospital Basel, Basel, Switzerland
| | | | - Alice Harry
- Thyroid Unit, Royal Marsden Hospital, London, UK
| | - Simona Grozinsky-Glasberg
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Department of Endocrinology and Metabolism, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kira Oleinikov
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Department of Endocrinology and Metabolism, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bernard Khoo
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
| | - Martyn E Caplin
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
| | - Guillaume P Nicolas
- Division of Nuclear Medicine, ENETS Centre of Excellence, University Hospital Basel, Basel, Switzerland
| | - Ashley B Grossman
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
| |
Collapse
|
44
|
von Guggenberg E, Kolenc P, Rottenburger C, Mikołajczak R, Hubalewska-Dydejczyk A. Update on Preclinical Development and Clinical Translation of Cholecystokinin-2 Receptor Targeting Radiopharmaceuticals. Cancers (Basel) 2021; 13:5776. [PMID: 34830930 PMCID: PMC8616406 DOI: 10.3390/cancers13225776] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
The cholecystokinin-2 receptor (CCK2R) has been a target of interest for molecular imaging and targeted radionuclide therapy for two decades. However, so far CCK2R targeted imaging and therapy has not been introduced in clinical practice. Within this review the recent radiopharmaceutical development of CCK2R targeting compounds and the ongoing clinical trials are presented. Currently, new gastrin derivatives as well as nonpeptidic substances are being developed to improve the properties for clinical use. A team of specialists from the field of radiopharmacy and nuclear medicine reviewed the available literature and summarized their own experiences in the development and clinical testing of CCK2R targeting radiopharmaceuticals. The recent clinical trials with novel radiolabeled minigastrin analogs demonstrate the potential for both applications, imaging as well as targeted radiotherapy, and reinforce the clinical applicability within a theranostic concept. The intense efforts in optimizing CCK2R targeting radiopharmaceuticals has led to new substances for clinical use, as shown in first imaging studies in patients with advanced medullary thyroid cancer. The first clinical results suggest that the wider clinical implication of CCK2R-targeted radiopharmaceuticals is reasonable.
Collapse
Affiliation(s)
| | - Petra Kolenc
- Department of Nuclear Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | - Renata Mikołajczak
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock-Świerk, Poland;
| | | |
Collapse
|
45
|
Refardt J, Hofland J, Wild D, Christ E. New Directions in Imaging Neuroendocrine Neoplasms. Curr Oncol Rep 2021; 23:143. [PMID: 34735669 PMCID: PMC8568754 DOI: 10.1007/s11912-021-01139-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 12/14/2022]
Abstract
Purpose of Review Accurate imaging is crucial for correct diagnosis, staging, and therapy of neuroendocrine neoplasms (NENs). The search for the optimal imaging technique has triggered rapid development in the field. This review aims at giving an overview on contemporary imaging methods and providing an outlook on current progresses. Recent Findings The discovery of molecular targets due to the overexpression of specific peptide hormone receptors on the NEN’s surface has triggered the development of multiple radionuclide imaging modalities. In addition to the established imaging technique of targeting somatostatin receptors, several alternative radioligands have been developed. Targeting the glucagon-like peptide-1 receptor by exendin-4 has a high sensitivity in localizing insulinomas. For dedifferentiated NENs, new molecular targets such as the C-X-C motif chemokine-receptor-4 have been evaluated. Other new targets involve the fibroblast activation protein and the cholecystokinin-2 receptors, where the ligand minigastrin opens new possibilities for the management of medullary thyroid carcinoma. Summary Molecular imaging is an emerging field that improves the management of NENs.
Collapse
Affiliation(s)
- Julie Refardt
- Department of Internal Medicine, Section of Endocrinology, ENETS Center of Excellence, Erasmus Medical Center, Rotterdam, the Netherlands.,ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.,Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Johannes Hofland
- Department of Internal Medicine, Section of Endocrinology, ENETS Center of Excellence, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Damian Wild
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.,Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Emanuel Christ
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland. .,Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
| |
Collapse
|
46
|
Matassa G, Gelardi F, Hustinx R, Chiti A. Highlights of 33rd EANM Annual Congress 2020, virtual edition. Eur J Nucl Med Mol Imaging 2021; 48:2314-2318. [PMID: 33909087 PMCID: PMC8079516 DOI: 10.1007/s00259-021-05366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Giovanni Matassa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Fabrizia Gelardi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, and GIGA-CRC in vivo imaging, University of Liège, Liège, Belgium
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy.
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy.
| |
Collapse
|
47
|
Radiopharmaceutical Formulation and Preclinical Testing of 68Ga-Labeled DOTA-MGS5 for the Regulatory Approval of a First Exploratory Clinical Trial. Pharmaceuticals (Basel) 2021; 14:ph14060575. [PMID: 34208516 PMCID: PMC8235783 DOI: 10.3390/ph14060575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/15/2022] Open
Abstract
The new minigastrin analog DOTA-MGS5 is a promising new candidate for targeting cholecystokinin-2 receptor (CCK2R)-expressing tumors. To enable the clinical translation of PET/CT imaging using 68Ga-labeled DOTA-MGS5, different quality and safety aspects need to be considered to comply with the regulatory framework for clinical trial application. The preparation of the radiopharmaceutical was established using a cassette-based automated synthesis unit. Product specifications, including analytical procedures and acceptance criteria, were adopted from Ph. Eur. monographs for other 68Ga-labeled radiopharmaceuticals. Non-clinical studies included receptor affinity and cell uptake studies using two different CCK2R-expressing cell lines, as well as pharmacokinetic biodistribution studies in BALB/c mice for dosimetry calculations and toxicological studies in Wistar rats. The produced masterbatches fulfilled the defined acceptance criteria. DOTA-MGS5, with confirmed affinity to the CCK2R, showed a high specific cell uptake and no interaction with other receptors in vitro when radiolabeled with gallium-68. Favorable in vivo properties were observed in biodistribution and dosimetry studies. An effective dose of ~0.01 mSv/MBq was estimated for humans utilizing OLINDA/EXM software. A maximum peptide dose of 50 µg was established for the initial clinical dose based on the toxicity study in rats. The standardized production of [68Ga]Ga-DOTA-MGS5 using an automated synthesis module and the performed non-clinical safety studies support a first exploratory clinical trial with this new PET imaging agent.
Collapse
|
48
|
Improved Tumor-Targeting with Peptidomimetic Analogs of Minigastrin 177Lu-PP-F11N. Cancers (Basel) 2021; 13:cancers13112629. [PMID: 34071914 PMCID: PMC8199036 DOI: 10.3390/cancers13112629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Several radiolabeled peptides targeting CCK2R-positive types of cancer (such as medullary thyroid cancer and small cell lung cancer) have been reported in the last 25 years, some of which have entered clinical trials. In an effort to improve its tumor-targeting properties, we applied chemical modifications to the backbone of the peptide 177Lu-PP-F11N, an analog of minigastrin in clinical trials. The generated radiolabeled peptidomimetics showed significantly improved characteristics in mice bearing CCK2R-positive tumor xenografts, such as higher tumor uptake, slower tumor washout, and increased tumor-to-kidney ratios. These properties make the novel compounds promising candidates for the imaging and therapy of CCK2R-positive tumors and metastases. Abstract The cholecystokinin-2 receptor (CCK2R) is an attractive target in nuclear medicine due to its overexpression by different tumors. Several radiolabeled peptidic ligands targeting the CCK2R have been investigated in the past; however, their low stability against proteases can limit their uptake in tumors and metastases. Substitution of single or multiple amide bonds with metabolically stable 1,4-disubstituted 1,2,3-triazoles as amide bond bioisosteres proved a promising strategy for improving the tumor-targeting properties of a truncated analog of minigastrin. In this study, we applied the previously studied structural modifications to improve the pharmacokinetic and pharmacodynamic properties of PP-F11N, a minigastrin analog currently in clinical trials. Novel minigastrins (NMGs) as analogs of PP-F11N with one or two amide bonds substituted by 1,2,3-triazoles were synthesized, radiolabeled with 177Lu3+, and subjected to full evaluation in vitro (cell internalization, receptor affinity, stability in blood plasma) and in vivo (stability, biodistribution, SPECT/CT imaging). NMGs with triazoles inserted between the amino acids DGlu10-Ala11 and/or Tyr12-Gly13 showed a significantly increased cellular uptake and affinity toward the CCK2R in vitro. Resistance against the metabolic degradation of the NMGs was comparable to those of the clinical candidate PP-F11N. Imaging by SPECT/CT and biodistribution studies demonstrated a higher uptake in CCK2R-positive tumors but also in the CCK2R-positive stomach. The peptidomimetic compounds showed a slow tumor washout and high tumor-to-kidney ratios. The structural modifications led to the identification of analogs with promising properties for progression to clinical applications in the diagnosis and therapy of CCK2R-positive neoplasms.
Collapse
|
49
|
Corlett A, Sani MA, Van Zuylekom J, Ang CS, von Guggenberg E, Cullinane C, Blyth B, Hicks RJ, Roselt PD, Thompson PE, Hutton CA, Haskali MB. A New Turn in Peptide-Based Imaging Agents: Foldamers Afford Improved Theranostics Targeting Cholecystokinin-2 Receptor-Positive Cancer. J Med Chem 2021; 64:4841-4856. [PMID: 33826325 DOI: 10.1021/acs.jmedchem.0c02213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins adopt unique folded secondary and tertiary structures that are responsible for their remarkable biological properties. This structural complexity is key in designing efficacious peptides that can mimic the three-dimensional structure needed for biological function. In this study, we employ different chemical strategies to induce and stabilize a β-hairpin fold of peptides targeting cholecystokinin-2 receptors for theranostic application (combination of a targeted therapeutic and a diagnostic companion). The newly developed peptides exhibited enhanced folding capacity as demonstrated by circular dichroism (CD) spectroscopy, ion-mobility spectrometry-mass spectrometry, and two-dimensional (2D) NMR experiments. Enhanced folding characteristics of the peptides led to increased biological potency, affording four optimal Ga-68 labeled radiotracers ([68Ga]Ga-4b, [68Ga]Ga-11b-13b) targeting CCK-2R. In particular, [68Ga]Ga-12b and [68Ga]Ga-13b presented improved metabolic stability, enhanced cell internalization, and up to 6 fold increase in tumor uptake. These peptides hold great promise as next-generation theranostic radiopharmaceuticals.
Collapse
Affiliation(s)
- Alicia Corlett
- Department of Nuclear Medicine, The Royal Melbourne Hospital, Melbourne, VIC 3000, Australia
| | | | - Jessica Van Zuylekom
- The Centre for Molecular Imaging and Translational Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Ching-Seng Ang
- The Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville 3010, Australia
| | | | - Carleen Cullinane
- The Centre for Molecular Imaging and Translational Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Benjamin Blyth
- The Centre for Molecular Imaging and Translational Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Rodney J Hicks
- The Centre for Molecular Imaging and Translational Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Peter D Roselt
- The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University (Parkville Campus), Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville VIC 3052, Australia
| | | | - Mohammad B Haskali
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia.,The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| |
Collapse
|
50
|
Klingler M, Hörmann AA, Rangger C, Desrues L, Castel H, Gandolfo P, von Guggenberg E. Stabilization Strategies for Linear Minigastrin Analogues: Further Improvements via the Inclusion of Proline into the Peptide Sequence. J Med Chem 2020; 63:14668-14679. [PMID: 33226806 PMCID: PMC7734625 DOI: 10.1021/acs.jmedchem.0c01233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Minigastrin (MG) analogues, known for their high potential to target cholecystokinin-2 receptor (CCK2R) expressing tumors, have limited clinical applicability due to low enzymatic stability. By introducing site-specific substitutions within the C-terminal receptor-binding sequence, reduced metabolization and improved tumor targeting can be achieved. In this work, the influence of additional modification within the N-terminal sequence has been explored. Three novel 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated CCK2R ligands with proline substitution at different positions were synthesized. Substitution did not affect CCK2R affinity, and the conjugates labeled with indium-111 and lutetium-177 showed a high enzymatic stability in different incubation media as well as in vivo (57-79% intact radiopeptide in blood of BALB/c mice at 1 h p.i.) combined with enhanced tumor uptake (29-46% IA/g at 4 h in xenografted BALB/c nude mice). The inclusion of Pro contributes significantly to the development of CCK2R ligands with optimal targeting properties for application in targeted radiotherapy.
Collapse
Affiliation(s)
- Maximilian Klingler
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Anton A Hörmann
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Christine Rangger
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Laurence Desrues
- INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, 76000 Rouen, France
| | - Hélène Castel
- INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, 76000 Rouen, France
| | - Pierrick Gandolfo
- INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, 76000 Rouen, France
| | - Elisabeth von Guggenberg
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|