1
|
Zhao R, Lv J, Li M, Xu S, Liang W, Lin X, Gu D, Zeng G, Jin W, Yan Q, Zhong H, Alexoff D, Ploessl K, Zhu L, Kung HF, Wang X. First-in-human study of dosimetry, safety and efficacy for [ 177Lu]Lu-P15-073: a novel bisphosphonate-based radioligand therapy (RLT) agent for bone metastases. Eur J Nucl Med Mol Imaging 2025; 52:925-935. [PMID: 39419848 DOI: 10.1007/s00259-024-06942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Bisphosphonates are pivotal in managing bone tumors by inhibiting bone resorption. This study investigates the therapeutic potential of [177Lu]Lu-P15-073, a novel bisphosphonate, for radioligand therapy (RLT) in bone metastases. METHODS Ten patients (age 35 to 75) with confirmed bone metastases underwent therapy with a single dose of [177Lu]Lu-P15-073 (1,225 ± 84 MBq, or 33 ± 2 mCi). Prior to treatment, bone metastases were verified via [99mTc]Tc-MDP bone scans. Serial planar whole-body scans monitored biodistribution over a 14-day period. Dosimetry was assessed for major organs and tumor lesions, while safety was evaluated through blood biomarkers and pain scores. RESULTS Serial planar whole-body scans demonstrated rapid and substantial accumulation of [177Lu]Lu-P15-073 in bone metastases, with minimal uptake in blood and other organs. The absorbed dose in the critical organ, red marrow, was measured at (0.034 ± 0.010 mSv/MBq), with a notably low normalized effective dose (0.013 ± 0.005 mSv/MBq) compared to other 177Lu-labeled bisphosphonates. Persistent high uptake in bone metastases was observed, resulting in elevated tumor doses (median 3.12 Gy/GBq). Patients exhibited favorable tolerance to [177Lu]Lu-P15-073 therapy, with no new instances of side effects. Additionally, 87.5% (7/8) of patients experienced a significant reduction in pain scale (numerical rating scale, NRS, from 5.1 ± 2.3 to 3.0 ± 1.8). The tumor-background ratio (TBRmean) of [99mTc]Tc-MDP correlated significantly with [177Lu]Lu-P15-073 uptake (P < 0.01), indicating its potential for prediction of absorbed dose. CONCLUSIONS This study demonstrates the safety, dosimetry, and efficacy of a single therapeutic dose of [177Lu]Lu-P15-073 in bone metastases. The treatment was well-tolerated with no severe adverse events. These findings suggest that [177Lu]Lu-P15-073 holds promise as a novel RLT agent for bone metastases.
Collapse
Affiliation(s)
- Ruiyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Jie Lv
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Mingzhao Li
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Siran Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Wenhua Liang
- Department of Thoracic Oncology and Surgery, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xinqing Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Di Gu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Guohua Zeng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Wenbin Jin
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Qingsong Yan
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Huizhen Zhong
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - David Alexoff
- Five Eleven Pharma Inc, 3700 Market St., Philadelphia, PA, 19104, USA
| | - Karl Ploessl
- Five Eleven Pharma Inc, 3700 Market St., Philadelphia, PA, 19104, USA
| | - Lin Zhu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Hank F Kung
- Five Eleven Pharma Inc, 3700 Market St., Philadelphia, PA, 19104, USA.
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Xinlu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
2
|
Mahajan S, Gavane S, Pandit-Taskar N. Targeted Radiopharmaceutical Therapy for Bone Metastases. Semin Nucl Med 2024; 54:497-512. [PMID: 38937221 DOI: 10.1053/j.semnuclmed.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
Radiopharmaceutical approaches for targeting bone metastasis have traditionally focused on palliation of pain. Several agents have been clinically used over the last several decades and have proven value in pain palliation providing pain relief and improving quality of life. The role is well established across several malignancies, most commonly used in osteoblastic prostate cancer patients. These agents have primarily based on targeting and uptake in bone matrix and have mostly included beta emitting isotopes. The advent alpha emitter and FDA approval of 223Ra-dichloride has created a paradigm shift in clinical approach from application for pain palliation to treatment of bone metastasis. The approval of 223Ra-dichloride given the survival benefit in metastatic prostate cancer patients, led to predominant use of this alpha emitter in prostate cancer patients. With rapid development of radiopharmaceutical therapies and approval of other targeted agents such as 177Lu-PSMA the approach to treatment of bone metastasis has further evolved and combination treatments have increasingly been applied. Novel approaches are needed to improve and expand the use of such therapies for treatment of bone metastasis. Combination therapies with different targeting mechanisms, combining chemotherapies and cocktail of alpha and beta emitters need further exploration.
Collapse
Affiliation(s)
- Sonia Mahajan
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Somali Gavane
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Neeta Pandit-Taskar
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
3
|
Jin W, Zhao R, Wang R, Choi SR, Ploessl K, Alexoff D, Wu Z, Zhu L, Kung HF. Theranostic Agent Targeting Bone Metastasis: A Novel [ 68Ga]Ga/[ 177Lu]Lu-DOTA-HBED-bisphosphonate. J Med Chem 2024; 67:4793-4803. [PMID: 38450559 DOI: 10.1021/acs.jmedchem.3c02372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Bone metastasis in cancer patients is a major disease advancement for various types of cancer. Previously, [68Ga]Ga-HBED-CC-bisphosphonate ([68Ga]Ga-P15-041) showed excellent bone uptake and efficient detection of bone metastasis in patients. To accommodate different α- or β--emitting metals for radionuclide therapy, a novel DOTA-HBED-CC-bisphosphonate (P15-073, 1) was prepared and the corresponding [68Ga]Ga-1 and [177Lu]Lu-1 were successfully synthesized in high yields and purity. Gallium-68 conjugation to HBED-CC at room temperature and lutetium-177 conjugation to DOTA at 95 °C were verified in model compounds through secondary mass confirmation. These bisphosphonates, [68Ga]Ga-1 and [177Lu]Lu-1, displayed high binding affinity to hydroxyapatite in vitro. After an iv injection, it showed excellent uptake in the spine of normal mice, and micro-PET/CT imaging of nude mice model of bone metastasis showed high bone uptake in tumor tissue. The results indicated that [68Ga]Ga/[177Lu]Lu-1 holds promise as a theranostic radioligand agent for managing cancer bone metastases.
Collapse
Affiliation(s)
- Wenbin Jin
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China
| | - Ruiyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Ran Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Seok Rye Choi
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Karl Ploessl
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - David Alexoff
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Zehui Wu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lin Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Bibi I, Mushtaq S, Lee KC, Park JA, Kim JY. From molecules to medicine: thiol selective bioconjugation in synthesis of diagnostic and therapeutic radiopharmaceuticals. Theranostics 2024; 14:2396-2426. [PMID: 38646656 PMCID: PMC11024863 DOI: 10.7150/thno.95469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Radiolabeling of biomolecules and cells with radiolabeled prosthetic groups has significant implications for nuclear medicine, imaging, and radiotherapy. Achieving site-specific and controlled incorporation of radiolabeled prostheses under mild reaction conditions is crucial for minimizing the impact on the bioactivity of the radiolabeled compounds. The targeting of natural and abundant amino acids during radiolabeling of biomolecules often results in nonspecific and uncontrolled modifications. Cysteine is distinguished by its low natural abundance and unique nucleophilicity. It is therefore an optimal target for site-selective and site-specific radiolabeling of biomolecules under controlled parameters. This review extensively discusses thiol-specific radiolabeled prosthetic groups and provides a critical analysis and comprehensive study of the synthesis of these groups, their in vitro and in vivo stability profiles, reaction kinetics, stability of resulting adducts, and overall impact on the targeting ability of radiolabeled biomolecules. The insights presented here aim to facilitate the development of highly efficient radiopharmaceuticals, initially in preclinical settings and ultimately in clinical applications.
Collapse
Affiliation(s)
- Iqra Bibi
- Affiliation Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
- University of Science and Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Sajid Mushtaq
- Affiliation Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
- Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P. O. Nilore, Islamabad 45650, Pakistan
| | - Kyo Chul Lee
- Affiliation Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Ji Ae Park
- Affiliation Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Jung Young Kim
- Affiliation Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| |
Collapse
|
5
|
Li H, Pei W, Yang X, Qu G, Hua Q, Liu L, Wang Y, Xu T, Chen Y. Biodistribution and dosimetry of 177Lu-DOTA-IBA for therapy of bone metastases. EJNMMI Res 2024; 14:30. [PMID: 38517637 PMCID: PMC10959900 DOI: 10.1186/s13550-024-01094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND We designed and synthesized a novel bisphosphonate radiopharmaceutical (68 Ga- or 177Lu-labeled DOTA-ibandronate [68 Ga/177Lu-DOTA-IBA]) for the targeted diagnosis and treatment of bone metastases. The biodistribution and internal dosimetry of a single therapeutic dose of 177Lu-DOTA-IBA were evaluated using a series of single-photon emission computerized tomography (SPECT) images and blood samples. Five patients with multiple bone metastases were included in this prospective study. After receiving 1110 MBq 177Lu-DOTA-IBA, patients underwent whole-body planar, SPECT/CT imaging and venous blood sampling over 7 days. Dosimetric evaluation was performed for the main organs and tumor lesions. Safety was assessed using blood biomarkers. RESULTS 177Lu-DOTA-IBA showed fast uptake, high retention in bone lesions, and rapid clearance from the bloodstream in all patients. In this cohort, the average absorbed doses (ADs) in the bone tumor lesions, kidneys, liver, spleen, red marrow, bladder-wall, and osteogenic cells were 5.740, 0.114, 0.095, 0.121, 0.095, and 0.333 Gy/GBq, respectively. Although no patient reached the predetermined dose thresholds, the red marrow will be the dose-limiting organ. There were no adverse reactions recorded after the administration of 1110 MBq 177Lu-DOTA-IBA. CONCLUSION Dosimetric results show that the ADs for critical organs and total body are within the safety limit and with high bone retention. It is a promising radiopharmaceutical alternative for the targeted treatment of bone metastases, controlling its progression, and improving the survival and quality of life of patients with advanced bone metastasis.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Wenjie Pei
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiqun Yang
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Gengcuo Qu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Qingchu Hua
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lin Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yudi Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Tingting Xu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China.
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China.
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
6
|
Dyer MR, Jing Z, Duncan K, Godbe J, Shokeen M. Advancements in the development of radiopharmaceuticals for nuclear medicine applications in the treatment of bone metastases. Nucl Med Biol 2024; 130-131:108879. [PMID: 38340369 DOI: 10.1016/j.nucmedbio.2024.108879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Bone metastases are a painful and complex condition that overwhelmingly impacts the prognosis and quality of life of cancer patients. Over the years, nuclear medicine has made remarkable progress in the diagnosis and management of bone metastases. This review aims to provide a comprehensive overview of the recent advancements in nuclear medicine for the diagnosis and management of bone metastases. Furthermore, the review explores the role of targeted radiopharmaceuticals in nuclear medicine for bone metastases, focusing on radiolabeled molecules that are designed to selectively target biomarkers associated with bone metastases, including osteocytes, osteoblasts, and metastatic cells. The applications of radionuclide-based therapies, such as strontium-89 (Sr-89) and radium-223 (Ra-223), are also discussed. This review also highlights the potential of theranostic approaches for bone metastases, enabling personalized treatment strategies based on individual patient characteristics. Importantly, the clinical applications and outcomes of nuclear medicine in osseous metastatic disease are discussed. This includes the assessment of treatment response, predictive and prognostic value of imaging biomarkers, and the impact of nuclear medicine on patient management and outcomes. The review identifies current challenges and future perspectives on the role of nuclear medicine in treating bone metastases. It addresses limitations in imaging resolution, radiotracer availability, radiation safety, and the need for standardized protocols. The review concludes by emphasizing the need for further research and advancements in imaging technology, radiopharmaceutical development, and integration of nuclear medicine with other treatment modalities. In summary, advancements in nuclear medicine have significantly improved the diagnosis and management of osseous metastatic disease and future developements in the integration of innovative imaging modalities, targeted radiopharmaceuticals, radionuclide production, theranostic approaches, and advanced image analysis techniques hold great promise in improving patient outcomes and enhancing personalized care for individuals with bone metastases.
Collapse
Affiliation(s)
- Michael R Dyer
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhenghan Jing
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathleen Duncan
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline Godbe
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Monica Shokeen
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Souche C, Fouillet J, Rubira L, Donzé C, Deshayes E, Fersing C. Bisphosphonates as Radiopharmaceuticals: Spotlight on the Development and Clinical Use of DOTAZOL in Diagnostics and Palliative Radionuclide Therapy. Int J Mol Sci 2023; 25:462. [PMID: 38203632 PMCID: PMC10779041 DOI: 10.3390/ijms25010462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Bisphosphonates are therapeutic agents that have been used for almost five decades in the treatment of various bone diseases, such as osteoporosis, Paget disease and prevention of osseous complications in cancer patients. In nuclear medicine, simple bisphosphonates such as 99mTc-radiolabelled oxidronate and medronate remain first-line bone scintigraphic imaging agents for both oncology and non-oncology indications. In line with the growing interest in theranostic molecules, bifunctional bisphosphonates bearing a chelating moiety capable of complexing a variety of radiometals were designed. Among them, DOTA-conjugated zoledronate (DOTAZOL) emerged as an ideal derivative for both PET imaging (when radiolabeled with 68Ga) and management of bone metastases from various types of cancer (when radiolabeled with 177Lu). In this context, this report provides an overview of the main medicinal chemistry aspects concerning bisphosphonates, discussing their roles in molecular oncology imaging and targeted radionuclide therapy with a particular focus on bifunctional bisphosphonates. Particular attention is also paid to the development of DOTAZOL, with emphasis on the radiochemistry and quality control aspects of its preparation, before outlining the preclinical and clinical data obtained so far with this radiopharmaceutical candidate.
Collapse
Affiliation(s)
- Céleste Souche
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Juliette Fouillet
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Charlotte Donzé
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
8
|
Zha Z, Ploessl K, Choi SR, Zhao R, Jin W, Wang R, Alexoff D, Zhu L, Kung HF. Lu-177-Labeled Hetero-Bivalent Agents Targeting PSMA and Bone Metastases for Radionuclide Therapy. J Med Chem 2023; 66:12602-12613. [PMID: 37670407 DOI: 10.1021/acs.jmedchem.3c01294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is an excellent target for imaging and radionuclide therapy of prostate cancer. Recently, [177Lu]Lu-PSMA-617 (Pluvicto) was approved by the FDA for radionuclide therapy. To develop hetero-bivalent agents targeting both PSMA and bone metastasis, [177Lu]Lu-P17-079 ([177Lu]Lu-1) and [177Lu]Lu-P17-081 ([177Lu]Lu-2) were prepared. In vivo biodistribution studies of [177Lu]Lu-PSMA-617, [177Lu]Lu-1, and [177Lu]Lu-2 in mice bearing PC3-PIP (PSMA positive) tumor showed high uptake in PSMA-positive tumor (14.5, 14.7, and 11.3% ID/g at 1 h, respectively) and distinctively different bone uptakes (0.52, 6.52, and 5.82% ID/g at 1 h, respectively). PET imaging using [68Ga]Ga-P17-079 ([68Ga]Ga-1) in the same mouse model displayed excellent images confirming the expected dual-targeting to PSMA-positive tumor and bone. Results suggest that [177Lu]Lu-P17-079 ([177Lu]Lu-1) is a promising candidate for further development as a hetero-bivalent radionuclide therapy agent targeting both PSMA expression and bone metastases for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Zhihao Zha
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Karl Ploessl
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Seok Rye Choi
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Ruiyue Zhao
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wenbin Jin
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ran Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - David Alexoff
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Lin Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hank F Kung
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Lepareur N, Ramée B, Mougin-Degraef M, Bourgeois M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1733. [PMID: 37376181 DOI: 10.3390/pharmaceutics15061733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Targeted radionuclide therapy has become increasingly prominent as a nuclear medicine subspecialty. For many decades, treatment with radionuclides has been mainly restricted to the use of iodine-131 in thyroid disorders. Currently, radiopharmaceuticals, consisting of a radionuclide coupled to a vector that binds to a desired biological target with high specificity, are being developed. The objective is to be as selective as possible at the tumor level, while limiting the dose received at the healthy tissue level. In recent years, a better understanding of molecular mechanisms of cancer, as well as the appearance of innovative targeting agents (antibodies, peptides, and small molecules) and the availability of new radioisotopes, have enabled considerable advances in the field of vectorized internal radiotherapy with a better therapeutic efficacy, radiation safety and personalized treatments. For instance, targeting the tumor microenvironment, instead of the cancer cells, now appears particularly attractive. Several radiopharmaceuticals for therapeutic targeting have shown clinical value in several types of tumors and have been or will soon be approved and authorized for clinical use. Following their clinical and commercial success, research in that domain is particularly growing, with the clinical pipeline appearing as a promising target. This review aims to provide an overview of current research on targeting radionuclide therapy.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, 35000 Rennes, France
- Inserm, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR 1317, Univ Rennes, 35000 Rennes, France
| | - Barthélémy Ramée
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
| | - Marie Mougin-Degraef
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
| | - Mickaël Bourgeois
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
- Groupement d'Intérêt Public ARRONAX, 1 Rue Aronnax, 44817 Saint Herblain, France
| |
Collapse
|
10
|
Qiu L, Wang Y, Liu H, Wang Q, Chen L, Liu L, Wang L, Feng Y, Chen Y. Safety and Efficacy of 68 Ga- or 177 Lu-Labeled DOTA-IBA as a Novel Theranostic Radiopharmaceutical for Bone Metastases : A Phase 0/I Study. Clin Nucl Med 2023; 48:489-496. [PMID: 36976706 DOI: 10.1097/rlu.0000000000004634] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
PURPOSE We designed and synthesized a novel theranostic bisphosphonate radiopharmaceutical ( 68 Ga- or 177 Lu-labeled DOTA-ibandronic acid [ 68 Ga/ 177 Lu-DOTA-IBA]) for bone metastasis. In this study, the dosimetry, safety, and efficacy of 68 Ga/ 177 Lu-DOTA-IBA as a theranostic radiopharmaceutical for bone metastases were evaluated in patients with malignancy based on 68 Ga- and 177 Lu-DOTA-IBA images, blood samples, and dosimetric analysis. PATIENTS AND METHODS Eighteen patients with bone metastasis and progression under conventional therapies were included in this study. Baseline 99m Tc-MDP SPECT and 68 Ga-DOTA-IBA PET/CT were performed for comparative purposes within 3 days. After receiving 891.5 ± 301.3 MBq 177 Lu-DOTA-IBA, serial 177 Lu-DOTA-IBA SPECT bone scan was performed over 14 days. Dosimetric evaluation was performed for main organs and tumor lesions. Safety was assessed by blood biomarkers. Karnofsky Performance Status, pain score, and follow-up 68 Ga-DOTA-IBA PET/CT were performed for response evaluation. RESULTS Baseline 68 Ga-DOTA-IBA PET demonstrated a higher efficacy for detecting bone metastases compared with 99m Tc-MDP SPECT. The time-activity curves showed fast uptake and high retention of 177 Lu-DOTA-IBA in bone metastases (24 hours: 9.43 ± 2.75 %IA; 14 days: 5.45 ± 2.52 %IA). Liver, kidneys, and red marrow time-activity curves revealed a low uptake and fast clearance. The radiation-absorbed dose in bone metastasis lesions (6.40 ± 2.13 Gy/GBq) was significantly higher than that in red marrow (0.47 ± 0.19 Gy/GBq), kidneys (0.56 ± 0.19 Gy/GBq), or liver (0.28 ± 0.07 Gy/GBq), with all P 's < 0.001. Compared with baseline level, only one patient developed new grade 1 leukopenia (toxicity rate, 6%). The 177 Lu-DOTA-IBA therapy had no statistically significant effect on bone marrow hematopoietic function, liver function, and kidney function at any follow-up visit. Bone pain palliation was achieved in 82% (14/17) of patients. The 8-week follow-up 68 Ga-DOTA-IBA PET/CT demonstrated partial response in 3 patients, disease progression in 1 patient, and stable disease in 14 patients. CONCLUSIONS 68 Ga/ 177 Lu-DOTA-IBA provides a set of potential theranostic radiopharmaceuticals and may have a good prospect for the management of bone metastasis.
Collapse
|
11
|
Wang Q, Yang J, Wang Y, Liu H, Feng Y, Qiu L, Chen Y. Lutetium177-Labeled DOTA-Ibandronate: A Novel Radiopharmaceutical for Targeted Treatment of Bone Metastases. Mol Pharm 2023; 20:1788-1795. [PMID: 36802692 DOI: 10.1021/acs.molpharmaceut.2c00978] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Bone metastases of malignant tumors significantly threaten the patient survival and quality of life. We designed and synthesized a novel bisphosphonate radiopharmaceutical [68Ga- or 177Lu-labeled DOTA-Ibandronate(68Ga/177Lu-DOTA-IBA)] for targeted diagnosis and treatment of bone metastases. This study explored the basic biological characteristics of 177Lu-DOTA-IBA, guiding clinical translation and providing evidence for future clinical applications. The control variable method was used to optimize the optimal labeling conditions. The in vitro properties, biological distribution, and toxicity of 177Lu-DOTA-IBA were studied. Normal mice and tumor-bearing mice were imaged using micro SPECT/CT. With Ethics Committee approval, five volunteers were recruited for a preliminary clinical translation study. 177Lu-DOTA-IBA has a radiochemical purity of more than 98%, with good biological properties and safety. Blood clearance is fast and soft tissue uptake is low. Tracers are excreted mainly through the urinary system, targeting and continuously concentrating in the bones. Three patients experienced significant pain relief within 3 days after 177Lu-DOTA-IBA treatment (740-1110 MBq), lasting more than 2 months, with no toxic side effects. 177Lu-DOTA-IBA is easy to prepare and exhibits good pharmacokinetic characteristics. Low-dose 177Lu-DOTA-IBA is effective, well tolerated, and was associated with no significant adverse reactions. It is a promising radiopharmaceutical for the targeted treatment of bone metastases, controlling the progress of bone metastasis and improving survival and quality of life of patients with advanced bone metastasis.
Collapse
Affiliation(s)
- Qixin Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, Sichuan, People's Republic of China
| | - Jian Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, Sichuan, People's Republic of China
| | - Yingwei Wang
- Department of Nuclear Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, People's Republic of China
| | - Hanxiang Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, Sichuan, People's Republic of China
| | - Yue Feng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, Sichuan, People's Republic of China
| | - Lin Qiu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, Sichuan, People's Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, Sichuan, People's Republic of China
| |
Collapse
|
12
|
Xiao D, Jiang Y, Feng J, Ruan Q, Wang Q, Yin G, Zhang J. Novel 99mTc labeled complexes with bisphosphonate isocyanide: radiosynthesis and evaluation as potential bone-seeking agents. Bioorg Med Chem Lett 2022; 73:128918. [DOI: 10.1016/j.bmcl.2022.128918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/02/2022]
|
13
|
Pazderová L, Benešová M, Havlíčková J, Vojtíčková M, Kotek J, Lubal P, Ullrich M, Walther M, Schulze S, Neuber C, Rammelt S, Pietzsch HJ, Pietzsch J, Kubíček V, Hermann P. Cyclam with a phosphinate-bis(phosphonate) pendant arm is a bone-targeting carrier of copper radionuclides. Dalton Trans 2022; 51:9541-9555. [PMID: 35670322 DOI: 10.1039/d2dt01172g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligands combining a bis(phosphonate) group with a macrocycle function as metal isotope carriers for radionuclide-based imaging and for treating bone metastases associated with several cancers. However, bis(phosphonate) pendant arms often slow down complex formation and decrease radiochemical yields. Nevertheless, their negative effect on complexation rates may be mitigated by using a suitable spacer between bis(phosphonate) and the macrocycle. To demonstrate the potential of bis(phosphonate) bearing macrocyclic ligands as a copper radioisotope carrier, we report the synthesis of a new cyclam derivative bearing a phosphinate-bis(phosphonate) pendant (H5te1PBP). The ligand showed a high selectivity to CuII over ZnII and NiII ions, and the bis(phosphonate) group was not coordinated in the CuII complex, strongly interacting with other metal ions in solution. The CuII complex formed quickly, in 1 s, at pH 5 and at a millimolar scale. The complexation rates significantly differed under a ligand or metal ion excess due to the formation of reaction intermediates differing in their metal-to-ligand ratio and protonation state, respectively. The CuII-te1PBP complex also showed a high resistance to acid-assisted hydrolysis (t1/2 2.7 h; 1 M HClO4, 25 °C) and was effectively adsorbed on the hydroxyapatite surface. H5te1PBP radiolabeling with [64Cu]CuCl2 was fast and efficient, with specific activities of approximately 30 GBq 64Cu per 1 μmol of ligand (pH 5.5, room temperature, 30 min). In a pilot experiment, we further demonstrated the excellent suitability of [64Cu]CuII-te1PBP for imaging active bone compartments by dedicated small animal PET/CT in healthy mice and subsequently in a rat femoral defect model, in direct comparison with [18F]fluoride. Moreover, [64Cu]CuII-te1PBP showed a higher uptake in critical bone defect regions. Therefore, our study highlights the potential of [64Cu]CuII-te1PBP as a PET radiotracer for evaluating bone healing in preclinical and clinical settings with a diagnostic value similar to that of [18F]fluoride, albeit with a longer half-life (12.7 h) than 18F (1.8 h), thereby enabling extended observation times.
Collapse
Affiliation(s)
- Lucia Pazderová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Martina Benešová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic. .,Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
| | - Jana Havlíčková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Margareta Vojtíčková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Přemysl Lubal
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Martin Walther
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Sabine Schulze
- Technische Universität Dresden, Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Stefan Rammelt
- Technische Universität Dresden, University Hospital Carl Gustav Carus, University Center for Orthopaedics and Traumatology, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, 01069 Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, 01069 Dresden, Germany
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| |
Collapse
|
14
|
Fersing C, Masurier N, Rubira L, Deshayes E, Lisowski V. AAZTA-Derived Chelators for the Design of Innovative Radiopharmaceuticals with Theranostic Applications. Pharmaceuticals (Basel) 2022; 15:234. [PMID: 35215346 PMCID: PMC8879111 DOI: 10.3390/ph15020234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
With the development of 68Ga and 177Lu radiochemistry, theranostic approaches in modern nuclear medicine enabling patient-centered personalized medicine applications have been growing in the last decade. In conjunction with the search for new relevant molecular targets, the design of innovative chelating agents to easily form stable complexes with various radiometals for theranostic applications has gained evident momentum. Initially conceived for magnetic resonance imaging applications, the chelating agent AAZTA features a mesocyclic seven-membered diazepane ring, conferring some of the properties of both acyclic and macrocyclic chelating agents. Described in the early 2000s, AAZTA and its derivatives exhibited interesting properties once complexed with metals and radiometals, combining a fast kinetic of formation with a slow kinetic of dissociation. Importantly, the extremely short coordination reaction times allowed by AAZTA derivatives were particularly suitable for short half-life radioelements (i.e., 68Ga). In view of these particular characteristics, the scope of this review is to provide a survey on the design, synthesis, and applications in the nuclear medicine/radiopharmacy field of AAZTA-derived chelators.
Collapse
Affiliation(s)
- Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France; (L.R.); (E.D.)
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (N.M.); (V.L.)
| | - Nicolas Masurier
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (N.M.); (V.L.)
| | - Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France; (L.R.); (E.D.)
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France; (L.R.); (E.D.)
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer de Montpellier (ICM), University of Montpellier, 34298 Montpellier, France
| | - Vincent Lisowski
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (N.M.); (V.L.)
- Department of Pharmacy, Lapeyronie Hospital, CHU Montpellier, 191 Av. du Doyen Gaston Giraud, 34295 Montpellier, France
| |
Collapse
|
15
|
Liu W, Li K, Deng H, Wang J, Zhao P, Liao W, Zhuo L, Wei H, Yang X, Chen Y. In vitro and in vivo evaluation of a novel anti-EGFR antibody labeled with 89Zr and 177Lu. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-021-08174-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Chakravarty R, Chakraborty S. A review of advances in the last decade on targeted cancer therapy using 177Lu: focusing on 177Lu produced by the direct neutron activation route. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2021; 11:443-475. [PMID: 35003885 PMCID: PMC8727880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
Lutetium-177 [T½ = 6.76 d; Eβ (max) = 0.497 MeV; maximum tissue range ~2.5 mm; 208 keV γ-ray] is one of the most important theranostic radioisotope used for the management of various oncological and non-oncological disorders. The present review chronicles the advancement in the last decade in 177Lu-radiopharmacy with a focus on 177Lu produced via direct 176Lu (n, γ) 177Lu nuclear reaction in medium flux research reactors. The specific nuances of 177Lu production by various routes are described and their pros and cons are discussed. Lutetium, is the last element in the lanthanide series. Its chemistry plays a vital role in the preparation of a wide variety of radiopharmaceuticals which demonstrate appreciable in vivo stability. Traditional bifunctional chelators (BFCs) that are used for 177Lu-labeling are discussed and the upcoming ones are highlighted. Research efforts that resulted in the growth of various 177Lu-based radiopharmaceuticals in preclinical and clinical settings are provided. This review also summarizes the results of clinical studies with potent 177Lu-based radiopharmaceuticals that have been prepared using medium specific activity 177Lu produced by direct neutron activation route in research reactors. Overall, the review amply demonstrates the practicality of the medium specific activity 177Lu towards formulation of various clinically useful radiopharmaceuticals, especially for the benefit of millions of cancer patients in developing countries with limited reactor facilities.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
- Homi Bhabha National Institute Anushaktinagar, Mumbai 400094, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
- Homi Bhabha National Institute Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
17
|
Liepe K, Murray I, Flux G. Dosimetry of bone seeking beta emitters for bone pain palliation metastases. Semin Nucl Med 2021; 52:178-190. [PMID: 34895886 DOI: 10.1053/j.semnuclmed.2021.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Amongst cancer patients, bone pain due to skeletal metastases is a major cause of morbidity. A number of beta-emitting radiopharmaceuticals have been used to provide internal radiotherapy of bone metastases and provide palliative pain relief. In this article we describe the different physical characteristics of the various beta emitting radionuclides which have been used in this clinical setting and the potential impact of differences in dose-rate on radiobiological outcomes. A detailed review of the biodistribution of these treatments, based on both in-vivo clinical investigations and post mortem autoradiography assessments is provided. These treatments result in physiological delivery of radiation doses to the target disease as well as to critical healthy organs. Particular attention is paid to the radiation doses received by normal bone tissue, bone marrow as well as metastatic bone disease. The underlying models of radiation transport within bone and bone marrow are reviewed alongside the practical steps that must be taken to acquire and analyse the information require for clinical dosimetry assessments. The role of whole body measurements, blood and faecal assays as well as both planar and tomographic gamma camera imaging are considered. In addition we review the rationale for allocating measured bone uptake between trabecular and cortical bone tissue. The difference between bone volume and bone surface seeking radiopharmaceuticals are also discussed. This review also extends to the development of preclinical models of bone metastases which may inform future dosimetric calculations. Finally, we also present a comprehensive review of the dosimetry of the established treatments 89Strontium-chloride; 32Phosphorus; 188Rhenium-hydroxyethylidine disphosphonate; 186Rhenium-1,1-hydroxyethylidene disphosphonate (186Re-HEDP); 153Samarium-ethylenediaminetetramethylene phosphonate; as well as the emerging treatments 188Rhenium-zoledronic acid; 188Rhenium-ibedronat; 177Lutetium-zoledronic acid; and 177Lutetium ethylenediaminetetramethylene phosphonate. This review highlights not only the inter treatment differences in the radiation absorbed doses delivered to metastatic disease by different radiopharmaceuticals but also the intra treatment differences which result in a large range of observed doses between patients.
Collapse
Affiliation(s)
- K Liepe
- Department of Nuclear Medicine, Klinikum Frankfurt (Oder), Brandenburg, Germany.
| | - I Murray
- Department of Physics, Royal Marsden Hospital, Sutton, UK
| | - G Flux
- Department of Physics, Royal Marsden Hospital, Sutton, UK
| |
Collapse
|
18
|
Fracture Risk of Long Bone Metastases: A Review of Current and New Decision-Making Tools for Prophylactic Surgery. Cancers (Basel) 2021; 13:cancers13153662. [PMID: 34359563 PMCID: PMC8345078 DOI: 10.3390/cancers13153662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Long bone metastases are frequently a pivotal point in the oncological history of patients. Weakening of the bone results in pathologic fractures that not only compromise patient function but also their survival. Therefore, the main issue for tumor boards remains timely assessment of the risk of fracture, as this is a key consideration in providing preventive surgery while also avoiding overtreatment. As the Mirels scoring system takes into account both the radiological and the clinical criteria, it has been used worldwide since the 1990s. However, due to increasing concern regarding the lack of accuracy, new thresholds have been defined for the identification of impending fractures that require prophylactic surgery, on the basis of axial cortical involvement and biomechanical models involving quantitative computed tomography. The aim of this review is to establish a state-of-the-art of the risk assessment of long bone metastases fractures, from simple radiologic scores to more complex multidimensional bone models, in order to define new decision-making tools. Abstract Long bone pathological fractures very much reflect bone metastases morbidity in many types of cancer. Bearing in mind that they not only compromise patient function but also survival, identifying impending fractures before the actual event is one of the main concerns for tumor boards. Indeed, timely prophylactic surgery has been demonstrated to increase patient quality of life as well as survival. However, early surgery for long bone metastases remains controversial as the current fracture risk assessment tools lack accuracy. This review first focuses on the gold standard Mirels rating system. It then explores other unique imaging thresholds such as axial or circumferential cortical involvement and the merits of nuclear imaging tools. To overcome the lack of specificity, other fracture prediction strategies have focused on biomechanical models based on quantitative computed tomography (CT): computed tomography rigidity analysis (CT-RA) and finite element analysis (CT-FEA). Despite their higher specificities in impending fracture assessment, their limited availability, along with a need for standardization, have limited their use in everyday practice. Currently, the prediction of long bone pathologic fractures is a multifactorial process. In this regard, machine learning could potentially be of value by taking into account clinical survival prediction as well as clinical and improved CT-RA/FEA data.
Collapse
|
19
|
Ranjbar H, Pourhabib Z. Human Absorbed Dose Evaluation of [177Lu]Lu-IBA as a Bone Palliative Candidate. Nuklearmedizin 2021; 60:375-380. [PMID: 34102691 DOI: 10.1055/a-1486-3683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The role of lutetium-177 among bone-seeking radionuclides in targeted therapy is noteworthy. The clinical pharmacokinetics of ibandronate (IBA) indicates that this bisphonate has powerful bone mineral affinity. The aim of this study was to evaluate of [177Lu]Lu-IBA efficacy as a new compound.The [177Lu]Lu-IBA was prepared by radiolabeling of IBA ligand to 177LuCl3 that was obtained by thermal neutron irradiation of enriched Lu2O3 sample. Produced [177Lu]Lu-IBA with high radiochemical purity was administered intravenously to mice. Biodistribution data were collected at 1, 4, 24, 48 h and 7 d post injections. With calculating accumulated activities in each organ and extrapolating mouse's organs to human's organs by the RADAR method and using OLINDA/EXM software the injected dose in various human organs was achieved.[177Lu]Lu-IBA was produced with radiochemical purity nearly 96 %. Its biodistribution data showed the high uptake and durability in the skeletal tissues without significant uptake in other major organs.The results showed that [177Lu]Lu-IBA has considerably good properties as a bone-seeking radiopharmaceutical and therefore can be a candidate for bone pain palliative therapy in skeletal metastases; however, further biological studies are still needed.
Collapse
Affiliation(s)
- Hassan Ranjbar
- Nuclear Science and Technology Research Institute, Tehran, Iran (the Islamic Republic of)
| | - Zahra Pourhabib
- Payame Noor University, Tehran, Iran (the Islamic Republic of)
| |
Collapse
|
20
|
Prognostic and Theranostic Applications of Positron Emission Tomography for a Personalized Approach to Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2021; 22:ijms22063036. [PMID: 33809749 PMCID: PMC8002334 DOI: 10.3390/ijms22063036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 01/25/2023] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) represents a condition of progressive disease in spite of androgen deprivation therapy (ADT), with a broad spectrum of manifestations ranging from no symptoms to severe debilitation due to bone or visceral metastatization. The management of mCRPC has been profoundly modified by introducing novel therapeutic tools such as antiandrogen drugs (i.e., abiraterone acetate and enzalutamide), immunotherapy through sipuleucel-T, and targeted alpha therapy (TAT). This variety of approaches calls for unmet need of biomarkers suitable for patients’ pre-treatment selection and prognostic stratification. In this scenario, imaging with positron emission computed tomography (PET/CT) presents great and still unexplored potential to detect specific molecular and metabolic signatures, some of whom, such as the prostate specific membrane antigen (PSMA), can also be exploited as therapeutic targets, thus combining diagnosis and therapy in the so-called “theranostic” approach. In this review, we performed a web-based and desktop literature research to investigate the prognostic and theranostic potential of several PET imaging probes, such as 18F-FDG, 18F-choline and 68Ga-PSMA-11, also covering the emerging tracers still in a pre-clinical phase (e.g., PARP-inhibitors’ analogs and the radioligands binding to gastrin releasing peptide receptors/GRPR), highlighting their potential for defining personalized care pathways in mCRPC.
Collapse
|