1
|
Chuang L, Jiyong S, Chenguang Z, Xiaowei H, Xiaodong Z, Zhikun Y, Zhihua L, Xuetao H, Yanxiao L, Jianbo X, Xiaobo Z. Effects of sodium chloride substitutes on physicochemical properties of salted beef. Food Chem X 2023; 20:100885. [PMID: 38144776 PMCID: PMC10740021 DOI: 10.1016/j.fochx.2023.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/02/2023] [Accepted: 09/15/2023] [Indexed: 12/26/2023] Open
Abstract
In this study, beef was marinated with different low-sodium salt substitutes and heated and aged by employing superheated steam roasting and traditional roasting to investigate the effects of the various substitutes on the physicochemical properties, texture profile, sensory properties, volatile compounds, microstructural characteristics, and safety of cured and aged beef. Twenty kilograms of beef were arbitrarily divided into five treatments and pickled with different low-sodium salt substitutes. The results revealed no significant differences in saltiness, physicochemical characteristics, texture profile, or volatile compounds between the T2 and T3 and T1 (100% NaCl, T1; 75% KCl + 25% NaCl, T2; 50% KCl + 50% NaCl, T3) samples. Furthermore, the T4 and T5 (50% NaCl + 25% KCl + 20% MgCl2 + 5% CaCl2, T4; 100% yeast extract, T5) samples had lower saltiness than the T1 sample. The plasmolysis percentage and osmotic pressure of the T2 and T3 samples were lower than those of the T1 sample. Therefore, reducing sodium by substituting NaCl with 50% KCl or 75% KCl maintained an acceptable sensory and safety profile for beef consumption.
Collapse
Affiliation(s)
- Li Chuang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Shi Jiyong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zhou Chenguang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Huang Xiaowei
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zhai Xiaodong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yang Zhikun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Li Zhihua
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Hu Xuetao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Li Yanxiao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiao Jianbo
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Zou Xiaobo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, China
| |
Collapse
|
2
|
Wu W, Zhang L, Zheng X, Huang Q, Farag MA, Zhu R, Zhao C. Emerging applications of metabolomics in food science and future trends. Food Chem X 2022; 16:100500. [DOI: 10.1016/j.fochx.2022.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
|
3
|
Lama-Muñoz A, Contreras MDM. Extraction Systems and Analytical Techniques for Food Phenolic Compounds: A Review. Foods 2022; 11:3671. [PMID: 36429261 PMCID: PMC9689915 DOI: 10.3390/foods11223671] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Phenolic compounds are highly valuable food components due to their potential utilisation as natural bioactive and antioxidant molecules for the food, cosmetic, chemical, and pharmaceutical industries. For this purpose, the development and optimisation of efficient extraction methods is crucial to obtain phenolic-rich extracts and, for some applications, free of interfering compounds. It should be accompanied with robust analytical tools that enable the standardisation of phenolic-rich extracts for industrial applications. New methodologies based on both novel extraction and/or analysis are also implemented to characterise and elucidate novel chemical structures and to face safety, pharmacology, and toxicity issues related to phenolic compounds at the molecular level. Moreover, in combination with multivariate analysis, the extraction and analysis of phenolic compounds offer tools for plant chemotyping, food traceability and marker selection in omics studies. Therefore, this study reviews extraction techniques applied to recover phenolic compounds from foods and agri-food by-products, including liquid-liquid extraction, solid-liquid extraction assisted by intensification technologies, solid-phase extraction, and combined methods. It also provides an overview of the characterisation techniques, including UV-Vis, infra-red, nuclear magnetic resonance, mass spectrometry and others used in minor applications such as Raman spectroscopy and ion mobility spectrometry, coupled or not to chromatography. Overall, a wide range of methodologies are now available, which can be applied individually and combined to provide complementary results in the roadmap around the study of phenolic compounds.
Collapse
Affiliation(s)
- Antonio Lama-Muñoz
- Departamento de Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, s/n, 23071 Jaén, Spain
| |
Collapse
|
4
|
Li X, Wang D, Ma F, Yu L, Mao J, Zhang W, Jiang J, Zhang L, Li P. Rapid detection of sesame oil multiple adulteration using a portable Raman spectrometer. Food Chem 2022; 405:134884. [DOI: 10.1016/j.foodchem.2022.134884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/14/2022]
|
5
|
Chen C, Wang X, Zhang Y, Li X, Gao H, Waterhouse GIN, Qiao X, Xu Z. A molecularly-imprinted SERS sensor based on a TiO 2@Ag substrate for the selective capture and sensitive detection of tryptamine in foods. Food Chem 2022; 394:133536. [PMID: 35753253 DOI: 10.1016/j.foodchem.2022.133536] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/18/2022] [Accepted: 06/18/2022] [Indexed: 11/18/2022]
Abstract
Herein, a molecularly imprinted surface-enhanced Raman spectroscopy (SERS) sensor was developed for the selective capture and sensitive detection of tryptamine in foods. The SERS sensor exploited silver nanoparticle-decorated TiO2 (TiO2@Ag) substrates for Raman signal enhancement via synergistic effect of electromagnetic enhancement and photoinduced charge-transfer, whilst surface functionalization with the molecularly imprinted polymer ensured selective tryptamine capture. The SERS spectrum of tryptamine on the sensor closely matched that predicted by density functional simulations. The SERS intensity for tryptamine on the developed TiO2@Ag@MIP sensor increased linearly with the logarithm of the tryptamine concentration over the range of 10-6-10-2 mol L-1, with a LOD of 4.85 × 10-7 mol L-1. Tryptamine was detected in a spiked white vinegar sample, and its recoveries were in the range of 92.00%-111.40%. The SERS sensor could be used for the detection of tryptamine in actual samples.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Ximo Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Yingfang Zhang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Xingying Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Huiju Gao
- College of Forestry, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | | | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Zhixiang Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China.
| |
Collapse
|
6
|
Corona P, Frangipane MT, Moscetti R, Lo Feudo G, Castellotti T, Massantini R. Chestnut Cultivar Identification through the Data Fusion of Sensory Quality and FT-NIR Spectral Data. Foods 2021; 10:2575. [PMID: 34828856 PMCID: PMC8618948 DOI: 10.3390/foods10112575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
The world production of chestnuts has significantly grown in recent decades. Consumer attitudes, increasingly turned towards healthy foods, show a greater interest in chestnuts due to their health benefits. Consequently, it is important to develop reliable methods for the selection of high-quality products, both from a qualitative and sensory point of view. In this study, Castanea spp. fruits from Italy, namely Sweet chestnut cultivar and the Marrone cultivar, were evaluated by an official panel, and the responses for sensory attributes were used to verify the correlation to the near-infrared spectra. Data fusion strategies have been applied to take advantage of the synergistic effect of the information obtained from NIR and sensory analysis. Large nuts, easy pellicle removal, chestnut aroma, and aromatic intensity render Marrone cv fruits suitable for both the fresh market and candying, i.e., marron glacé. Whereas, sweet chestnut samples, due to their characteristics, have the potential to be used for secondary food products, such as jam, mash chestnut, and flour. The research lays the foundations for a superior data fusion approach for chestnut identification in terms of classification sensitivity and specificity, in which sensory and spectral approaches compensate each other's drawbacks, synergistically contributing to an excellent result.
Collapse
Affiliation(s)
- Piermaria Corona
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (P.C.); (R.M.); (R.M.)
- CREA Research Centre for Forestry and Wood, 52100 Arezzo, Italy
| | - Maria Teresa Frangipane
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (P.C.); (R.M.); (R.M.)
| | - Roberto Moscetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (P.C.); (R.M.); (R.M.)
| | - Gabriella Lo Feudo
- CREA Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy;
| | - Tatiana Castellotti
- CREA Research Centre for Agricultural Policies and Bioeconomy, 87036 Rende, Italy;
| | - Riccardo Massantini
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (P.C.); (R.M.); (R.M.)
| |
Collapse
|
7
|
Aouadi B, Zaukuu JLZ, Vitális F, Bodor Z, Fehér O, Gillay Z, Bazar G, Kovacs Z. Historical Evolution and Food Control Achievements of Near Infrared Spectroscopy, Electronic Nose, and Electronic Tongue-Critical Overview. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5479. [PMID: 32987908 PMCID: PMC7583984 DOI: 10.3390/s20195479] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 01/28/2023]
Abstract
Amid today's stringent regulations and rising consumer awareness, failing to meet quality standards often results in health and financial compromises. In the lookout for solutions, the food industry has seen a surge in high-performing systems all along the production chain. By virtue of their wide-range designs, speed, and real-time data processing, the electronic tongue (E-tongue), electronic nose (E-nose), and near infrared (NIR) spectroscopy have been at the forefront of quality control technologies. The instruments have been used to fingerprint food properties and to control food production from farm-to-fork. Coupled with advanced chemometric tools, these high-throughput yet cost-effective tools have shifted the focus away from lengthy and laborious conventional methods. This special issue paper focuses on the historical overview of the instruments and their role in food quality measurements based on defined food matrices from the Codex General Standards. The instruments have been used to detect, classify, and predict adulteration of dairy products, sweeteners, beverages, fruits and vegetables, meat, and fish products. Multiple physico-chemical and sensory parameters of these foods have also been predicted with the instruments in combination with chemometrics. Their inherent potential for speedy, affordable, and reliable measurements makes them a perfect choice for food control. The high sensitivity of the instruments can sometimes be generally challenging due to the influence of environmental conditions, but mathematical correction techniques exist to combat these challenges.
Collapse
Affiliation(s)
- Balkis Aouadi
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - John-Lewis Zinia Zaukuu
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - Flora Vitális
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - Zsanett Bodor
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - Orsolya Fehér
- Institute of Agribusiness, Faculty of Economics and Social Sciences, Szent István University, H-2100 Gödöllő, Hungary;
| | - Zoltan Gillay
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - George Bazar
- Department of Nutritional Science and Production Technology, Faculty of Agricultural and Environmental Sciences, Szent István University, H-7400 Kaposvár, Hungary;
- ADEXGO Kft., H-8230 Balatonfüred, Hungary
| | - Zoltan Kovacs
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| |
Collapse
|