1
|
Microbiome Analysis of Traditional Grain Vinegar Produced under Different Fermentation Conditions in Various Regions in Korea. Foods 2022; 11:foods11223573. [PMID: 36429165 PMCID: PMC9689881 DOI: 10.3390/foods11223573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The fermentation of traditional vinegar is a spontaneous and complex process that involves interactions among various microorganisms. Here, we used a microbiome approach to determine the effects of networks, such as fermentation temperature, location, physicochemical and sensory characteristics, and bacterial profile, within traditional grain vinegar samples collected from various regions of Korea. Acetic acid and lactic acid were identified as the major metabolites of grain vinegar, and sourness and umami were determined as taste fingerprints that could distinguish between vinegar samples. Acetobacter ghanensis and Lactobacillus acetotolerans were the predominant bacterial species, and the functional composition of the microbiota revealed that the nucleotide biosynthesis pathway was the most enriched. These results reveal that vinegar samples fermented outdoors are more similar to each other than vinegar samples fermented at 30 °C, when comparing the distance matrix for comprehending bacterial networks among samples. This study may help obtain high-quality vinegar through optimized fermentation conditions by suggesting differences in sensory characteristics according to the fermentation environment.
Collapse
|
2
|
El-Askri T, Yatim M, Sehli Y, Rahou A, Belhaj A, Castro R, Durán-Guerrero E, Hafidi M, Zouhair R. Screening and Characterization of New Acetobacter fabarum and Acetobacter pasteurianus Strains with High Ethanol−Thermo Tolerance and the Optimization of Acetic Acid Production. Microorganisms 2022; 10:microorganisms10091741. [PMID: 36144343 PMCID: PMC9500637 DOI: 10.3390/microorganisms10091741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The production of vinegar on an industrial scale from different raw materials is subject to constraints, notably the low tolerance of acetic acid bacteria (AAB) to high temperatures and high ethanol concentrations. In this study, we used 25 samples of different fruits from seven Moroccan biotopes with arid and semi-arid environmental conditions as a basic substrate to isolate thermo- and ethanol-tolerant AAB strains. The isolation and morphological, biochemical and metabolic characterization of these bacteria allowed us to isolate a total number of 400 strains with characters similar to AAB, of which six strains (FAGD1, FAGD10, FAGD18 and GCM2, GCM4, GCM15) were found to be mobile and immobile Gram-negative bacteria with ellipsoidal rod-shaped colonies that clustered in pairs and in isolated chains. These strains are capable of producing acetic acid from ethanol, growing on peptone and oxidizing acetate to CO2 and H2O. Strains FAGD1, FAGD10 and FAGD18 show negative growth on YPG medium containing D-glucose > 30%, while strains GCM2, GCM4 and GCM15 show positive growth. These six strains stand out on CARR indicator medium as isolates of the genus Acetobacter ssp. Analysis of 16S rDNA gene sequencing allowed us to differentiate these strains as Acetobacter fabarum and Acetobacter pasteurianus. The study of the tolerance of these six isolates towards pH showed that most of the six strains are unable to grow at pH 3 and pH 9, with an ideal pH of 5. The behavior of the six strains at different concentrations of ethanol shows an optimal production of acetic acid after incubation at concentrations between 6% and 8% (v/v) of ethanol. All six strains tolerated an ethanol concentration of 16% (v/v). The resistance of the strains to acetic acid differs between the species of AAB. The optimum acetic acid production is obtained at a concentration of 1% (v/v) for the strains of FAGD1, FAGD10 and FAGD18, and 3% (v/v) for GCM2, GCM4 and GCM15. These strains are able to tolerate an acetic acid concentration of up to 6% (v/v). The production kinetics of the six strains show the highest levels of growth and acetic acid production at 30 °C. This rate of growth and acetic acid production is high at 35 °C, 37 °C and 40 °C. Above 40 °C, the production of acid is reduced. All six strains continue to produce acetic acid, even at high temperatures up to 48 °C. These strains can be used in the vinegar production industry to minimize the load on cooling systems, especially in countries with high summer temperatures.
Collapse
Affiliation(s)
- Taoufik El-Askri
- Laboratory of Plant Biotechnology and Bio-Resources Valorization, Department of Biology, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknes 50050, Morocco
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, Agrifood Campus of International Excellence (CeiA3), University of Cadiz, Polígono Río San Pedro, s/n, 11510 Cadiz, Spain
- Correspondence: ; Tel.: +212-706-801-037
| | - Meriem Yatim
- Laboratory of Plant Biotechnology and Bio-Resources Valorization, Department of Biology, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknes 50050, Morocco
| | - Youness Sehli
- Laboratory of Plant Biotechnology and Bio-Resources Valorization, Department of Biology, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknes 50050, Morocco
| | - Abdelilah Rahou
- Laboratory of Plant Biotechnology and Bio-Resources Valorization, Department of Biology, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknes 50050, Morocco
| | - Abdelhaq Belhaj
- Laboratory of Ecology and Biodiversity of Wetlands Team, Department of Biology, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknes 50050, Morocco
| | - Remedios Castro
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, Agrifood Campus of International Excellence (CeiA3), University of Cadiz, Polígono Río San Pedro, s/n, 11510 Cadiz, Spain
| | - Enrique Durán-Guerrero
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, Agrifood Campus of International Excellence (CeiA3), University of Cadiz, Polígono Río San Pedro, s/n, 11510 Cadiz, Spain
| | - Majida Hafidi
- Laboratory of Plant Biotechnology and Bio-Resources Valorization, Department of Biology, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknes 50050, Morocco
| | - Rachid Zouhair
- Laboratory of Plant Biotechnology and Bio-Resources Valorization, Department of Biology, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknes 50050, Morocco
| |
Collapse
|