1
|
Barabas AJ, Conlon RA, Hodges CA. Think Beyond the Room: Measuring Relative Humidity in the Home Cage and Its Impact on Reproduction in Laboratory Mice, Mus musculus. Animals (Basel) 2024; 14:3164. [PMID: 39595217 PMCID: PMC11591041 DOI: 10.3390/ani14223164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Relative humidity (RH) is measured in vivaria with a broad range to accommodate seasonal fluctuations. It is assumed that measurements in the room (macroenvironment) reflect those in the cage (microenvironment). However, there is limited data comparing RH in the macroenvironment to the microenvironment and how the mice may be affected by variations in RH that fall within husbandry recommendations. This study aimed to compare RH in the macroenvironment to that of the microenvironment in various group sizes of laboratory mice; and examine how variation in microenvironmental RH impacts pup survival. Temperature and RH were measured using a temperature/humidity data logger attached to a solid top cage lid. The lid was rotated across N = 48 breeding trios and N = 33 same sex cages on a C57BL/6J background. Further, once a week, a single breeding trio was selected (N = 23) to compare RH readings to weekly rates of pup loss in a larger breeding colony. Across all cages, RH was higher in the microenvironment than the macroenvironment. RH was universally higher in the summer than in the winter, and increased with group size. For breeding cages, as microenvironmental RH increased, the proportion of pups lost each week decreased in a linear relationship. No threshold of decreased mortality could be identified. These data highlight RH as a potential extrinsic factor. While these patterns are correlational, they warrant further research focused on the causative role of RH on mouse welfare.
Collapse
Affiliation(s)
- Amanda J. Barabas
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (R.A.C.); (C.A.H.)
| | | | | |
Collapse
|
2
|
Suckow MA, Fallon MT. The ARRIVE 2.0 Guidelines: Importance and Full Adoption by AALAS Journals. Comp Med 2024; 74:307-312. [PMID: 39244377 PMCID: PMC11524398 DOI: 10.30802/aalas-cm-24-061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 09/09/2024]
|
3
|
Suckow MA, Fallon MT. The ARRIVE 2.0 Guidelines: Importance and Full Adoption by AALAS Journals. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:449-454. [PMID: 39237288 PMCID: PMC11467871 DOI: 10.30802/aalas-jaalas-24-083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 09/07/2024]
|
4
|
Backx AG, Wu A, Tanner A, Fabian NJ. A Comparison of LED with Fluorescent Lighting on the Stress, Behavior, and Reproductive Success of Laboratory Zebra Finches ( Taeniopygia guttata). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:238-250. [PMID: 38684362 PMCID: PMC11193425 DOI: 10.30802/aalas-jaalas-24-000009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
There are limited evidence-based husbandry recommendations for laboratory zebra finches (Taeniopygia guttata), including appropriate light sources. Light-emitting diode (LED) technology has been shown to improve circadian regulation and reduce stress in some laboratory animal species, such as mice and rats, when compared with cool-white fluorescent (CWF) lighting, but the effects of LED lighting on zebra finches have not been published. We compared the effects of broad-spectrum, blue-enriched (6,500 Kelvin) CWF and flicker-free LED lighting on the behavior, stress, and reproductive outcomes of indoor-housed zebra finches. Using breeding pairs housed in cubicles illuminated with either CWF or LED lighting, we compared the reproductive output as determined by clutch size, hatching rate, and hatchling survival rate. We also compared the behavior of group-housed adult males, first housed under CWF followed by LED lighting, using video recordings and an ethogram. Fecal samples were collected from these males at the end of each recording period, and basal fecal corticosterone metabolite (FCM) levels were compared. A FCM assay for adult male zebra finches was validated for efficacy and accuracy using a capture-restraint acute stress response and parallelism analysis, respectively. The breeding pairs had no significant difference in the clutch size or percent hatching rate, but percent hatchling survival improved under LED with an increased proportion achieving 100% survival. There was no significant difference in FCM between the lighting treatments. However, the activity budgets of the birds were altered, with a reduction in flighted movement and an increase in enrichment manipulation under LED. Overall, these results support the use of blue-enriched, broad-spectrum flicker-free LED as a safe alternative to CWF lighting for breeding and nonbreeding indoor-housed zebra finches.
Collapse
Affiliation(s)
- Alanna G Backx
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - April Wu
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Alyx Tanner
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Niora J Fabian
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| |
Collapse
|
5
|
Felici M, Cogger N, Nanni Costa L, Riley CB, Padalino B. Analysis of current methods and Welfare concerns in the transport of 118 horses by commercial air cargo companies. BMC Vet Res 2024; 20:158. [PMID: 38671444 PMCID: PMC11046973 DOI: 10.1186/s12917-024-03999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Studies on equine air transport practices and consequences are scarce. This prospective study aimed to describe horse and air journey details and practices, document how horse behavior and health changed during the air transport phases, quantify the occurrence of welfare issues, and identify possible associations between horse and journey details, air transport practices, and welfare issues. RESULTS Data were collected from before departure to five days after arrival on 118/597 horses traveling on 32 commercial air journeys on different routes, varying in duration and conditions. Most horses were middle-aged warmblood females, 26% of which were pregnant, and being moved by air for sales. Before flying, most were quarantined (median: 18; IQR: 9-53 days), and their fitness for travel was certified by veterinarians. At the departure airports, external temperatures varied from - 6 °C to 33 °C, and horses were loaded by experienced flight grooms (median: 35; IQR: 15-40 years) into jet stalls (three-horse: 87%, two-horse: 13%). During the flights, horses were regularly watered (water intake median: 14 L) and fed ad libitum (feed consumption median: 8 kg). At the arrival airport, horses were unloaded from the jet stalls, and external temperatures ranged from - 5 °C to 32 °C. Then, all horses were transported to arrival quarantine by road. Air transport phases affected horses' health status and behavior; increased heart and respiratory rates and behaviors, such as pawing, head tossing, and vocalization, were mainly identified at departure and arrival. Horse interaction, nasal discharge, increased capillary refill time (CRT), and abnormal demeanor were observed more often one hour before landing while resting and normal capillary refill time were more often displayed five days after arrival (all P < 0.01). One hour before landing, horses with bad temperament and horses of unknown temperament were more likely to develop nasal discharge when transported in winter and autumn (P < 0.001). The likelihood of an increased CRT was associated with shorter flights in horses of unknown travel experience (P < 0.001). Ten horses were injured, and 11 developed pleuropneumonias (i.e., shipping fever). CONCLUSIONS Air transport is a complex procedure with several different phases affecting horse health and behavior. Therefore, experienced staff should carefully manage each horse before, during, and after air journeys to minimize welfare hazards.
Collapse
Affiliation(s)
- Martina Felici
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Naomi Cogger
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Leonardo Nanni Costa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Christopher Bruce Riley
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
- Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Barbara Padalino
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
6
|
Mahoney HL, Schmidt TM. The cognitive impact of light: illuminating ipRGC circuit mechanisms. Nat Rev Neurosci 2024; 25:159-175. [PMID: 38279030 DOI: 10.1038/s41583-023-00788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/28/2024]
Abstract
Ever-present in our environments, light entrains circadian rhythms over long timescales, influencing daily activity patterns, health and performance. Increasing evidence indicates that light also acts independently of the circadian system to directly impact physiology and behaviour, including cognition. Exposure to light stimulates brain areas involved in cognition and appears to improve a broad range of cognitive functions. However, the extent of these effects and their mechanisms are unknown. Intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged as the primary conduit through which light impacts non-image-forming behaviours and are a prime candidate for mediating the direct effects of light on cognition. Here, we review the current state of understanding of these effects in humans and mice, and the tools available to uncover circuit-level and photoreceptor-specific mechanisms. We also address current barriers to progress in this area. Current and future efforts to unravel the circuits through which light influences cognitive functions may inform the tailoring of lighting landscapes to optimize health and cognitive function.
Collapse
Affiliation(s)
- Heather L Mahoney
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
7
|
Dauchy RT, Hanifin JP, Brainard GC, Blask DE. Light: An Extrinsic Factor Influencing Animal-based Research. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:116-147. [PMID: 38211974 PMCID: PMC11022951 DOI: 10.30802/aalas-jaalas-23-000089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 01/13/2024]
Abstract
Light is an environmental factor that is extrinsic to animals themselves and that exerts a profound influence on the regulation of circadian, neurohormonal, metabolic, and neurobehavioral systems of all animals, including research animals. These widespread biologic effects of light are mediated by distinct photoreceptors-rods and cones that comprise the conventional visual system and melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) of the nonvisual system that interact with the rods and cones. The rods and cones of the visual system, along with the ipRGCs of the nonvisual system, are species distinct in terms of opsins and opsin concentrations and interact with one another to provide vision and regulate circadian rhythms of neurohormonal and neurobehavioral responses to light. Here, we review a brief history of lighting technologies, the nature of light and circadian rhythms, our present understanding of mammalian photoreception, and current industry practices and standards. We also consider the implications of light for vivarium measurement, production, and technological application and provide simple recommendations on artificial lighting for use by regulatory authorities, lighting manufacturers, designers, engineers, researchers, and research animal care staff that ensure best practices for optimizing animal health and well-being and, ultimately, improving scientific outcomes.
Collapse
Key Words
- blad, blue-enriched led light at daytime
- clock, circadian locomotor output kaput
- cct, correlated color temperature
- cwf, cool white fluorescent
- ign, intergeniculate nucleus
- iprgc, intrinsically photosensitive retinal ganglion cell
- hiomt, hydroxyindole-o-methyltransferase
- k, kelvin temperature
- lan, light at night
- led, light-emitting diode
- lgn, lateral geniculate nucleus
- plr, pupillary light reflex
- pot, primary optic tract
- rht, retinohypothalamic tract
- scn, suprachiasmatic nuclei
- spd, spectral power distribution.
Collapse
Affiliation(s)
- Robert T Dauchy
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana;,
| | - John P Hanifin
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - George C Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David E Blask
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
8
|
Farré R, Rodríguez-Lázaro MA, Otero J, Gavara N, Sunyer R, Farré N, Gozal D, Almendros I. Low-cost, open-source device for simultaneously subjecting rodents to different circadian cycles of light, food, and temperature. Front Physiol 2024; 15:1356787. [PMID: 38434139 PMCID: PMC10904513 DOI: 10.3389/fphys.2024.1356787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Exposure of experimental rodents to controlled cycles of light, food, and temperature is important when investigating alterations in circadian cycles that profoundly influence health and disease. However, applying such stimuli simultaneously is difficult in practice. We aimed to design, build, test, and open-source describe a simple device that subjects a conventional mouse cage to independent cycles of physiologically relevant environmental variables. The device is based on a box enclosing the rodent cage to modify the light, feeding, and temperature environments. The device provides temperature-controlled air conditioning (heating or cooling) by a Peltier module and includes programmable feeding and illumination. All functions are set by a user-friendly front panel for independent cycle programming. Bench testing with a model simulating the CO2 production of mice in the cage showed: a) suitable air renewal (by measuring actual ambient CO2), b) controlled realistic illumination at the mouse enclosure (measured by a photometer), c) stable temperature control, and d) correct cycling of light, feeding, and temperature. The cost of all the supplies (retail purchased by e-commerce) was <300 US$. Detailed technical information is open-source provided, allowing for any user to reliably reproduce or modify the device. This approach can considerably facilitate circadian research since using one of the described low-cost devices for any mouse group with a given light-food-temperature paradigm allows for all the experiments to be performed simultaneously, thereby requiring no changes in the light/temperature of a general-use laboratory.
Collapse
Affiliation(s)
- Ramon Farré
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
- Institut Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Miguel A. Rodríguez-Lázaro
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Jorge Otero
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Núria Gavara
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Raimon Sunyer
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Núria Farré
- Discipline of Cardiology, Saolta University Healthcare Group, Galway, Ireland
- School of Medicine, University of Galway, Galway, Ireland
| | - David Gozal
- Office of the Dean, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Isaac Almendros
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
- Institut Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
9
|
Gozalo AS, Elkins WR. A Review of the Effects of Some Extrinsic Factors on Mice Used in Research. Comp Med 2023; 73:413-431. [PMID: 38217072 PMCID: PMC10752364 DOI: 10.30802/aalas-cm-23-000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 11/15/2023] [Indexed: 01/14/2024]
Abstract
Animals have been used in research for over 2,000 y. From very crude experiments conducted by ancient scholars, animal research, as a science, was refined over hundreds of years to what we know it as today. However, the housing conditions of animals used for research did not improve significantly until less than 100 years ago when guidelines for housing research animals were first published. In addition, it was not until relatively recently that some extrinsic factors were recognized as a research variable, even when animals were housed under recommended guidelines. For example, temperature, humidity, light, noise, vibration, diet, water, caging, bedding, etc., can all potentially affect research using mice, contributing the inability of others to reproduce published findings. Consequently, these external factors should be carefully considered in the design, planning, and execution of animal experiments. In addition, as recommended by others, the housing and husbandry conditions of the animals should be described in detail in publications resulting from animal research to improve study reproducibility. Here, we briefly review some common, and less common, external factors that affect research in one of the most popular animal models, the mouse.
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - William R Elkins
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Candiani D, Drewe J, Forkman B, Herskin MS, Van Soom A, Aboagye G, Ashe S, Mountricha M, Van der Stede Y, Fabris C. Scientific and technical assistance on welfare aspects related to housing and health of cats and dogs in commercial breeding establishments. EFSA J 2023; 21:e08213. [PMID: 37719917 PMCID: PMC10500269 DOI: 10.2903/j.efsa.2023.8213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
This Scientific Report addresses a mandate from the European Commission according to Article 31 of Regulation (EC) No 178/2002 on the welfare of cats and dogs in commercial breeding establishments kept for sport, hunting and companion purposes. The aim was to scrutinise recent recommendations made by the EU Platform on Animal Welfare Voluntary Initiative on measures to assist the preparation of policy options for the legal framework of commercial breeding of cats and dogs. Specifically, the main question addressed was if there is scientific evidence to support the measures for protection of cats and dogs in commercial breeding related to housing, health considerations and painful procedures. Three judgements were carried out based on scientific literature reviews and, where possible a review of national regulations. The first judgement addressed housing and included: type of accommodation, outdoor access, exercise, social behaviour, housing temperature and light requirements. The second judgement addressed health and included: age at first and last breeding, and breeding frequency. Judgement 3 addressed painful procedures (mutilations or convenience surgeries) and included: ear cropping, tail docking and vocal cord resections in dogs and declawing in cats. For each of these judgements, considerations were provided indicating where scientific literature is available to support recommendations on providing or avoiding specific housing, health or painful surgical interventions. Areas where evidence is lacking are indicated.
Collapse
|
11
|
Clancy BM, Theriault BR, Turcios R, Langan GP, Luchins KR. The Effect of Noise, Vibration, and Light Disturbances from Daily Health Checks on Breeding Performance, Nest Building, and Corticosterone in Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:291-302. [PMID: 37339873 PMCID: PMC10434751 DOI: 10.30802/aalas-jaalas-23-000002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/03/2023] [Accepted: 04/26/2023] [Indexed: 06/22/2023]
Abstract
At our institution, the techniques that technicians use for health checks vary for mice housed in cages on individually ventilated caging (IVC) racks. If the mice cannot be adequately visualized, some technicians partially undock the cage whereas others use an LED flashlight. These actions undoubtedly alter the cage microenvironment, particularly with regard to noise, vibration, and light, which are known to affect multiple welfare and research-related parameters in mice. The central aim of this study was to assess the effects of partial cage undocking and LED flashlight use during daily health checks on fecundity, nest building scores, and hair corticosterone concentrations in C57BL/6J mice to determine the least disturbing method of performing these health checks. In addition, we used an accelerometer, a microphone, and a light meter to measure intracage noise, vibration, and light under each condition. Breeding pairs (n = 100 pairs) were randomly assigned to one of 3 health check groups: partial undocking, LED flashlight, or control (in which mice were observed without any cage manipulation). We hypothesized that mice exposed to a flashlight or cage undocking during daily health checks would have fewer pups, poorer nest building scores, and higher hair corticosterone levels than did the control mice. We found no statistically significant difference in fecundity, nest building scores, or hair corticosterone levels between either experimental group as compared with the control group. However, hair corticosterone levels were significantly affected by the cage height on the rack and the amount of time on study. These results indicate that a short duration, once-daily exposure to partial cage undocking or to an LED flashlight during daily healthy checks does not affect breeding performance or wellbeing, as measured by nest scores and hair corticosterone levels, in C57BL/6J mice.
Collapse
Affiliation(s)
- Bridget M Clancy
- Animal Resources Center and Department of Surgery, The University of Chicago, Chicago, Illinois
| | - Betty R Theriault
- Animal Resources Center and Department of Surgery, The University of Chicago, Chicago, Illinois
| | - Rebecca Turcios
- Animal Resources Center and Department of Surgery, The University of Chicago, Chicago, Illinois
| | - George P Langan
- Animal Resources Center and Department of Surgery, The University of Chicago, Chicago, Illinois
| | - Kerith R Luchins
- Animal Resources Center and Department of Surgery, The University of Chicago, Chicago, Illinois
| |
Collapse
|