1
|
Kara Z, Doğan O. Mutagenic effects of nitrogen protoxide and oryzalin on "41 B" and "Fercal" grapevine rootstocks seedlings. BREEDING SCIENCE 2023; 73:355-364. [PMID: 38106510 PMCID: PMC10722092 DOI: 10.1270/jsbbs.23003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/08/2023] [Indexed: 12/19/2023]
Abstract
In this study, the mutagenic effects of different doses and exposure times of oryzalin and Nitrogen Protoxide (N2O) were tested for stimulating polyploid on 41 B and Fercal grapevine rootstocks seedlings. Ploidy changes were examined by morphological, cytological, macroscopic, and microscopic methods. Leaf thickness, chlorophyll contents, stomatal sizes, and chloroplast numbers of polyploid seedlings stimulated with mutagens increased but their stomatal densities decreased. Flow cytometry (FC) analyses were performed on 50 samples selected by morphological and microscopic preliminary determinations. In FC analyses, 1 tetraploid seedling and 4 mixoploid seedlings from Fercal offspring and 1 mixoploid seedling from 41 B offspring were verified. The nuclear DNA content of tetraploid and mixoploid seedlings were increased by 2.00 and 1.34-fold, respectively, when compared to their diploid parents. Chromosome counts in root tip samples propagated in vitro from the tetraploid Fercal offspring confirmed a 2-fold increase compared to the diploid parent. In polyploidy induction studies, it was deemed appropriate to use FC analysis and chromosome count together to confirm the ploidy levels of mutants. Oryzalin and N2O applications at different doses and exposure times were found to be effective for inducing polyploidy in 41 B and Fercal grapevine rootstocks.
Collapse
Affiliation(s)
- Zeki Kara
- Department of Horticulture, Faculty of Agriculture, Selcuk University, Konya, 42250, Turkey
| | - Osman Doğan
- Department of Horticulture, Faculty of Agriculture, Selcuk University, Konya, 42250, Turkey
| |
Collapse
|
2
|
Liu Z, Wang J, Qiu B, Ma Z, Lu T, Kang X, Yang J. Induction and Characterization of Tetraploid Through Zygotic Chromosome Doubling in Eucalyptus urophylla. FRONTIERS IN PLANT SCIENCE 2022; 13:870698. [PMID: 35574074 PMCID: PMC9094141 DOI: 10.3389/fpls.2022.870698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Improvements in plant growth can bring great benefits to the forest industry. Eucalyptus urophylla is an important plantation species worldwide, and given that ploidy increases are often associated with plant phenotype changes, it was reasoned that its polyploidization may have good prospects and great significance toward its cultivation. In this study, the zygotic development period of E. urophylla was observed through paraffin sections, and a correlation between the development time of flower buds after pollination and the zygotic development period was established. On this basis, it was determined that the 25th day after pollination was the appropriate time for a high temperature to induce zygotic chromosome doubling. Then tetraploid E. urophylla was successfully obtained for the first time through zygotic chromosome doubling induced by high temperature, and the appropriate conditions were treating flower branches at 44°C for 6 h. The characterization of tetraploid E. urophylla was performed. Chromosome duplication brought about slower growing trees with thicker leaves, larger cells, higher net photosynthetic rates, and a higher content of certain secondary metabolites. Additionally, the molecular mechanisms for the variation in the tetraploid's characteristics were studied. The qRT-PCR results showed that genes mediating the tetraploid characteristics showed the same change trend as those of the characteristics, which verified that tetraploid trait variation was mainly caused by gene expression changes. Furthermore, although the tetraploid had no growth advantage compared with the diploid, it can provide important germplasm resources for future breeding, especially for the creation of triploids.
Collapse
Affiliation(s)
- Zhao Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | | | - Bingfa Qiu
- Guangxi Dongmen Forest Farm, Chongzuo, China
| | - Zhongcai Ma
- Guangxi Dongmen Forest Farm, Chongzuo, China
| | - Te Lu
- Science and Technology Section, Chifeng Research Institute of Forestry Science, Chifeng, China
| | - Xiangyang Kang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Jun Yang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|