1
|
Jesudason T, Sharomi O, Fleetwood K, Cheuk AL, Bermudez M, Schirrmacher H, Hauck C, Matthijnssens J, Hungerford D, Tordrup D, Carias C. Systematic literature review and meta-analysis on the prevalence of rotavirus genotypes in Europe and the Middle East in the post-licensure period. Hum Vaccin Immunother 2024; 20:2389606. [PMID: 39257173 PMCID: PMC11404614 DOI: 10.1080/21645515.2024.2389606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Previous systematic literature reviews of rotavirus genotype circulation in Europe and the Middle East are limited because they do not include country-specific prevalence data. This study documents country-specific evidence on the prevalence of rotavirus genotypes in Europe and the Middle East to enable more precise epidemiological modeling and contribute to the evidence-base about circulating rotavirus genotypes in the post-vaccination era. This study systematically searched PubMed, Embase and Scopus for all empirical epidemiological studies that presented genotype-specific surveillance data for countries in Europe and the Middle East published between 2006 and 2021. The STROBE checklist was used to assess the quality of included studies. Proportional meta-analysis was conducted using the generic inverse variance method with arcsine transformation and generalized linear-mixed models to summarize genotype prevalence. Our analysis estimated the genotype prevalence by country across three date categories corresponding with rotavirus seasons: 2006-2010, 2011-2015, 2016-2021. A total of 7601 deduplicated papers were identified of which 88 studies were included in the final review. Rotavirus genotypes exhibited significant variability across regions and time periods, with G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], and, to a lesser extent G12P[8], being the most prevalent genotypes through different regions and time-periods. Uncommon genotypes included G3P[9] in Poland, G2P[6] in Iraq, G4P[4] in Qatar, and G9P[4] as reported by the European Rotavirus Network. There was high genotype diversity with routinely identified genotypes being G1P[8], G2P[4], G3P[8], G4P[8], and G9P[8]; there was high variability across time periods and regions. Continued surveillance at the national and regional levels is relevant to support further research and inform public health decision-making.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jelle Matthijnssens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Laboratory of Clinical and Epidemiological VirologyRega Institute, Leuven, Belgium
| | - Daniel Hungerford
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
2
|
Velikzhanina EI, Sashina TA, Morozova OV, Epifanova NV, Novikova NA. [Variability of genes encoding nonstructural proteins of rotavirus А (Reoviridae: Rotavirus: Rotavirus A) genotype G9P[8] during the period of dominance in the territory of Nizhny Novgorod (central part of Russia) (2011-2020)]. Vopr Virusol 2023; 67:475-486. [PMID: 37264837 DOI: 10.36233/0507-4088-143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 06/03/2023]
Abstract
INTRODUCTION In Russia, rotavirus A is the main cause of severe viral gastroenteritis in young children. The molecular features that allow a rotavirus of a particular genotype to gain an evolutionary advantage remain unclear, therefore, the study of the genetic diversity of rotaviruses based on genes encoding nonstructural proteins (NSPs) responsible for the reproduction of the virus in the cell is an urgent task. OBJECTIVE To study the genetic diversity of rotaviruses of genotype G9P[8], which dominated Nizhny Novgorod in 20112020, based on genes encoding nonstructural proteins. MATERIALS AND METHODS Rotavirus-positive samples were subjected to PCR-genotyping and sequencing of NSP1 NSP5 genes. Phylogenetic analysis was carried out in the MEGA X program. RESULTS In the period 20112020, G9P[8] rotaviruses with four variants of the NSP2 gene were co-circulating in Nizhny Novgorod. New alleles were noted in 2012 (N1-a-III), 2016 (N1-a-IV) and in 2019 (N1-a-II). The appearance of new variants of other genes occurred in 2014 (E1-3, NSP4), 2018 (T1-a3-III, NSP3) and in 2019 (A1-b-II, NSP1). NSP2 gene had the most variable amino acid sequence (16 substitutions), 2 to 7 substitutions were observed in NSP1, NSP3 and NSP4, NSP5 was conservative. DISCUSSION The results obtained are consistent with the literature data and indicate the participation of NSP genes in maintaining the heterogeneity of the rotavirus population. CONCLUSION Until 2018, the genetic diversity of rotaviruses in Nizhny Novgorod was determined by the circulation of strains carrying several alleles of the NSP2 gene and conservative genes NSP1, NSP3NSP5. By the end of the study period, new variants of the genotype G9P[8] were formed in the population, carrying previously unknown combinations of alleles of nonstructural genes.
Collapse
Affiliation(s)
- E I Velikzhanina
- «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
| | - T A Sashina
- «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
| | - O V Morozova
- «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
| | - N V Epifanova
- «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
| | - N A Novikova
- «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
| |
Collapse
|
3
|
Zhirakovskaia E, Tikunov A, Tymentsev A, Sokolov S, Sedelnikova D, Tikunova N. Changing pattern of prevalence and genetic diversity of rotavirus, norovirus, astrovirus, and bocavirus associated with childhood diarrhea in Asian Russia, 2009-2012. INFECTION GENETICS AND EVOLUTION 2018; 67:167-182. [PMID: 30414977 DOI: 10.1016/j.meegid.2018.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/22/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
Abstract
This hospital-based surveillance study was carried out in Novosibirsk, Asian Russia from September 2009 to December 2012. Stool samples from 5486 children with diarrhea and from 339 healthy controls were screened for rotavirus, norovirus, astrovirus, and bocavirus by RT-PCR. At least one enteric virus was found in 2075 (37.8%) cases with diarrhea and 8 (2.4%) controls. In the diarrhea cases, rotavirus was the most commonly detected virus (24.9%), followed by norovirus (13.4%), astrovirus (2.8%) and bocavirus (1.1%). Mixed viral infections were identified in 4.3% cases. The prevalence of enteric viruses varied every season. Rotavirus infection was distributed in a typical seasonal pattern with a significant annual increase from November to May, while infections caused by other viruses showed no apparent seasonality. The most common rotavirus was G4P[8] (56%), followed by G1P[8] (20.1%), G3P[8] (5.5%), G9P[8], G2P[4] (each 1.3%), six unusual (1.2%), and five mixed strains (0.5%). Norovirus GII.3 (66.5%) was predominant, followed by GII.4 (27.3%), GII.6 (3.7%), GII.1 (1.6%), and four rare genotypes (totally, 0.9%). Re-infection with noroviruses of different genotypes was observed in four children. The classic human astrovirus belonged to HAstV-1 (82%), HAstV-5 (8%), HAstV-4 (4.7%), HAstV-3 (4%) and HAstV-2 (1.3%). Consecutive episodes of HAstV-1 and HAstV-4 infections were detected in one child with an 8-month interval. Bocavirus strains were genotyped as HBoV2 (56.5%), HBoV1 (38.7%), HBoV4 (3.2%) and HBoV3 (1.6%). In the controls, norovirus strains belonged to GII.4 (n = 4), GII.1, GII.3, and GII.6, and HBoV2 strain were detected. Most of the detected virus isolates were characterized by a partial sequencing of the genomes. The genotype distribution of most common enteric viruses found in the Asian part of Russia did not differ considerably from their distribution in European Russia in 2009-2012.
Collapse
Affiliation(s)
- Elena Zhirakovskaia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - Artem Tikunov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Tymentsev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey Sokolov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, Russia
| | - Daria Sedelnikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
4
|
Abstract
BACKGROUND This is a prospective, multicentered study conducted in 9 large urban areas in Russia, in order to determine the burden of rotavirus gastroenteritis in children <5 years of age and the genotypes circulating during 1 rotavirus season. METHODS From November 2012 to May 2013, surveillance was conducted in Moscow, Saint-Petersburg, Vologda, Krasnodar, Krasnoyarsk, Novosibirsk, Yaroslavl, Khanty-Mansiysk and Vladivostok. Children <5 years of age presenting at outpatient clinics with acute gastroenteritis (AGE) of less than 72 hours duration were enrolled in the study. Stool samples were tested for rotavirus and positive samples were P- and G-typed. Clinical symptoms were captured by physicians and parents on Day 1. Symptom severity was analyzed by Vesikari scoring system. The direct expenses of parents caused by AGE were obtained from questionnaires provided to parents by phone. RESULTS A total of 501 were children enrolled. Stool samples were analyzed for 487 (97%) children, and 151 (31%) of those were rotavirus positive. Rotavirus gastroenteritis was associated with more severe clinical course (Vesikari score 11.4 ± 2.2) versus non-rotavirus gastroenteritis (Vesikari score 9 ± 3). The identified serotypes were G4P[8] 38.9%, G1P[8] 34.2%, G3P[8] 6%, G9P[8] 6%, G2P[4] 2% and G4P[4] 0.7%. The mean overall expenses of parents caused by rotavirus and non-rotavirus gastroenteritis were 143.7 USD and 128.8 USD, respectively. CONCLUSIONS Rotavirus accounted for 31% of all AGE-related outpatient visits. The major rotavirus genotypes were G1P[8] and G4P[8]. Rotavirus gastroenteritis was associated with significantly more severe clinical symptoms than non-rotavirus gastroenteritis. The average costs of rotavirus cases for parents of children were elevated against the same indications for non-rotavirus. These findings underscore the need for a safe and effective rotavirus vaccine in Russia.
Collapse
|
5
|
Sashina TA, Morozova OV, Epifanova NV, Novikova NA. Predominance of new G9P[8] rotaviruses closely related to Turkish strains in Nizhny Novgorod (Russia). Arch Virol 2017; 162:2387-2392. [PMID: 28429133 DOI: 10.1007/s00705-017-3364-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/01/2017] [Indexed: 11/27/2022]
Abstract
Genotype G9P[8] rotaviruses are rare in the territory of Russia. They were found in Nizhny Novgorod only in 2011-2012 for the first time, when their proportion was 25.9%. During the next two seasons, G9P[8] strains were detected in only 1.8% of cases. Their proportion substantially increased again in 2014, and they became predominant in the city by 2016. Phylogenetic analysis on the basis of gene VP7 nucleotide sequences showed that this increase was accompanied by the emergence of new strains in the population. These isolates were related to Turkish strains, but not to Russian ones detected earlier.
Collapse
Affiliation(s)
- T A Sashina
- I. N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation.
| | - O V Morozova
- I. N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - N V Epifanova
- I. N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation
| | - N A Novikova
- I. N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| |
Collapse
|
6
|
Zhirakovskaia E, Tikunov A, Klemesheva V, Loginovskikh N, Netesov S, Tikunova N. First genetic characterization of rotavirus C in Russia. INFECTION GENETICS AND EVOLUTION 2016; 39:1-8. [DOI: 10.1016/j.meegid.2016.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/18/2015] [Accepted: 01/04/2016] [Indexed: 11/26/2022]
|
7
|
Zeller M, Heylen E, Damanka S, Pietsch C, Donato C, Tamura T, Kulkarni R, Arora R, Cunliffe N, Maunula L, Potgieter C, Tamim S, Coster SD, Zhirakovskaya E, Bdour S, O'Shea H, Kirkwood CD, Seheri M, Nyaga MM, Mphahlele J, Chitambar SD, Dagan R, Armah G, Tikunova N, Van Ranst M, Matthijnssens J. Emerging OP354-Like P[8] Rotaviruses Have Rapidly Dispersed from Asia to Other Continents. Mol Biol Evol 2015; 32:2060-71. [PMID: 25858434 DOI: 10.1093/molbev/msv088] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The majority of human group A rotaviruses possess the P[8] VP4 genotype. Recently, a genetically distinct subtype of the P[8] genotype, also known as OP354-like P[8] or lineage P[8]-4, emerged in several countries. However, it is unclear for how long the OP354-like P[8] gene has been circulating in humans and how it has spread. In a global collaborative effort 98 (near-)complete OP354-like P[8] VP4 sequences were obtained and used for phylogeographic analysis to determine the viral migration patterns. During the sampling period, 1988-2012, we found that South and East Asia acted as a source from which strains with the OP354-like P[8] gene were seeded to Africa, Europe, and North America. The time to the most recent common ancestor (TMRCA) of all OP354-like P[8] genes was estimated at 1987. However, most OP354-like P[8] strains were found in three main clusters with TMRCAs estimated between 1996 and 2001. The VP7 gene segment of OP354-like P[8] strains showed evidence of frequent reassortment, even in localized epidemics, suggesting that OP354-like P[8] genes behave in a similar manner on the evolutionary level as other P[8] subtypes. The results of this study suggest that OP354-like P[8] strains have been able to disperse globally in a relatively short time period. This, in combination with a relatively large genetic distance to other P[8] subtypes, might result in a lower vaccine effectiveness, underscoring the need for a continued surveillance of OP354-like P[8] strains, especially in countries where rotavirus vaccination programs are in place.
Collapse
Affiliation(s)
- Mark Zeller
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Leuven, Belgium
| | - Elisabeth Heylen
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Leuven, Belgium
| | - Susan Damanka
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | | | - Celeste Donato
- Enteric Virus Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Tsutomu Tamura
- Department of Virology, Niigata Prefectural Institute of Public Health and Environmental Sciences, Niigata, Japan
| | - Ruta Kulkarni
- Enteric Viruses Group, National Institute of Virology, Pune, Maharashtra, India
| | - Ritu Arora
- Enteric Viruses Group, National Institute of Virology, Pune, Maharashtra, India
| | - Nigel Cunliffe
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Leena Maunula
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Christiaan Potgieter
- Department of Biochemistry, Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa Deltamune (Pty) Ltd, Lyttelton, Centurion, South Africa
| | - Sana Tamim
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sarah De Coster
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Leuven, Belgium
| | - Elena Zhirakovskaya
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Salwa Bdour
- Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman, Jordan
| | - Helen O'Shea
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Carl D Kirkwood
- Enteric Virus Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Mapaseka Seheri
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa
| | - Martin Monene Nyaga
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa
| | - Jeffrey Mphahlele
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa
| | - Shobha D Chitambar
- Enteric Viruses Group, National Institute of Virology, Pune, Maharashtra, India
| | - Ron Dagan
- Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of Negev, Beer Sheva, Israel
| | - George Armah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Nina Tikunova
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Marc Van Ranst
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
8
|
Zhirakovskaia EV, Tikunov AY, Bodnev SA, Klemesheva VV, Netesov SV, Tikunova NV. Molecular epidemiology of noroviruses associated with sporadic gastroenteritis in children in Novosibirsk, Russia, 2003-2012. J Med Virol 2015; 87:740-53. [DOI: 10.1002/jmv.24068] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Elena V. Zhirakovskaia
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch of the Russian Academy of Sciences; Novosibirsk Russia
| | - Artem Yu Tikunov
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch of the Russian Academy of Sciences; Novosibirsk Russia
| | - Sergey A. Bodnev
- State Research Center of Virology and Biotechnology VECTOR; Novosibirsk Region; Koltsovo Russia
| | | | | | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch of the Russian Academy of Sciences; Novosibirsk Russia
| |
Collapse
|
9
|
Lachapelle V, Sohal JS, Lambert MC, Brassard J, Fravalo P, Letellier A, L’Homme Y. Genetic diversity of group A rotavirus in swine in Canada. Arch Virol 2014; 159:1771-9. [DOI: 10.1007/s00705-013-1951-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/13/2013] [Indexed: 12/31/2022]
|