1
|
Zafar A, Ahmad KS, Jaffri SB, Sohail M. Physical vapor deposition of SnS:PbS-dithiocarbamate chalcogenide semiconductor thin films: elucidation of optoelectronic and electrochemical features. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1799371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Aimen Zafar
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Shaan Bibi Jaffri
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Manzar Sohail
- School of Natural Science, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
2
|
Stroyuk O, Raevskaya A, Gaponik N. Solar light harvesting with multinary metal chalcogenide nanocrystals. Chem Soc Rev 2018; 47:5354-5422. [PMID: 29799031 DOI: 10.1039/c8cs00029h] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The paper reviews the state of the art in the synthesis of multinary (ternary, quaternary and more complex) metal chalcogenide nanocrystals (NCs) and their applications as a light absorbing or an auxiliary component of light-harvesting systems. This includes solid-state and liquid-junction solar cells and photocatalytic/photoelectrochemical systems designed for the conversion of solar light into the electric current or the accumulation of solar energy in the form of products of various chemical reactions. The review discusses general aspects of the light absorption and photophysical properties of multinary metal chalcogenide NCs, the modern state of the synthetic strategies applied to produce the multinary metal chalcogenide NCs and related nanoheterostructures, and recent achievements in the metal chalcogenide NC-based solar cells and the photocatalytic/photoelectrochemical systems. The review is concluded by an outlook with a critical discussion of the most promising ways and challenging aspects of further progress in the metal chalcogenide NC-based solar photovoltaics and photochemistry.
Collapse
Affiliation(s)
- Oleksandr Stroyuk
- L.V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine.
| | | | | |
Collapse
|
3
|
Garcia-Gutierrez D, Hernandez-Casillas LP, Cappellari MV, Fungo F, Martínez-Guerra E, García-Gutiérrez DI. Influence of the Capping Ligand on the Band Gap and Electronic Levels of PbS Nanoparticles through Surface Atomistic Arrangement Determination. ACS OMEGA 2018; 3:393-405. [PMID: 31457900 PMCID: PMC6641336 DOI: 10.1021/acsomega.7b01451] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/29/2017] [Indexed: 05/18/2023]
Abstract
Lead sulfide (PbS) nanoparticles were synthesized by chemical methods with different sizes and different capping ligands (oleic acid, myristic acid, and hexanoic acid), avoiding ligand exchange procedures, to study the effect of characteristics of the capping ligands on their energy levels and band gap values. Experimental results (UV-vis-NIR, Fourier transform infrared, and Raman spectroscopies, cyclic voltammetry, transmission electron microscopy, and electron energy loss spectroscopy) showed a marked influence of the capping ligand nature on the electro-optical properties of PbS nanoparticles with a very similar size. Differences were observed in the atomistic arrangement on the nanoparticle surface and phonon vibrations with the different capping ligands. These observations suggest that the electro-optical properties of PbS nanoparticles are not only determined by their size, through quantum confinement effects, but also strongly affected by the atomistic arrangement on the nanoparticle surface, which is determined by the capping ligand nature.
Collapse
Affiliation(s)
- Diana
Fabiola Garcia-Gutierrez
- Facultad
de Ingeniería Mecánica y Eléctrica,
FIME and Facultad de Ciencias Físico Matemáticas, FCFM, Universidad Autónoma de Nuevo León, UANL, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, C.P. 66450 Nuevo León, Mexico
- Centro
de Innovación, Investigación y Desarrollo en Ingeniería
y Tecnología, CIIDIT, Universidad
Autónoma de Nuevo León, UANL, Km. 10 de la nueva carretera al Aeropuerto Internacional
de Monterrey, PIIT Monterrey, Apodaca, C.P. 66600 Nuevo León, Mexico
| | - Laura Patricia Hernandez-Casillas
- Facultad
de Ingeniería Mecánica y Eléctrica,
FIME and Facultad de Ciencias Físico Matemáticas, FCFM, Universidad Autónoma de Nuevo León, UANL, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, C.P. 66450 Nuevo León, Mexico
- Centro
de Innovación, Investigación y Desarrollo en Ingeniería
y Tecnología, CIIDIT, Universidad
Autónoma de Nuevo León, UANL, Km. 10 de la nueva carretera al Aeropuerto Internacional
de Monterrey, PIIT Monterrey, Apodaca, C.P. 66600 Nuevo León, Mexico
| | - Maria Victoria Cappellari
- Departamento
de Química, Universidad Nacional
de Rio Cuarto, UNRC. CONICET, RN36
601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Fernando Fungo
- Departamento
de Química, Universidad Nacional
de Rio Cuarto, UNRC. CONICET, RN36
601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Edgar Martínez-Guerra
- Facultad
de Ingeniería Mecánica y Eléctrica,
FIME and Facultad de Ciencias Físico Matemáticas, FCFM, Universidad Autónoma de Nuevo León, UANL, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, C.P. 66450 Nuevo León, Mexico
| | - Domingo Ixcoatl García-Gutiérrez
- Facultad
de Ingeniería Mecánica y Eléctrica,
FIME and Facultad de Ciencias Físico Matemáticas, FCFM, Universidad Autónoma de Nuevo León, UANL, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, C.P. 66450 Nuevo León, Mexico
- Centro
de Innovación, Investigación y Desarrollo en Ingeniería
y Tecnología, CIIDIT, Universidad
Autónoma de Nuevo León, UANL, Km. 10 de la nueva carretera al Aeropuerto Internacional
de Monterrey, PIIT Monterrey, Apodaca, C.P. 66600 Nuevo León, Mexico
- E-mail: . Phone: +52 (81) 1340-4000 ext. 1525 (D.I.G.-G.)
| |
Collapse
|
4
|
Raissi M, Sajjad MT, Pellegrin Y, Roland TJ, Jobic S, Boujtita M, Ruseckas A, Samuel IDW, Odobel F. Size dependence of efficiency of PbS quantum dots in NiO-based dye sensitised solar cells and mechanistic charge transfer investigation. NANOSCALE 2017; 9:15566-15575. [PMID: 28984887 DOI: 10.1039/c7nr03698a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Quantum dots (QDs) are very attractive materials for solar cells due to their high absorption coefficients, size dependence and easy tunability of their optical and electronic properties due to quantum confinement. Particularly interesting are PbS QDs owing to their broad spectral absorption until long wavelengths, their easy processability and low cost. Here, we used control of the PbS QD size to understand charge transfer processes at the interfaces of a NiO semiconductor and explain the optimal QD size in photovoltaic devices. Towards this goal, we have synthesized a series of PbS QDs with different diameters (2.8 nm to 4 nm) and investigated charge transfer dynamics by time resolved spectroscopy and their ability to act as sensitizers in nanocrystalline NiO based solar cells using the cobalt tris(4,4'-ditert-butyl-2,2'-bipyridine) complex as a redox mediator. We found that PbS QDs with an average diameter of 3.0 nm show the highest performance in terms of efficient charge transfer and light harvesting efficiency. Our study showed that hole injection from the PbS QDs to the NiO valence band (VB) is an efficient process even with low injection driving force (-0.3 eV) and occurs in 6-10 ns. Furthermore we found that direct electrolyte reduction (photoinduced electron transfer to the cobalt redox mediator) also occurs in parallel to the hole injection with a rate constant of similar magnitude (10-20 ns). In spite of its large driving force, the rate constant of the oxidative quenching of PbS by Co(iii) diminishes more steeply than hole injection on NiO when the diameter of PbS increases. This is understood as the consequence of increasing the trap states that limit electron shift. We believe that our detailed findings will advance the future design of QD sensitized photocathodes.
Collapse
Affiliation(s)
- Mahfoudh Raissi
- CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, CNRS, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière - BP 92208, 44322 NANTES Cedex 3, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Liu J, Yang W, Li Y, Fan L, Li Y. Electrochemical studies of the effects of the size, ligand and composition on the band structures of CdSe, CdTe and their alloy nanocrystals. Phys Chem Chem Phys 2014; 16:4778-88. [PMID: 24468655 DOI: 10.1039/c3cp55226h] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we have elucidated the fundamental principle of employing CV to investigate the band structures of semiconductor nanocrystals (SNCs), and have also built up an optimal protocol for performing such investigation. By utilizing this protocol, we are able to obtain well-defined and characteristic electrochemical redox signals of SNCs, which allows us to intensively explore the influences of the particle size, the surface ligand and particle composition on the band structures of CdSe, CdTe and their alloy nanocrystals. The size-, ligand- and composition-dependent band structures of CdSe and CdTe nanocrystals (NCs) have therefore been mapped out, respectively, which are generally consistent with the previous theoretical and experimental reports. We believe that the optimal protocol and the original results regarding electrochemical characterization of SNCs demonstrated in this paper will definitely benefit the better understanding, modulation and application of the unique electronic and optical properties of SNCs.
Collapse
Affiliation(s)
- Jinjin Liu
- Department of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| | | | | | | | | |
Collapse
|