1
|
Gandhi TK, Tsourides K, Singhal N, Cardinaux A, Jamal W, Pantazis D, Kjelgaard M, Sinha P. Autonomic and Electrophysiological Evidence for Reduced Auditory Habituation in Autism. J Autism Dev Disord 2020; 51:2218-2228. [PMID: 32926307 DOI: 10.1007/s10803-020-04636-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It is estimated that nearly 90% of children on the autism spectrum exhibit sensory atypicalities. What aspects of sensory processing are affected in autism? Although sensory processing can be studied along multiple dimensions, two of the most basic ones involve examining instantaneous sensory responses and how the responses change over time. These correspond to the dimensions of 'sensitivity' and 'habituation'. Results thus far have indicated that autistic individuals do not differ systematically from controls in sensory acuity/sensitivity. However, data from studies of habituation have been equivocal. We have studied habituation in autism using two measures: galvanic skin response (GSR) and magneto-encephalography (MEG). We report data from two independent studies. The first study, was conducted with 13 autistic and 13 age-matched neurotypical young adults and used GSR to assess response to an extended metronomic sequence. The second study involved 24 participants (12 with an ASD diagnosis), different from those in study 1, spanning the pre-adolescent to young adult age range, and used MEG. Both studies reveal consistent patterns of reduced habituation in autistic participants. These results suggest that autism, through mechanisms that are yet to be elucidated, compromises a fundamental aspect of sensory processing, at least in the auditory domain. We discuss the implications for understanding sensory hypersensitivities, a hallmark phenotypic feature of autism, recently proposed theoretical accounts, and potential relevance for early detection of risk for autism.
Collapse
Affiliation(s)
- Tapan K Gandhi
- Department of Electrical Engineering, India Institute of Technology, New Delhi, 110016, India.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Kleovoulos Tsourides
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nidhi Singhal
- Open Doors School, Action for Autism, New Delhi, 110 054, India
| | - Annie Cardinaux
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wasifa Jamal
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Dimitrios Pantazis
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Margaret Kjelgaard
- Communication Sciences and Disorders, Bridgewater State University, Bridgewater, MA, 02325, USA
| | - Pawan Sinha
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|