1
|
Takvam M, Denker E, Gharbi N, Tronci V, Kolarevic J, Nilsen TO. Differential regulation of magnesium transporters Slc41, Cnnm and Trpm6-7 in the kidney of salmonids may represent evolutionary adaptations to high salinity environments. BMC Genomics 2024; 25:1156. [PMID: 39614204 PMCID: PMC11605958 DOI: 10.1186/s12864-024-11055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 11/14/2024] [Indexed: 12/01/2024] Open
Abstract
Magnesium is important for enzymatic reactions and physiological functions, and its intracellular concentration is tightly regulated. Atlantic salmon has the ability to handle large changes in environmental Mg2+ concentration when migrating between freshwater and seawater habitats, making it a relevant model to investigate Mg2+ homeostasis. Parr-smolt transformation (PST) is a life history transition which prepares the freshwater juvenile for the marine environment. The kidney is one of the key organs involved in handling higher salt load in teleosts. Though several key Mg2+ transport families (SLC41, CNNM and TRPM6-7) have recently been identified in mammals and a few fishes, the molecular bases of Mg2+ homeostasis in salmon are not known. We found that all three families are represented in the salmon genome and exhibit a clear conservation of key functional domains and residues. Present study indicates a selective retention of paralogous Mg2+ transporters from the fourth whole genome duplication round (Ss4R) and a differential regulation of these genes, which suggests neo- and/or sub-functionalization events. slc41a1-1, cnnm4a1, -4a2 and trpm7-2 are the main upregulated genes in the kidney during PST and remain high or further increase after exposure to seawater (33 ppt). By contrast, slc41a1-2, -3a, cnnm3-1, and cnnm3-2 are only upregulated after seawater exposure. In addition, slc41a1-1, -2, and trpm7-2 respond when exposed to brackish water (12 ppt), while cnnm3-1 and cnnm3-2 do not, indicating the existence of a lower salinity threshold response for these members. Finally, the response of slc41a1-1, -2 and trpm7-2 in salmon was significantly reduced or completely abolished when exposed to Mg2+-reduced brackish water, while others were not, suggesting they might be specifically regulated by Mg2+. Our results are consistent with previous findings on other euryhaline teleosts and chondrichthyan species, suggesting the existence of common adaptive strategies to thrive in high salinity environments. Concomitantly, salmonid-specific innovations, such as differential regulation and recruitment of family members not previously shown to be regulated in the kidney (Cnnm1 and Cnnm4) of other vertebrates might point to adaptions associated with their very plastic anadromous life cycle.
Collapse
Affiliation(s)
- Marius Takvam
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
- NORCE, Norwegian Research Center, NORCE Environment and Climate, Bergen, Norway.
| | - Elsa Denker
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Naouel Gharbi
- NORCE, Norwegian Research Center, NORCE Environment and Climate, Bergen, Norway
| | - Valentina Tronci
- NORCE, Norwegian Research Center, NORCE Environment and Climate, Bergen, Norway
| | - Jelena Kolarevic
- Faculty of Biosciences, Fisheries and Economics, The Arctic University of Norway, Tromsø, 9037, Norway
| | - Tom Ole Nilsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Cibulka M, Brodnanova M, Halasova E, Kurca E, Kolisek M, Grofik M. The Role of Magnesium in Parkinson's Disease: Status Quo and Implications for Future Research. Int J Mol Sci 2024; 25:8425. [PMID: 39125993 PMCID: PMC11312984 DOI: 10.3390/ijms25158425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Neurodegenerative diseases represent an increasing economic, social, and, above all, medical burden worldwide. The second most prevalent disease in this category is Parkinson's disease, surpassed only by Alzheimer's. It is a treatable but still incurable systemic disease with a pathogenesis that has not yet been elucidated. Several theories are currently being developed to explain the causes and progression of Parkinson's disease. Magnesium is one of the essential macronutrients and is absolutely necessary for life as we know it. The magnesium cation performs several important functions in the cell in the context of energetic metabolism, substrate metabolism, cell signalling, and the regulation of the homeostasis of other ions. Several of these cellular processes have been simultaneously described as being disrupted in the development and progression of Parkinson's disease. The relationship between magnesium homeostasis and the pathogenesis of Parkinson's disease has received little scientific attention to date. The aim of this review is to summarise and critically evaluate the current state of knowledge on the possible role of magnesium in the pathogenesis of Parkinson's disease and to outline possible future directions for research in this area.
Collapse
Affiliation(s)
- Michal Cibulka
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Maria Brodnanova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Erika Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Egon Kurca
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Martin Kolisek
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Milan Grofik
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| |
Collapse
|
3
|
Subramaniyan S, Kuriakose BB, Mushfiq S, Prabhu NM, Muthusamy K. Gene Signals and SNPs Associated with Parkinson's Disease: A Nutrigenomics and Computational Prospective Insights. Neuroscience 2023; 533:77-95. [PMID: 37858629 DOI: 10.1016/j.neuroscience.2023.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Parkinson's disease is the most prevalent chronic neurodegenerative disease. Neurological conditions for PD were influenced by a variety of epigenetic factors and SNPs in some of the coexisting genes that were expressed. This article focused on nutrigenomics of PD and the prospective highlighting of how these genes are regulated in terms of nutritive factors and the genetic basis of PD risk, onset, and progression. Multigenetic associations of the following genetic alterations in the genes of SNCA, LRRK2, UCHL1, PARK2,PINK1, DJ-1, and ATP13A2 have been reported with the familial and de novo genetic origins of PD. Over the past two decades, significant attempts have been made to understand the biological mechanisms that are potential causes for this disease, as well as to identify therapeutic substances for the prevention and management of PD. Nutrigenomics has sparked considerable interest due to its nutritional, safe, and therapeutic effects on a variety of chronic diseases. In this study, we summarise some of the nutritive supplements that have an impact on PD.
Collapse
Affiliation(s)
- Swetha Subramaniyan
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Saudi Arabia
| | - Sakeena Mushfiq
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Saudi Arabia
| | | | | |
Collapse
|
4
|
Wang M, Zhao Y, Hayashi Y, Ito K, Hattori M. Novel Mg 2+ binding sites in the cytoplasmic domain of the MgtE Mg 2+ channels revealed by X-ray crystal structures. Acta Biochim Biophys Sin (Shanghai) 2023; 55:683-690. [PMID: 37097058 DOI: 10.3724/abbs.2023067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
MgtE is a Mg 2+-selective channel regulated by the intracellular Mg 2+ concentration. MgtE family proteins are highly conserved in all domains of life and contribute to cellular Mg 2+ homeostasis. In humans, mutations in the SLC41 proteins, the eukaryotic counterparts of the bacterial MgtE, are known to be associated with various diseases. The first MgtE structure from a thermophilic bacterium, Thermus thermophilus, revealed that MgtE forms a homodimer consisting of transmembrane and cytoplasmic domains with a plug helix connecting the two and that the cytoplasmic domain possesses multiple Mg 2+ binding sites. Structural and electrophysiological analyses revealed that the dissociation of Mg 2+ ions from the cytoplasmic domain induces structural changes in the cytoplasmic domain, leading to channel opening. Thus, previous works showed the importance of MgtE cytoplasmic Mg 2+ binding sites. Nevertheless, due to the limited structural information on MgtE from different species, the conservation and diversity of the cytoplasmic Mg 2+ binding site in MgtE family proteins remain unclear. Here, we report crystal structures of the Mg 2+-bound MgtE cytoplasmic domains from two different bacterial species, Chryseobacterium hispalense and Clostridiales bacterium, and identify multiple Mg 2+ binding sites, including ones that were not observed in the previous MgtE structure. These structures reveal the conservation and diversity of the cytoplasmic Mg 2+ binding site in the MgtE family proteins.
Collapse
Affiliation(s)
- Mengqi Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yimeng Zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yoshiki Hayashi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Koichi Ito
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
5
|
El-Tallawy HN, Saleem TH, Farghaly WM, Eldien HMS, Khodaery A, Sayed SA, Helaly AA, Elnady HM. Study of cognitive impairment and genetic polymorphism of SLC41A1 (rs11240569 allele) in Parkinson’s disease in Upper Egypt: case-control study. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00341-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Parkinson’s disease is one of the neurodegenerative disorders that is caused by genetic and environmental factors or interaction between them. Solute carrier family 41 member 1 within the PARK16 locus has been reported to be associated with Parkinson’s disease. Cognitive impairment is one of the non-motor symptoms that is considered a challenge in Parkinson’s disease patients. This study aimed to investigate the association of rs11240569 polymorphism; a synonymous coding variant in SLC41A1 in Parkinson’s disease patients in addition to the assessment of cognitive impairment in those patients.
Results
In a case -control study, rs11240569 single nucleotide polymorphisms in SLC41A1, genes were genotyped in 48 Parkinson’s disease patients and 48 controls. Motor and non-motor performance in Parkinson's disease patients were assessed by using the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). The genotype and allele frequencies were compared between the two groups and revealed no significant differences between case and control groups for rs11240569 in SLC41A1 gene with P value .523 and .54, respectively. Cognition was evaluated and showed the mean ± standard deviation (SD) of WAIS score of PD patients 80.4 ± 9.13 and the range was from 61 to 105, in addition to MMSE that showed mean ± SD 21.96 ± 3.8.
Conclusion
Genetic testing of the present study showed that rs11240569 polymorphism of SLC41A1 gene has no significant differences in distributions of alleles and genotypes between cases and control group, in addition to cognitive impairment that is present in a large proportion of PD patients and in addition to the strong correlation between cognitive impairment and motor and non-motor symptoms progression.
Collapse
|
6
|
Association of ZNF184, IL1R2, LRRK2, ITPKB, and PARK16 with sporadic Parkinson’s disease in Eastern China. Neurosci Lett 2020; 735:135261. [DOI: 10.1016/j.neulet.2020.135261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022]
|
7
|
Xie J, Cheng CS, Zhu XY, Shen YH, Song LB, Chen H, Chen Z, Liu LM, Meng ZQ. Magnesium transporter protein solute carrier family 41 member 1 suppresses human pancreatic ductal adenocarcinoma through magnesium-dependent Akt/mTOR inhibition and bax-associated mitochondrial apoptosis. Aging (Albany NY) 2020; 11:2681-2698. [PMID: 31076559 PMCID: PMC6535063 DOI: 10.18632/aging.101940] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/24/2019] [Indexed: 01/26/2023]
Abstract
The aim of this study was to identify the function of the Mg2+ transporter protein solute carrier family 41 member 1 SLC41A1 in pancreatic ductal adenocarcinoma and the underlying mechanisms. A total of 27 solute carrier proteins were differentially expressed in pancreatic ductal adenocarcinoma. Three of these proteins were correlated with clinical outcomes in patients, among which SLC41A1 was downregulated in tumour. Overexpression of SLC41A1 suppressed orthotopic tumour growth in a mouse model and reduced the cell proliferation, colony formation, and invasiveness of KP3 and Panc-1 cells, which may have been associated with the increased population of apoptotic-prone cells. Overexpression of SLC41A1 reduced the mitochondrial membrane potential, induced Bax while suppressed Bcl-2 expression. Suppression of Bax abrogated the tumour-suppressive effects of SLC41A1. Furthermore, overexpression of SLC41A1 promoted Mg2+ efflux and suppressed Akt/mTOR activity, which is the upstream regulator of Bax and Bcl-2. An increase in Akt activity and supplementation with Mg2+ abolished SLC41A1-induced tumour suppression. The results of this study suggest that SLC41A1 may be a potential target for the treatment of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Jing Xie
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Xiao Yan Zhu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Ye Hua Shen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Li Bin Song
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Hao Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Lu Ming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zhi Qiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
8
|
Cibulka M, Brodnanova M, Grendar M, Grofik M, Kurca E, Pilchova I, Osina O, Tatarkova Z, Dobrota D, Kolisek M. SNPs rs11240569, rs708727, and rs823156 in SLC41A1 Do Not Discriminate Between Slovak Patients with Idiopathic Parkinson's Disease and Healthy Controls: Statistics and Machine-Learning Evidence. Int J Mol Sci 2019; 20:ijms20194688. [PMID: 31546642 PMCID: PMC6801379 DOI: 10.3390/ijms20194688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/28/2022] Open
Abstract
Gene SLC41A1 (A1) is localized within Parkinson’s disease-(PD)-susceptibility locus PARK16 and encodes for the Na+/Mg2+-exchanger. The association of several A1 SNPs with PD has been studied. Two, rs11240569 and rs823156, have been associated with reduced PD-susceptibility primarily in Asian populations. Here, we examined the association of rs11240569, rs708727, and rs823156 with PD in the Slovak population and their power to discriminate between PD patients and healthy controls. The study included 150 PD patients and 120 controls. Genotyping was performed with the TaqMan® approach. Data were analyzed by conventional statistics and Random Forest machine-learning (ML) algorithm. Individually, none of the three SNPs is associated with an altered risk for PD-onset in Slovaks. However, a combination of genotypes of SNP-triplet GG(rs11240569)/AG(rs708727)/AA(rs823156) is significantly (p < 0.05) more frequent in the PD (13.3%) than in the control (5%) cohort. ML identified the power of the tested SNPs in isolation or of their singlets (joined), duplets and triplets to discriminate between PD-patients and healthy controls as zero. Our data further substantiate differences between diverse populations regarding the association of A1 polymorphisms with PD-susceptibility. Lack of power of the tested SNPs to discriminate between PD and healthy cases render their clinical/diagnostic relevance in the Slovak population negligible.
Collapse
Affiliation(s)
- Michal Cibulka
- Division of Neurosciences, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Maria Brodnanova
- Division of Neurosciences, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Marian Grendar
- Department of Bioinformatics, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Milan Grofik
- Clinic of Neurology, University Hospital in Martin, 03601 Martin, Slovakia.
| | - Egon Kurca
- Clinic of Neurology, University Hospital in Martin, 03601 Martin, Slovakia.
| | - Ivana Pilchova
- Division of Neurosciences, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Oto Osina
- Clinic of Occupational Medicine and Toxicology, University Hospital in Martin, 03601 Martin, Slovakia.
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Dusan Dobrota
- Division of Neurosciences, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Martin Kolisek
- Division of Neurosciences, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| |
Collapse
|
9
|
Chen YJ, Cheng FC, Chen CJ, Su HL, Sheu ML, Sheehan J, Pan HC. Down-Regulated Expression of Magnesium Transporter Genes Following a High Magnesium Diet Attenuates Sciatic Nerve Crush Injury. Neurosurgery 2019; 84:965-976. [PMID: 29672725 DOI: 10.1093/neuros/nyy120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/10/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Magnesium supplementation has potential for use in nerve regeneration. The expression of some magnesium transporter genes is reflective of the intracellular magnesium levels. OBJECTIVE To assess the expression of various magnesium transporter genes as they relate to neurological alterations in a sciatic nerve injury model. METHODS Sciatic nerve injury was induced in rats, which were then fed either basal or high magnesium diets. Magnesium concentrations and 5 magnesium transporter genes (SLC41A1, MAGT1, CNNM2, TRPM6, and TRPM7) were measured in the tissue samples. RESULTS The high magnesium diet attenuated cytoskeletal loss in a dose-dependent manner in isolated nerve explants. The high magnesium diet augmented nerve regeneration and led to the restoration of nerve structure, increased S-100, and neurofilaments. This increased regeneration was consistent with the improvement of neurobehavioral and electrophysiological assessment. The denervated muscle morphology was restored with the high magnesium diet, and that was also highly correlated with the increased expression of desmin and acetylcholine receptors in denervated muscle. The plasma magnesium levels were significantly elevated after the animals consumed a high magnesium diet and were reciprocally related to the down-regulation of CNNM2, MagT1, and SCL41A1 in the blood monocytes, nerves, and muscle tissues of the nerve crush injury model. CONCLUSION The increased plasma magnesium levels after consuming a high magnesium diet were highly correlated with the down-regulation of magnesium transporter genes in monocytes, nerves, and muscle tissues after sciatic nerve crush injury. The study findings suggest that there are beneficial effects of administering magnesium after a nerve injury.
Collapse
Affiliation(s)
- Ying-Ju Chen
- Department of food and nutrition, Providence University, Taichung, Taiwan
| | - Fu-Chou Cheng
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, Agriculture Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia
| | - Hung-Chuan Pan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
10
|
Feng M, Hu X, Li N, Hu F, Chang F, Xu HF, Liu YJ. Distinctive roles of Rac1 and Rab29 in LRRK2 mediated membrane trafficking and neurite outgrowth. J Biomed Res 2017; 32:145-156. [PMID: 29336357 PMCID: PMC5895569 DOI: 10.7555/jbr.31.20170039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Parkinson's disease (PD) associated leucine-rich repeat kinase 2 (LRRK2) mutants have shown pathogenic effects on variety of subcellular processes.Two small GTPases Rac1 and Rab29 have been indicated as possible downstream effectors participating in LRRK2 signaling but their detail mechanisms remain unclear. In this study, we have used biochemical and cell biology approaches to address whether two GTPases interact with LRRK2 and hence function differently in LRRK2 mediated pathogenesis.Here we show thatRac1 and Rab29 specifically interact with LRRK2with higher affinity for Rab29and with different preference in functional domain binding. Mutant Rab29 but not Rac1 alters theendosome-to-TGN retrograde trafficking of a cargo protein cation-independent mannose-6-phosphate receptor (CI-M6PR) and its stability. On the other hand, overexpressedwild type Rab29 but not Rac1 rescue the altered retrograde membrane trafficking induced by the pathogenic mutant LRRK2G2019S. Furthermore, both Rac1 and Rab29 can rescue the neurite shortening in differentiated SH-SY5Y cells induced by LRRK2G2019S. Our study strongly suggests that Rac1 and Rab29 are involved in the distinct functions as downstream effectors in LRRK2 signaling pathways.
Collapse
Affiliation(s)
- Min Feng
- Department of Physiology, Analyticaland Testing Center, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xin Hu
- Department of Physiology, Analyticaland Testing Center, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Na Li
- Department of Physiology, Analyticaland Testing Center, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fan Hu
- Analyticaland Testing Center, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fei Chang
- Department of Physiology, Analyticaland Testing Center, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hong-Fei Xu
- Department of Physiology, Analyticaland Testing Center, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yong-Jian Liu
- Department of Physiology, Analyticaland Testing Center, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
11
|
Lin L, Ke Z, Lv M, Lin R, Wu B, Zheng Z. Effects of MgSO 4 and magnesium transporters on 6-hydroxydopamine-induced SH-SY5Y cells. Life Sci 2016; 172:48-54. [PMID: 28011227 DOI: 10.1016/j.lfs.2016.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/04/2016] [Accepted: 12/19/2016] [Indexed: 11/16/2022]
Abstract
AIMS The magnesium ion (Mg2+) fulfils several important functions for living organisms. We investigated whether there is a protective effect of MgSO4 on 6-OHDA-induced neurotoxicity in SH-SY5Y cells, and gained insight into the effects of cellular mRNA and protein expression of the magnesium transporters SLC41A1, NIPA1, MagT1 and CNNM2 on 6-OHDA-induced neurotoxicity. MAIN METHODS The effect of MgSO4 on cell viability in 6-OHDA-treated SH-SY5Y cells was measured using a CCK-8 kit. The mRNA and protein expression of SLC41A1, NIPA1, MagT1, and CNNM2 were detected using reverse transcription-qPCR and Western blot. KEY FINDINGS The results showed that SH-SY5Y cells treated with 25-50μM 6-OHDA for 24h significantly decreased cell viability, while if pre-incubated with 0.125-1mM MgSO4 for 1h before adding 6-OHDA it partially prevented the cell damage. There was a significant decrease in cellular mRNA and protein expression of SLC41A1, NIPA1, MagT1 and CNNM2 in 6-OHDA treated SH-SY5Y cells, and MgSO4 can reverse its decline. SIGNIFICANCE Our results suggest that MgSO4 may protect SH-SY5Y cells against 6-OHDA-induced cell injury and that gene expression of SLC41A1, NIPA1, MagT1, and CNNM2 might be involved in dopaminergic neurons.
Collapse
Affiliation(s)
- Ling Lin
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou 350122, China; Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China
| | - Zili Ke
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China
| | - Meiqi Lv
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China
| | - Renxi Lin
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China
| | - Bin Wu
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China
| | - Zhihong Zheng
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou 350122, China; Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
12
|
Madadi F, Khaniani MS, Shandiz EE, Ayromlou H, Najmi S, Emamalizadeh B, Taghavi S, Jamshidi J, Tafakhori A, Shahidi GA, Darvish H. Genetic Analysis of the ZNF512B, SLC41A1, and ALDH2 Polymorphisms in Parkinson's Disease in the Iranian Population. Genet Test Mol Biomarkers 2016; 20:629-632. [PMID: 27612022 DOI: 10.1089/gtmb.2016.0133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIMS Parkinson's disease (PD) is one of the most common neurodegenerative disorders; its etiology includes both genetic and environmental factors and their interactions. The ZNF512B, SLC41A1, and ALDH2 genes have recently been identified as contributing to PD. In this study we investigated the association of alleles of these genes with PD in the Iranian population. METHODS In a case-control study, rs2275294, rs11240569, and rs4767944, three single nucleotide polymorphisms in ZNF512B, SLC41A1, and ALDH2 genes, respectively, were genotyped in 490 PD patients and 490 controls. The genotype and allele frequencies were compared between the two groups using chi-square and logistic regression tests. RESULTS A significant association between the rs11240569 polymorphism and a reduced risk of PD was found (p = 0.014, OR = 0.76, 95% CI: 0.60-0.94 for allele frequencies). We did not find any associations between PD and the rs2275294 and rs4767944 polymorphisms. CONCLUSION The association of rs11240569 polymorphism in SLC41A1 gene with reduced risk of PD was replicated in our population.
Collapse
Affiliation(s)
- Faranak Madadi
- 1 Neuroscience Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- 2 Department of Medical Genetics, School of Medicine, Tabriz University of Medical Sciences , Tabriz, Iran
| | - Ehsan Esmaili Shandiz
- 3 Neurology Department, Ganjavian Hospital, Dezful University of Medical Sciences , Dezful, Iran
| | - Hormoz Ayromlou
- 4 Department of Neurology, School of Medicine, Tabriz University of Medical Sciences , Tabriz, Iran
| | - Safa Najmi
- 4 Department of Neurology, School of Medicine, Tabriz University of Medical Sciences , Tabriz, Iran
| | - Babak Emamalizadeh
- 5 Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Shaghayegh Taghavi
- 5 Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Javad Jamshidi
- 6 Noncommunicable Diseases Research Center, Fasa University of Medical Sciences , Fasa, Iran
| | - Abbas Tafakhori
- 7 Department of Neurology, School of Medicine, Imam Khomeini Hospital and Iranian Center of Neurological Research, Tehran University of Medical Sciences , Tehran, Iran
| | - Gholam-Ali Shahidi
- 8 Movement Disorders Clinic, Hazrat Rassol Hospital, Iran University of Medical Sciences , Tehran, Iran
| | - Hossein Darvish
- 5 Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| |
Collapse
|
13
|
Gopalai AA, Ahmad-Annuar A, Li HH, Zhao Y, Lim SY, Tan AH, Lim TT, Eow GB, Santhi P, Shanthi V, Norlinah MI, Aziz ZA, Lim SK, Tan CT, Tan EK. PARK16 is associated with PD in the Malaysian population. Am J Med Genet B Neuropsychiatr Genet 2016; 171:839-47. [PMID: 27174169 DOI: 10.1002/ajmg.b.32454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/19/2016] [Indexed: 11/06/2022]
Abstract
PARK16 was identified as a risk factor for Parkinson's disease in a Japanese cohort; however, subsequent studies in the other populations including the Chinese, European, Caucasian, and Chilean have shown a protective role instead. To investigate this locus in our Malaysian cohort, 1,144 individuals were screened for five SNPs in the PARK16 locus and logistic regression analysis showed that the A allele of the rs947211 SNP reduced the risk of developing PD via a recessive model (Odds ratio 0.57, P-value 0.0003). Pooled analysis with other Asian studies showed that A allele of the rs947211 SNP decreased the risk of developing PD via a recessive model (Odds ratio 0.71, P-value 0.0001). In addition, when meta-analysis was performed with other Asian population, three SNPs (rs823128, rs823156, and rs11240572) reduced risk of developing PD via a dominant model. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aroma Agape Gopalai
- Faculty of Medicine, Department of Biomedical Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Ahmad-Annuar
- Faculty of Medicine, Department of Biomedical Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Hui-Hua Li
- Health Services Research, Singapore General Hospital, Singapore, Singapore
| | - Yi Zhao
- Department of Clinical Research, Singapore General Hospital, Singapore, Singapore
| | - Shen-Yang Lim
- Faculty of Medicine, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ai Huey Tan
- Faculty of Medicine, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Gaik Bee Eow
- Department of Neurology, Hospital Pulau Pinang, Penang, Malaysia
| | | | | | | | - Zariah Abdul Aziz
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Malaysia
| | - Soo Kun Lim
- Faculty of Medicine, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chong Tin Tan
- Faculty of Medicine, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital, Singapore, Singapore.,National Neuroscience Institute and Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
14
|
de Baaij JHF, Arjona FJ, van den Brand M, Lavrijsen M, Lameris ALL, Bindels RJM, Hoenderop JGJ. Identification of SLC41A3 as a novel player in magnesium homeostasis. Sci Rep 2016; 6:28565. [PMID: 27349617 PMCID: PMC4923877 DOI: 10.1038/srep28565] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/02/2016] [Indexed: 01/08/2023] Open
Abstract
Regulation of the body Mg(2+) balance takes place in the distal convoluted tubule (DCT), where transcellular reabsorption determines the final urinary Mg(2+) excretion. The basolateral Mg(2+) extrusion mechanism in the DCT is still unknown, but recent findings suggest that SLC41 proteins contribute to Mg(2+) extrusion. The aim of this study was, therefore, to characterize the functional role of SLC41A3 in Mg(2+) homeostasis using the Slc41a3 knockout (Slc41a3(-/-)) mouse. By quantitative PCR analysis it was shown that Slc41a3 is the only SLC41 isoform with enriched expression in the DCT. Interestingly, serum and urine electrolyte determinations demonstrated that Slc41a3(-/-) mice suffer from hypomagnesemia. The intestinal Mg(2+) absorption capacity was measured using the stable (25)Mg(2+) isotope in mice fed a low Mg(2+) diet. (25)Mg(2+) uptake was similar in wildtype (Slc41a3(+/+)) and Slc41a3(-/-) mice, although Slc41a3(-/-) animals exhibited increased intestinal mRNA expression of Mg(2+) transporters Trpm6 and Slc41a1. Remarkably, some of the Slc41a3(-/-) mice developed severe unilateral hydronephrosis. In conclusion, SLC41A3 was established as a new factor for Mg(2+) handling.
Collapse
Affiliation(s)
- Jeroen H F de Baaij
- Department of Physiology Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Francisco J Arjona
- Department of Physiology Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Michiel van den Brand
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Marla Lavrijsen
- Department of Physiology Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Anke L L Lameris
- Department of Physiology Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Miyake Y, Tanaka K, Fukushima W, Kiyohara C, Sasaki S, Tsuboi Y, Oeda T, Shimada H, Kawamura N, Sakae N, Fukuyama H, Hirota Y, Nagai M, Nakamura Y. PARK16 polymorphisms, interaction with smoking, and sporadic Parkinson's disease in Japan. J Neurol Sci 2016; 362:47-52. [PMID: 26944116 DOI: 10.1016/j.jns.2016.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/15/2015] [Accepted: 01/12/2016] [Indexed: 11/15/2022]
Abstract
Epidemiological evidence on the relationships between PARK16 single nucleotide polymorphisms (SNPs) and Parkinson's disease (PD) is inconsistent. We examined this issue in Japan. Included were 229 cases within six years of PD onset. Controls were 356 patients without neurodegenerative disease. Compared with subjects with the AA genotype of SNP rs823128, those with the AG genotype, but not the GG genotype, had a significantly reduced risk of sporadic PD. Compared with the AA genotype of SNP rs947211, both the AG genotype and the GG genotype were significantly related to an increased risk of sporadic PD. Using subjects with the AA genotype of SNP rs823156 as a reference group, there were significant inverse relationships under the additive and dominant models. No significant relationships were found between SNPs rs16856139 or rs11240572 and sporadic PD. The CAAAC, the TGAGA, and the CAGAC haplotypes were significantly related to sporadic PD. The additive interaction between SNP rs823128 and smoking affecting sporadic PD was significant, although the multiplicative interaction was not significant. The PARK16 SNPs rs823128, rs947211, and rs823156 and the CAAAC, TGAGA, and CAGAC haplotypes may be significantly associated with sporadic PD in Japan. New evidence of an additive interaction between SNP rs823156 and smoking is suggested.
Collapse
Affiliation(s)
- Yoshihiro Miyake
- Department of Epidemiology and Preventive Medicine, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan.
| | - Keiko Tanaka
- Department of Epidemiology and Preventive Medicine, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan
| | - Wakaba Fukushima
- Department of Public Health, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Chikako Kiyohara
- Department of Preventive Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Sasaki
- Department of Social and Preventive Epidemiology, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tomoko Oeda
- Clinical Research Institute and Department of Neurology, Utano National Hospital, Kyoto, Japan
| | - Hiroyuki Shimada
- Department of Geriatrics and Neurology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | - Nobutaka Sakae
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Masaki Nagai
- Department of Public Health, Saitama Medical University Faculty of Medicine, Saitama, Japan
| | | | | |
Collapse
|
16
|
Wang L, Cheng L, Li NN, Yu WJ, Sun XY, Peng R. Genetic analysis of SLC41A1 in Chinese Parkinson's disease patients. Am J Med Genet B Neuropsychiatr Genet 2015; 168:706-11. [PMID: 26308152 DOI: 10.1002/ajmg.b.32365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/11/2015] [Indexed: 02/05/2023]
Abstract
Sequence variants in SLC41A1 (solute carrier family 41 member 1) within the PARK16 locus have been reported to be associated with Parkinson's disease (PD). We performed direct DNA sequencing of the SLC41A1 gene in 100 early-onset PD cases. A novel intron variant (NM_173854.5:c.993-90delA) and a known synonymous-coding variant (NM_173854.5:c.339 C>T, causing p.Thr113Thr, rs11240569) were identified in the SLC41A1 gene. Then we genotyped the rs11240569 variant in a total of 2237 Han Chinese comprising of 1063 sporadic PD and 1174 controls to investigate the association with risk of PD, we also conducted further stratified analysis according to age at onset and compared the clinical characteristics of CC + CT subjects with TT subjects. In this study, we confirmed that the C allele of SLC41A1 (rs11240569) polymorphism reduces the risk to develop sporadic PD (P = 0.018). Additionally, subjects with CC + CT genotypes have a reduced risk compared to those with TT genotype (P = 0.022), the association was modestly seen among the younger age group (P = 0.05), but was not significant among the older age group (P = 0.641). Besides, we demonstrated that CC + CT subjects cannot be distinguished from TT subjects based on their clinical features. Our study, the first demonstrates that SLC41A1 (rs11240569) is associated with a lower risk of PD in a Han Chinese population from mainland China.
Collapse
Affiliation(s)
- Ling Wang
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, P. R. China
| | - Lan Cheng
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, P. R. China
| | - Nan-Nan Li
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, P. R. China
| | - Wen-Juan Yu
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, P. R. China
| | - Xiao-Yi Sun
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, P. R. China
| | - Rong Peng
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, P. R. China
| |
Collapse
|
17
|
Goudarzian M, Khaligh A, Fourozan R, Jamal Mirmoosavi S, Darvish H, Safaralizadeh T, Emamalizadeh B. The rs1572931 polymorphism of the RAB7L1 gene promoter is associated with reduced risk of Parkinson's disease. Neurol Res 2015; 37:1029-31. [DOI: 10.1179/1743132815y.0000000085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Pihlstrøm L, Rengmark A, Bjørnarå KA, Dizdar N, Fardell C, Forsgren L, Holmberg B, Larsen JP, Linder J, Nissbrandt H, Tysnes OB, Dietrichs E, Toft M. Fine mapping and resequencing of the PARK16 locus in Parkinson’s disease. J Hum Genet 2015; 60:357-62. [DOI: 10.1038/jhg.2015.34] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/01/2015] [Accepted: 03/06/2015] [Indexed: 02/04/2023]
|
19
|
de Baaij JHF, Hoenderop JGJ, Bindels RJM. Magnesium in man: implications for health and disease. Physiol Rev 2015; 95:1-46. [PMID: 25540137 DOI: 10.1152/physrev.00012.2014] [Citation(s) in RCA: 996] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Magnesium (Mg(2+)) is an essential ion to the human body, playing an instrumental role in supporting and sustaining health and life. As the second most abundant intracellular cation after potassium, it is involved in over 600 enzymatic reactions including energy metabolism and protein synthesis. Although Mg(2+) availability has been proven to be disturbed during several clinical situations, serum Mg(2+) values are not generally determined in patients. This review aims to provide an overview of the function of Mg(2+) in human health and disease. In short, Mg(2+) plays an important physiological role particularly in the brain, heart, and skeletal muscles. Moreover, Mg(2+) supplementation has been shown to be beneficial in treatment of, among others, preeclampsia, migraine, depression, coronary artery disease, and asthma. Over the last decade, several hereditary forms of hypomagnesemia have been deciphered, including mutations in transient receptor potential melastatin type 6 (TRPM6), claudin 16, and cyclin M2 (CNNM2). Recently, mutations in Mg(2+) transporter 1 (MagT1) were linked to T-cell deficiency underlining the important role of Mg(2+) in cell viability. Moreover, hypomagnesemia can be the consequence of the use of certain types of drugs, such as diuretics, epidermal growth factor receptor inhibitors, calcineurin inhibitors, and proton pump inhibitors. This review provides an extensive and comprehensive overview of Mg(2+) research over the last few decades, focusing on the regulation of Mg(2+) homeostasis in the intestine, kidney, and bone and disturbances which may result in hypomagnesemia.
Collapse
Affiliation(s)
- Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Guo XY, Chen YP, Song W, Zhao B, Cao B, Wei QQ, Ou RW, Yang Y, Yuan LX, Shang HF. An association analysis of the rs1572931 polymorphism of theRAB7L1gene in Parkinson's disease, amyotrophic lateral sclerosis and multiple system atrophy in China. Eur J Neurol 2014; 21:1337-43. [PMID: 25040112 DOI: 10.1111/ene.12490] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/05/2014] [Indexed: 02/05/2023]
Affiliation(s)
- X.-Y. Guo
- Department of Neurology and State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu China
| | - Y.-P. Chen
- Department of Neurology and State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu China
| | - W. Song
- Department of Neurology and State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu China
| | - B. Zhao
- Department of Neurology and State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu China
| | - B. Cao
- Department of Neurology and State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu China
| | - Q.-Q. Wei
- Department of Neurology and State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu China
| | - R.-W. Ou
- Department of Neurology and State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu China
| | - Y. Yang
- Department of Medical Genetics; West China Hospital; Sichuan University; Chengdu China
| | - L.-X. Yuan
- Public Laboratory of West China Second University Hospital; Sichuan University; Chengdu China
| | - H.-F. Shang
- Department of Neurology and State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu China
| |
Collapse
|
21
|
Variant R244H in Na+/Mg2+ exchanger SLC41A1 in Taiwanese Parkinson's disease is associated with loss of Mg2+ efflux function. Parkinsonism Relat Disord 2014; 20:600-3. [DOI: 10.1016/j.parkreldis.2014.02.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/11/2014] [Accepted: 02/27/2014] [Indexed: 11/21/2022]
|
22
|
Schweigel-Röntgen M, Kolisek M. SLC41 transporters--molecular identification and functional role. CURRENT TOPICS IN MEMBRANES 2014; 73:383-410. [PMID: 24745990 DOI: 10.1016/b978-0-12-800223-0.00011-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The solute carrier family 41 (SLC41) encompasses three members A1, A2, and A3. Based on their distant homology to the bacterial Mg²⁺ channel MgtE, all have been linked to Mg²⁺ transport. There is only very limited knowledge on the molecular biology and exact functions of SLC41A2 and SLC41A3. SLC41A1 is ubiquitously expressed and data on its functional and molecular properties, regulation, complex-forming ability, and spectrum of binding partners are available. SLC41A1 was recently identified as being the Na⁺/Mg²⁺ exchanger (NME)-a predominant Mg²⁺ efflux system. Mg²⁺-dependent and hormonal regulation of NME activity is now known to depend on the intracellular N terminus of SLC41A1 that is involved in Mg²⁺ sensing and contains phosphorylation sites for protein kinase (PK) A and PKC. Data showing a link between SLC41A1 and human disorders such as Parkinson's disease, nephronophthisis (induced by the null mutation c.698G>T in renal SLC41A1), and preeclampsia make the protein a candidate therapeutic target.
Collapse
Affiliation(s)
- Monika Schweigel-Röntgen
- Institute for Muscle Biology & Growth, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany.
| | - Martin Kolisek
- Institute of Veterinary Physiology, Free University Berlin, Berlin, Germany
| |
Collapse
|
23
|
Fleig A, Schweigel-Röntgen M, Kolisek M. Solute Carrier Family SLC41, what do we really know about it? ACTA ACUST UNITED AC 2013; 2. [PMID: 24340240 DOI: 10.1002/wmts.95] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The 41st family of solute carriers (SLC41) comprises three members A1, A2 and A3, which are distantly homologous to bacterial Mg2+ channel MgtE. SLC41A1 was recently characterized as being an Na+/Mg2+ exchanger (NME; a predominant cellular Mg2+ efflux system). Little is known about the exact function of SLC41A2 and SLC41A3, although, these proteins have also been linked to Mg2+ transport in human (animal) cells. The molecular biology (including membrane topology, cellular localization, transcriptomics and proteomics) of SLC41A2 and SLC41A3 compared with SLC41A1 has only been poorly explored. Significantly more data with regard to function, functional regulation, involvement in cellular signalling, complex-forming ability, spectrum of binding partners and involvement in the pathophysiology of human diseases are available for SLC41A1. Three recent observations namely the identification of the null mutation, c.698G>T, in SLC41A1 underlying the nephronophthisis-like phenotype, the recognition of a putative link between SLC41A1 and Parkinson's disease, and the observation that nearly 55% of preeclamptic placental samples overexpress SLC41A1, marks the protein as a possible therapeutic target of these diseases. A potential role of the SLC41 family of Mg2+ transporters in the pathophysiology of human diseases is further substantiated by the finding that SLC41A3 knockout mice develop abnormal locomotor coordination.
Collapse
Affiliation(s)
- Andrea Fleig
- Laboratory of Cell and Molecular Signalling, Center for Biomedical Research at The Queen's Medical Center, Honolulu, HI USA
| | | | | |
Collapse
|
24
|
Sahni J, Scharenberg AM. The SLC41 family of MgtE-like magnesium transporters. Mol Aspects Med 2013; 34:620-8. [PMID: 23506895 DOI: 10.1016/j.mam.2012.05.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/08/2012] [Indexed: 01/28/2023]
Abstract
Magnesium is one of the most predominant intracellular divalent cations and is requisite to the regulation of a diverse array of cellular functions. Although accumulating data from multiple studies have begun to illuminate the critical role(s) played by Mg(2+) transporters in pathways involved in cell signaling, metabolism, growth and proliferation, there is still a lack of understanding of the underlying molecular mechanisms that govern those various functions. In this review, we focus on the recently described SLC41 family of magnesium transporters, two members of which have been shown to mediate Mg(2+) uptake and transport, and highlight what is known about their expression, localization, and function, as well as their roles and contributions to cellular Mg(2+) transport.
Collapse
Affiliation(s)
- Jaya Sahni
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | | |
Collapse
|
25
|
Kolisek M, Sponder G, Mastrototaro L, Smorodchenko A, Launay P, Vormann J, Schweigel-Röntgen M. Substitution p.A350V in Na⁺/Mg²⁺ exchanger SLC41A1, potentially associated with Parkinson's disease, is a gain-of-function mutation. PLoS One 2013; 8:e71096. [PMID: 23976986 PMCID: PMC3744568 DOI: 10.1371/journal.pone.0071096] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/24/2013] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is a complex multifactorial ailment predetermined by the interplay of various environmental and genetic factors. Systemic and intracellular magnesium (Mg) deficiency has long been suspected to contribute to the development and progress of PD and other neurodegenerative diseases. However, the molecular background is unknown. Interestingly, gene SLC41A1 located in the novel PD locus PARK16 has recently been identified as being a Na+/Mg2+ exchanger (NME, Mg2+ efflux system), a key component of cellular magnesium homeostasis. Here, we demonstrate that the substitution p.A350V potentially associated with PD is a gain-of-function mutation that enhances a core function of SLC41A1, namely Na+-dependent Mg2+ efflux by 69±10% under our experimental conditions (10-minute incubation in high-Na+ (145 mM) and completely Mg2+-free medium). The increased efflux capacity is accompanied by an insensitivity of mutant NME to cAMP stimulation suggesting disturbed hormonal regulation and leads to a reduced proliferation rate in p.A350V compared with wt cells. We hypothesize that enhanced Mg2+-efflux conducted by SLC41A1 variant p.A350V might result, in the long-term, in chronic intracellular Mg2+-deficiency, a condition that is found in various brain regions of PD patients and that exacerbates processes triggering neuronal damage.
Collapse
Affiliation(s)
- Martin Kolisek
- Institute of Veterinary-Physiology, Free University Berlin, Berlin, Germany
- * E-mail: (MK); (MSR)
| | - Gerhard Sponder
- Institute of Veterinary-Physiology, Free University Berlin, Berlin, Germany
| | - Lucia Mastrototaro
- Institute of Veterinary-Physiology, Free University Berlin, Berlin, Germany
| | - Alina Smorodchenko
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | | | | | - Monika Schweigel-Röntgen
- Institute for Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
- * E-mail: (MK); (MSR)
| |
Collapse
|