1
|
Merghany RM, El-Sawi SA, Naser AFA, Ezzat SM, Moustafa SFA, Meselhy MR. A comprehensive review of natural compounds and their structure-activity relationship in Parkinson's disease: exploring potential mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2229-2258. [PMID: 39392484 PMCID: PMC11920337 DOI: 10.1007/s00210-024-03462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopamine-producing cells in the Substantia nigra region of the brain. Complementary and alternative medicine approaches have been utilized as adjuncts to conventional therapies for managing the symptoms and progression of PD. Natural compounds have gained attention for their potential neuroprotective effects and ability to target various pathways involved in the pathogenesis of PD. This comprehensive review aims to provide an in-depth analysis of the molecular targets and mechanisms of natural compounds in various experimental models of PD. This review will also explore the structure-activity relationship (SAR) of these compounds and assess the clinical studies investigating the impact of these natural compounds on individuals with PD. The insights shared in this review have the potential to pave the way for the development of innovative therapeutic strategies and interventions for PD.
Collapse
Affiliation(s)
- Rana M Merghany
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt.
| | - Salma A El-Sawi
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt
| | - Asmaa F Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, 33 El Buhouth St, Cairo, 12622, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sherifa F A Moustafa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Meselhy R Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Vuletić V, Rački V, Papić E, Peterlin B. A Systematic Review of Parkinson's Disease Pharmacogenomics: Is There Time for Translation into the Clinics? Int J Mol Sci 2021; 22:ijms22137213. [PMID: 34281267 PMCID: PMC8268929 DOI: 10.3390/ijms22137213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most frequent neurodegenerative disease, which creates a significant public health burden. There is a challenge for the optimization of therapies since patients not only respond differently to current treatment options but also develop different side effects to the treatment. Genetic variability in the human genome can serve as a biomarker for the metabolism, availability of drugs and stratification of patients for suitable therapies. The goal of this systematic review is to assess the current evidence for the clinical translation of pharmacogenomics in the personalization of treatment for Parkinson's disease. METHODS We performed a systematic search of Medline database for publications covering the topic of pharmacogenomics and genotype specific mutations in Parkinson's disease treatment, along with a manual search, and finally included a total of 116 publications in the review. RESULTS We analyzed 75 studies and 41 reviews published up to December of 2020. Most research is focused on levodopa pharmacogenomic properties and catechol-O-methyltransferase (COMT) enzymatic pathway polymorphisms, which have potential for clinical implementation due to changes in treatment response and side-effects. Likewise, there is some consistent evidence in the heritability of impulse control disorder via Opioid Receptor Kappa 1 (OPRK1), 5-Hydroxytryptamine Receptor 2A (HTR2a) and Dopa decarboxylase (DDC) genotypes, and hyperhomocysteinemia via the Methylenetetrahydrofolate reductase (MTHFR) gene. On the other hand, many available studies vary in design and methodology and lack in sample size, leading to inconsistent findings. CONCLUSIONS This systematic review demonstrated that the evidence for implementation of pharmacogenomics in clinical practice is still lacking and that further research needs to be done to enable a more personalized approach to therapy for each patient.
Collapse
Affiliation(s)
- Vladimira Vuletić
- Clinic of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (V.R.); (E.P.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Correspondence:
| | - Valentino Rački
- Clinic of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (V.R.); (E.P.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Eliša Papić
- Clinic of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (V.R.); (E.P.)
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
3
|
Cacabelos R, Carrera I, Martínez O, Alejo R, Fernández-Novoa L, Cacabelos P, Corzo L, Rodríguez S, Alcaraz M, Nebril L, Tellado I, Cacabelos N, Pego R, Naidoo V, Carril JC. Atremorine in Parkinson's disease: From dopaminergic neuroprotection to pharmacogenomics. Med Res Rev 2021; 41:2841-2886. [PMID: 34106485 DOI: 10.1002/med.21838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Atremorine is a novel bioproduct obtained by nondenaturing biotechnological processes from a genetic species of Vicia faba. Atremorine is a potent dopamine (DA) enhancer with powerful effects on the neuronal dopaminergic system, acting as a neuroprotective agent in Parkinson's disease (PD). Over 97% of PD patients respond to a single dose of Atremorine (5 g, p.o.) 1 h after administration. This response is gender-, time-, dose-, and genotype-dependent, with optimal doses ranging from 5 to 20 g/day, depending upon disease severity and concomitant medication. Drug-free patients show an increase in DA levels from 12.14 ± 0.34 pg/ml to 6463.21 ± 1306.90 pg/ml; and patients chronically treated with anti-PD drugs show an increase in DA levels from 1321.53 ± 389.94 pg/ml to 16,028.54 ± 4783.98 pg/ml, indicating that Atremorine potentiates the dopaminergic effects of conventional anti-PD drugs. Atremorine also influences the levels of other neurotransmitters (adrenaline, noradrenaline) and hormones which are regulated by DA (e.g., prolactin, PRL), with no effect on serotonin or histamine. The variability in Atremorine-induced DA response is highly attributable to pharmacogenetic factors. Polymorphic variants in pathogenic (SNCA, NUCKS1, ITGA8, GPNMB, GCH1, BCKDK, APOE, LRRK2, ACMSD), mechanistic (DRD2), metabolic (CYP2D6, CYP2C9, CYP2C19, CYP3A4/5, NAT2), transporter (ABCB1, SLC6A2, SLC6A3, SLC6A4) and pleiotropic genes (APOE) influence the DA response to Atremorine and its psychomotor and brain effects. Atremorine enhances DNA methylation and displays epigenetic activity via modulation of the pharmacoepigenetic network. Atremorine is a novel neuroprotective agent for dopaminergic neurons with potential prophylactic and therapeutic activity in PD.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Carrera
- Department of Health Biotechnology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Olaia Martínez
- Department of Medical Epigenetics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | | | | | - Pablo Cacabelos
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Lola Corzo
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Susana Rodríguez
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Margarita Alcaraz
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Laura Nebril
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Tellado
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Natalia Cacabelos
- Department of Medical Documentation, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Rocío Pego
- Department of Neuropsychology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Vinogran Naidoo
- Department of Neuroscience, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Juan C Carril
- Department of Genomics & Pharmacogenomics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| |
Collapse
|
4
|
Ray Chaudhuri K, Poewe W, Brooks D. Motor and Nonmotor Complications of Levodopa: Phenomenology, Risk Factors, and Imaging Features. Mov Disord 2019; 33:909-919. [PMID: 30134055 DOI: 10.1002/mds.27386] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Despite enormous advances in our current understanding of PD since James Parkinson described the "shaking palsy" 200 years ago, l-dopa, in clinical use since the 1960s, remains the gold standard of treatment. Virtually every patient with PD requires varying doses of l-dopa to manage motor and some nonmotor symptoms and retain an acceptable quality of life. However, after a period of treatment with l-dopa, a number of problems emerge; the key ones are motor and nonmotor fluctuations, a range of dyskinesias, and a combination of both. Nonmotor complications can range from behavioral problems to sensory, autonomic, and cognitive issues. Even with a wealth of data, both in animal models and in vivo imaging that address the pathophysiology of l-dopa-related motor and nonmotor complications, the treatment remains challenging and is an unmet need. Although refinement in types of dopamine replacement therapy and delivery systems have improved the management of l-dopa-related complications, the search for the ideal treatment continues. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- K Ray Chaudhuri
- Institute of Psychiatry, Psychology & Neuroscience at King's College London and Parkinsons Foundation Centre of Excellence at King's College Hospital NHS Foundation Trust
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - David Brooks
- Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Fox SH, Brotchie JM. Viewpoint: Developing drugs for levodopa-induced dyskinesia in PD: Lessons learnt, what does the future hold? Eur J Neurosci 2018; 49:399-409. [PMID: 30269407 DOI: 10.1111/ejn.14173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 12/21/2022]
Abstract
The drive to develop drugs to treat PD starts and ends with the patient. Herein, we discuss how the experience with drug development for LID has led the field in translational studies in PD with advancing ground-breaking science via rigorous clinical trial design, to deliver clinical proof-of-concepts across multiple therapeutic targets. However, issues remain in advancing drugs efficacious preclinically to the clinic, and future studies need to learn from past successes and failures. Such lessons include implementing better early indicators of tolerability, for instance evaluating non-motor symptoms in preclinical models; improving patient-related outcome measures in clinical trials, as well as considering the unique nature of dyskinesia in an individual patient. The field of translational studies needs to become more patient focused to improve successful outcomes.
Collapse
Affiliation(s)
- Susan H Fox
- The Edmond J Safra Program in Parkinson Disease and Movement Disorder Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Jonathan M Brotchie
- Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada.,Atuka Inc, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Strafella C, Caputo V, Galota MR, Zampatti S, Marella G, Mauriello S, Cascella R, Giardina E. Application of Precision Medicine in Neurodegenerative Diseases. Front Neurol 2018; 9:701. [PMID: 30190701 PMCID: PMC6115491 DOI: 10.3389/fneur.2018.00701] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/03/2018] [Indexed: 12/24/2022] Open
Abstract
One of the main challenges for healthcare systems is the increasing prevalence of neurodegenerative pathologies together with the rapidly aging populations. The enormous progresses made in the field of biomedical research and informatics have been crucial for improving the knowledge of how genes, epigenetic modifications, aging, nutrition, drugs and microbiome impact health and disease. In fact, the availability of high technology and computational facilities for large-scale analysis enabled a deeper investigation of neurodegenerative disorders, providing a more comprehensive overview of disease and encouraging the development of a precision medicine approach for these pathologies. On this subject, the creation of collaborative networks among medical centers, research institutes and highly qualified specialists can be decisive for moving the precision medicine from the bench to the bedside. To this purpose, the present review has been thought to discuss the main components which may be part of precise and personalized treatment programs applied to neurodegenerative disorders. Parkinson Disease will be taken as an example to understand how precision medicine approach can be clinically useful and provide substantial benefit to patients. In this perspective, the realization of web-based networks can be decisive for the implementation of precision medicine strategies across different specialized centers as well as for supporting clinical/therapeutical decisions and promoting a more preventive and participative medicine for neurodegenerative disorders. These collaborative networks are essentially addressed to find innovative, sustainable and effective strategies able to provide optimal and safer therapies, discriminate at risk individuals, identify patients at preclinical or early stage of disease, set-up individualized and preventative strategies for improving prognosis and patient's quality of life.
Collapse
Affiliation(s)
- Claudia Strafella
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy.,Emotest Laboratory, Pozzuoli, Italy
| | - Valerio Caputo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Maria R Galota
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | - Stefania Zampatti
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | | | | | - Raffaella Cascella
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy.,Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Emiliano Giardina
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy.,Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
7
|
Politi C, Ciccacci C, Novelli G, Borgiani P. Genetics and Treatment Response in Parkinson's Disease: An Update on Pharmacogenetic Studies. Neuromolecular Med 2018; 20:1-17. [PMID: 29305687 DOI: 10.1007/s12017-017-8473-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 12/29/2017] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by a progressive loss of dopamine neurons of the central nervous system. The disease determines a significant disability due to a combination of motor symptoms such as bradykinesia, rigidity and rest tremor and non-motor symptoms such as sleep disorders, hallucinations, psychosis and compulsive behaviors. The current therapies consist in combination of drugs acting to control only the symptoms of the illness by the replacement of the dopamine lost. Although patients generally receive benefits from this symptomatic pharmacological management, they also show great variability in drug response in terms of both efficacy and adverse effects. Pharmacogenetic studies highlighted that genetic factors play a relevant influence in this drug response variability. In this review, we tried to give an overview of the recent progresses in the pharmacogenetics of PD, reporting the major genetic factors identified as involved in the response to drugs and highlighting the potential use of some of these genomic variants in the clinical practice. Many genes have been investigated and several associations have been reported especially with adverse drug reactions. However, only polymorphisms in few genes, including DRD2, COMT and SLC6A3, have been confirmed as associated in different populations and in large cohorts. The identification of genomic biomarkers involved in drug response variability represents an important step in PD treatment, opening the prospective of more personalized therapies in order to identify, for each person, the better therapy in terms of efficacy and toxicity and to improve the PD patients' quality of life.
Collapse
Affiliation(s)
- Cristina Politi
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Cinzia Ciccacci
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
8
|
Titova N, Chaudhuri KR. Personalized medicine in Parkinson's disease: Time to be precise. Mov Disord 2017; 32:1147-1154. [PMID: 28605054 PMCID: PMC5575483 DOI: 10.1002/mds.27027] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/13/2017] [Accepted: 03/30/2017] [Indexed: 01/06/2023] Open
Affiliation(s)
- Nataliya Titova
- Federal State Budgetary Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Healthcare of the Russian FederationMoscowRussia
| | - K. Ray Chaudhuri
- National Parkinson Foundation International Centre of Excellence, King's College London and King's College HospitalLondonUK
- Department of Basic and Clinical NeuroscienceThe Maurice Wohl Clinical Neuroscience Institute, King's College LondonLondonUK
- National Institute for Health Research South London and Maudsley NHS Foundation Trust and King's College LondonLondonUK
| |
Collapse
|
9
|
Titova N, Chaudhuri KR. Personalized Medicine and Nonmotor Symptoms in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 134:1257-1281. [DOI: 10.1016/bs.irn.2017.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Corvol JC, Poewe W. Pharmacogenetics of Parkinson's Disease in Clinical Practice. Mov Disord Clin Pract 2016; 4:173-180. [PMID: 30363349 DOI: 10.1002/mdc3.12444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/12/2016] [Accepted: 08/29/2016] [Indexed: 12/13/2022] Open
Abstract
Background Pharmacogenetics aims to identify the genetic factors participating in the heterogeneity of drug response. The ultimate goal is to provide personalized treatment by identifying responders and non-responders, individuals at risk of developing drug adverse effects, and by adjusting dosage. Several studies have been performed in Parkinson's disease (PD), to investigate drug response variability according to genetic factors for dopamine replacement therapies. Methods We performed a systematic literature search of articles related to pharmacogenetic studies in PD, and found 47 studies. Findings Motor response and adverse reactions to dopaminergic drugs were associated with genes encoding enzymes of their metabolism as well as their receptors or targets. Despite some interesting results, considerable work remains to be done to replicate and validate their clinical relevance before translation into clinical practice. Conclusions There are currently no guidelines published for pharmacogenetic factors related to PD drugs. More research is need in this field in order to improve our knowledge in drug response variability in PD. Algorithms taking into account clinical, pharmacological, and genetic factors are probably the most promising way to help for a personalized medicine in PD.
Collapse
Affiliation(s)
- Jean-Christophe Corvol
- Sorbonne Universités UPMC Univ Paris 06 UMR_S1127 ICM Paris France.,INSERM UMR_S1127 and CIC-1422 ICM Paris France.,CNRS UMR_7225 ICM Paris France.,Département des maladies du système nerveux AP-HP Hôpital Pitié-Salpêtrière Paris France
| | - Werner Poewe
- Department of Neurology Medical University Innsbruck Innsbruck Austria
| |
Collapse
|