1
|
Oslin SJ, Shi HH, Conner AK. Preventing Sudden Cessation of Implantable Pulse Generators in Deep Brain Stimulation: A Systematic Review and Protocol Proposal. Stereotact Funct Neurosurg 2024; 102:127-134. [PMID: 38432221 DOI: 10.1159/000535880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/14/2023] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Deep brain stimulation (DBS) requires a consistent electrical supply from the implantable pulse generator (IPG). Patients may struggle to monitor their IPG, risking severe complications in battery failure. This review assesses current literature on DBS IPG battery life management and proposes a protocol for healthcare providers. METHODS A literature search using four databases identified best practices for DBS IPG management. Studies were appraised for IPG management guidelines, categorized as qualitative, quantitative, or both. RESULTS Of 408 citations, only seven studies were eligible, none providing clear patient management strategies. Current guidelines lack specificity, relying on clinician suggestions. CONCLUSION Limited guidelines exist for IPG management. Specificity and adaptability to emerging technology are crucial. The findings highlight the need for specificity in patients' needs and adaptability to emerging technology in future studies. To address this need, we developed a protocol for DBS IPG management that we have implemented at our own institution. Further research is needed for effective DBS IPG battery life management, preventing therapy cessation complications.
Collapse
Affiliation(s)
- Spencer J Oslin
- Department of Neurosurgery, University of Oklahoma, Health Sciences Center, Oklahoma City, Oklahoma, USA,
| | - Helen H Shi
- Department of Neurosurgery, University of Oklahoma, Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma, Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
2
|
Bing S, Chawang K, Chiao JC. A Resonant Coupler for Subcutaneous Implant. SENSORS (BASEL, SWITZERLAND) 2021; 21:8141. [PMID: 34884144 PMCID: PMC8662426 DOI: 10.3390/s21238141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022]
Abstract
A resonator coupler for subcutaneous implants has been developed with a new impedance matching pattern added to the conventional loop antenna. The tuning element of a concentric metal pad contributes distributed capacitance and inductance to the planar inductive loop and improves resonance significantly. It provides a better qualify factor for resonant coupling and a much lower reflection coefficient for the implant electronics. Practical constraints are taken into account for designs including the requirement of operation within a regulated frequency band and the limited thickness for a monolithic implant. In this work, two designs targeting to operate in the two industrial, scientific, and medical (ISM) bands at 903 MHz and 2.45 GHz are considered. The tuning metal pad improves their resonances significantly, compared to the conventional loop designs. Since it is difficult to tune the implant antenna after implantation, the effects of tissue depth variations due to the individual's surgery and the appropriate implant depths are investigated. Simulations conducted with the dielectric properties of human skin documented in the literature are compared to measurements done with hydrated ground pork as phantoms. Experiments and simulations are conducted to explain the discrepancies in frequency shifts due to the uses of pork phantoms. The design method is thus validated for uses on human skin. A noninvasive localization method to identify the implant under the skin has been examined and demonstrated by both simulations and measurements. It can efficiently locate the subcutaneous implant based on the high quality-factor resonance owing to the tuning elements in both implant and transmitter couplers. The planar resonant coupler for wireless power transfer shows good performance and promise in subcutaneous applications for implants.
Collapse
Affiliation(s)
| | | | - J.-C. Chiao
- Electrical and Computer Engineering, Southern Methodist University, Dallas, TX 75205, USA; (S.B.); (K.C.)
| |
Collapse
|
3
|
Runge J, Nagel JM, Schrader C, Saryyeva A, Krauss JK. Rechargeable Pacemaker Technology in Deep Brain Stimulation: A Step Forward, But Not for Everyone. Mov Disord Clin Pract 2021; 8:1112-1115. [PMID: 34631947 PMCID: PMC8485590 DOI: 10.1002/mdc3.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/12/2021] [Accepted: 06/27/2021] [Indexed: 11/11/2022] Open
Abstract
Background Rechargeable implantable pulse generator (IPG) technology has several advantages over non‐rechargeable systems and is routinely used now in deep brain stimulation (DBS). Little is known about the occasional need and the circumstances for switching back to non‐rechargeable technology. Cases Out of a cohort of 640 patients, 102 patients received a rechargeable IPG at first implantation or at the time of replacement surgery. Out of these, 3 patients underwent preemptive replacement with non‐rechargeable devices for the following reasons: dissatisfaction with handling and recharge frequency (pallidal DBS in advanced Parkinson's disease/dystonia), severe DBS OFF status subsequent to missed recharging (subthalamic DBS in Parkinson's disease) and twiddler's syndrome (nucleus accumbens DBS in alcohol dependency). Conclusions Although rechargeable IPG technology has been received well and is used widely, there are unexpected scenarios that require replacement surgery with non‐rechargeable IPGs.
Collapse
Affiliation(s)
- Joachim Runge
- Department of Neurosurgery Hannover Medical School Hannover Germany
| | - Johanna M Nagel
- Department of Neurosurgery Hannover Medical School Hannover Germany
| | | | - Assel Saryyeva
- Department of Neurosurgery Hannover Medical School Hannover Germany
| | - Joachim K Krauss
- Department of Neurosurgery Hannover Medical School Hannover Germany
| |
Collapse
|
4
|
Jakobs M, Helmers AK, Synowitz M, Slotty PJ, Anthofer JM, Schlaier JR, Kloss M, Unterberg AW, Kiening KL. A multicenter, open-label, controlled trial on acceptance, convenience, and complications of rechargeable internal pulse generators for deep brain stimulation: the Multi Recharge Trial. J Neurosurg 2020; 133:821-829. [PMID: 31419794 DOI: 10.3171/2019.5.jns19360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/07/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Rechargeable neurostimulators for deep brain stimulation have been available since 2008, promising longer battery life and fewer replacement surgeries compared to non-rechargeable systems. Long-term data on how recharging affects movement disorder patients are sparse. This is the first multicenter, patient-focused, industry-independent study on rechargeable neurostimulators. METHODS Four neurosurgical centers sent a questionnaire to all adult movement disorder patients with a rechargeable neurostimulator implanted at the time of the trial. The primary endpoint was the convenience of the recharging process rated on an ordinal scale from "very hard" (1) to "very easy" (5). Secondary endpoints were charge burden (time spent per week on recharging), user confidence, and complication rates. Endpoints were compared for several subgroups. RESULTS Datasets of 195 movement disorder patients (66.1% of sent questionnaires) with Parkinson's disease (PD), tremor, or dystonia were returned and included in the analysis. Patients had a mean age of 61.3 years and the device was implanted for a mean of 40.3 months. The overall convenience of recharging was rated as "easy" (4). The mean charge burden was 122 min/wk and showed a positive correlation with duration of therapy; 93.8% of users felt confident recharging the device. The rate of surgical revisions was 4.1%, and the infection rate was 2.1%. Failed recharges occurred in 8.7% of patients, and 3.6% of patients experienced an interruption of therapy because of a failed recharge. Convenience ratings by PD patients were significantly worse than ratings by dystonia patients. Caregivers recharged the device for the patient in 12.3% of cases. Patients who switched from a non-rechargeable to a rechargeable neurostimulator found recharging to be significantly less convenient at a higher charge burden than did patients whose primary implant was rechargeable. Age did not have a significant impact on any endpoint. CONCLUSIONS Overall, patients with movement disorders rated recharging as easy, with low complication rates and acceptable charge burden.
Collapse
Affiliation(s)
- Martin Jakobs
- 1Department of Neurosurgery, Division of Stereotactic Neurosurgery, and
- Departments of2Neurosurgery and
| | - Ann-Kristin Helmers
- 4Department of Neurosurgery, University Medical Center Schleswig-Holstein, Campus Kiel, Christian-Albrechts-University Kiel, Kiel
| | - Michael Synowitz
- 4Department of Neurosurgery, University Medical Center Schleswig-Holstein, Campus Kiel, Christian-Albrechts-University Kiel, Kiel
| | - Philipp J Slotty
- 5Department of Stereotactic and Functional Neurosurgery, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf; and
| | - Judith M Anthofer
- 6Department of Neurosurgery, University Hospital Regensburg, Regensburg, Germany
| | - Jürgen R Schlaier
- 6Department of Neurosurgery, University Hospital Regensburg, Regensburg, Germany
| | - Manja Kloss
- 3Neurology, University Hospital Heidelberg, Heidelberg
| | | | - Karl L Kiening
- 1Department of Neurosurgery, Division of Stereotactic Neurosurgery, and
- Departments of2Neurosurgery and
| |
Collapse
|
5
|
Hitti FL, Vaughan KA, Ramayya AG, McShane BJ, Baltuch GH. Reduced long-term cost and increased patient satisfaction with rechargeable implantable pulse generators for deep brain stimulation. J Neurosurg 2019; 131:799-806. [PMID: 30265199 DOI: 10.3171/2018.4.jns172995] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/12/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) has revolutionized the treatment of neurological disease, but its therapeutic efficacy is limited by the lifetime of the implantable pulse generator (IPG) batteries. At the end of the battery life, IPG replacement surgery is required. New IPGs with rechargeable batteries (RC-IPGs) have recently been introduced and allow for decreased reoperation rates for IPG replacements. The authors aimed to examine the merits and limitations of these devices. METHODS The authors reviewed the medical records of patients who underwent DBS implantation at their institution. RC-IPGs were placed either during initial DBS implantation or during an IPG change. A cost analysis was performed that compared RC-IPGs with standard IPGs, and telephone patient surveys were conducted to assess patient satisfaction. RESULTS The authors identified 206 consecutive patients from 2011 to 2016 who underwent RC-IPG placement (mean age 61 years; 67 women, 33%). Parkinson's disease was the most common indication for DBS (n = 144, 70%), followed by essential tremor (n = 41, 20%), dystonia (n = 13, 6%), depression (n = 5, 2%), multiple sclerosis tremor (n = 2, 1%), and epilepsy (n = 1, 0.5%). DBS leads were typically placed bilaterally (n = 192, 93%) and targeted the subthalamic nucleus (n = 136, 66%), ventral intermediate nucleus of the thalamus (n = 43, 21%), internal globus pallidus (n = 21, 10%), ventral striatum (n = 5, 2%), or anterior nucleus of the thalamus (n = 1, 0.5%). RC-IPGs were inserted at initial DBS implantation in 123 patients (60%), while 83 patients (40%) were converted to RC-IPGs during an IPG replacement surgery. The authors found that RC-IPG implantation resulted in $60,900 of cost savings over the course of 9 years. Furthermore, patient satisfaction was high with RC-IPG implantation. Overall, 87.3% of patients who responded to the survey were satisfied with their device, and only 6.7% found the rechargeable component difficult to use. In patients who were switched from a standard IPG to RC-IPG, the majority who responded (70.3%) preferred the rechargeable IPG. CONCLUSIONS RC-IPGs can provide DBS patients with long-term therapeutic benefit while minimizing the need for battery replacement surgery. The authors have implanted rechargeable stimulators in 206 patients undergoing DBS surgery, and here they demonstrate the cost-effectiveness and high patient satisfaction associated with this procedure.
Collapse
|
6
|
Niemann M, Schneider GH, Kühn A, Vajkoczy P, Faust K. Clinical Efficacy of Bilateral Deep Brain Stimulation Does Not Change After Implantable Pulse Generator Replacement but the Impedances Do: A Prospective Study. Neuromodulation 2019; 23:530-536. [PMID: 31323173 DOI: 10.1111/ner.13022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 05/13/2019] [Accepted: 06/12/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) is an approved therapy option for movement disorders such as Parkinson's disease (PD), essential Tremor (ET), and dystonia. While current research focuses on rechargeable implantable pulse generators (IPGs), little is known about changes of the motor functions after IPG replacement and the consequences of additionally implanted hardware. OBJECTIVE To assess changes of the motor functions, the therapy impedances, and the total electric energy delivered (TEED) after elective IPG replacement. METHODS We prospectively acquired the data of 47 patients with PD, ET, and dystonia treated with bilateral DBS. Motor functions were rated prior to and after surgery using the revised Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS-III), the Fahn-Tolosa-Marin Tremor-Rating-Scale (FTM-TRS), and the Unified Dystonia Rating Scale (UDRS). Furthermore, the therapy impedances and TEED were assessed at the aforementioned times. RESULTS While preoperative motor scores were 48.32 ± 17.16 in PD, 39.71 ± 12.28 in ET, and 18.48 ± 16.30 in dystonia patients, postoperative scores were 47.84 ± 24.33, 32.86 ± 15.82, and 15.02 ± 15.17, respectively. Only in dystonia patients, motor scores significantly differed. Perioperative therapy impedance changes were 142.66 ± 105.35 Ω (Kinetra® to Activa® PC), -68.75 ± 43.05 Ω (Activa® PC to Activa® PC), and - 51.38 ± 38.75 Ω (Activa® PC to Activa® RC). Perioperative TEED changes were - 37.15 ± 38.87 μJ, 2.03 ± 35.91 μJ, and 12.39 ± 6.31 μJ in that first, second, and third group, respectively. Both the therapy impedances and TEED significantly differed between groups. CONCLUSION Although there were no statistically significant changes in the motor functions of all patients after elective IPG replacement, the therapy impedances were significantly higher and TEED was significantly lower after IPG replacement with concurrent Pocket Adapter implantation.
Collapse
Affiliation(s)
- Marcel Niemann
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | | | - Andrea Kühn
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
7
|
Mitchell KT, Volz M, Lee A, San Luciano M, Wang S, Starr PA, Larson P, Galifianakis NB, Ostrem JL. Patient Experience with Rechargeable Implantable Pulse Generator Deep Brain Stimulation for Movement Disorders. Stereotact Funct Neurosurg 2019; 97:113-119. [PMID: 31288242 DOI: 10.1159/000500993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 05/08/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Nonrechargeable deep brain stimulation implantable pulse generators (IPGs) for movement disorders require surgical replacement every few years due to battery depletion. Rechargeable IPGs reduce frequency of replacement surgeries and inherent risks of complications but require frequent recharging. Here, we evaluate patient experience with rechargeable IPGs and define predictive characteristics for higher satisfaction. METHODS We contacted all patients implanted with rechargeable IPGs at a single center in a survey-based study. We analyzed patient satisfaction with respect to age, diagnosis, target, charging duration, and body mass index. We tabulated hardware-related adverse events. RESULTS Dystonia patients had significantly higher satisfaction than Parkinson's disease patients in recharging, display, programmer, and training domains. Common positive responses were "fewer surgeries" and "small size." Common negative responses were "difficulty finding the right position to recharge" and "need to recharge every day." Hardware-related adverse events occurred in 21 of 59 participants. CONCLUSION Patient experience with rechargeable IPGs was largely positive; however, frustrations with recharging and adverse events were common. Dystonia diagnosis was most predictive of high satisfaction across multiple categories, potentially related to expected long disease duration with need for numerous IPG replacements.
Collapse
Affiliation(s)
- Kyle T Mitchell
- Department of Neurology, University of California San Francisco, San Francisco, California, USA,
| | - Monica Volz
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Aaron Lee
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Marta San Luciano
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Sarah Wang
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Philip A Starr
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Paul Larson
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Nicholas B Galifianakis
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Jill L Ostrem
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
8
|
Helmers AK, Birkenfeld F, Deuschl G, Paschen S, Cohrs G, Mehdorn HM, Falk D. Do Adaptors Shorten the Battery Life of Nonrechargeable Generators for Deep Brain Stimulation? World Neurosurg 2019; 127:e65-e68. [DOI: 10.1016/j.wneu.2019.02.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 11/16/2022]
|
9
|
Sette A, Seigneuret E, Reymond F, Chabardes S, Castrioto A, Boussat B, Moro E, François P, Fraix V. Battery longevity of neurostimulators in Parkinson disease: A historic cohort study. Brain Stimul 2019; 12:851-857. [DOI: 10.1016/j.brs.2019.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/30/2018] [Accepted: 02/11/2019] [Indexed: 10/27/2022] Open
|
10
|
Decreasing battery life in subthalamic deep brain stimulation for Parkinson's disease with repeated replacements: Just a matter of energy delivered? Brain Stimul 2019; 12:845-850. [DOI: 10.1016/j.brs.2019.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 11/17/2022] Open
|
11
|
Khaleeq T, Hasegawa H, Samuel M, Ashkan K. Fixed-Life or Rechargeable Battery for Deep Brain Stimulation: Which Do Patients Prefer? Neuromodulation 2018; 22:489-492. [PMID: 30133071 DOI: 10.1111/ner.12810] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/08/2018] [Accepted: 05/31/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) is increasingly used to treat a wide variety of neurological and psychiatric disorders. Implantable pulse generators (implantable pulse generators/batteries) for DBS were originally only available as a nonrechargeable option. However, there is now a choice between fixed-life and rechargeable batteries, with each having their own advantages and disadvantages. The extent of patient involvement in the choice of battery and the factors that matter to them have not been well studied. METHODS Thirty consecutive adult patients with movement disorders attending a pre-DBS clinic were offered a choice of fixed-life or rechargeable battery and completed a questionnaire after the consultation on which factors influenced their decision. RESULTS Nineteen patients (63%) chose the fixed-life battery and 11 patients (37%) chose the rechargeable battery. There were no significant differences in age, sex, underlying disease, disease duration or Unified Parkinson's Disease Rating Scale (UPDRS) (part 3) score (for patients with Parkinson disease) between those who chose the fixed-life vs. rechargeable battery. Most patients were not concerned about the size of the battery. Equal numbers were concerned about surgery to replace the battery, and less than half were concerned about the need to recharge the battery. More than half of patients felt that an acceptable charging frequency was monthly or yearly, and all patients felt that an acceptable charging duration was less than 1 hour, with half of all patients choosing less than 30 min. The main reasons cited for choosing the fixed-life battery were convenience and concern about forgetting to recharge the battery. The main reason for choosing the rechargeable battery was the avoidance of further surgery. DISCUSSION Most patients in this adult cohort with movement disorders chose the fixed-life battery. The better lifestyle associated with a fixed-life battery is a major factor influencing their choice. Rechargeable batteries may be more acceptable if the recharging process is improved, more convenient, and discreet. CONFLICT OF INTEREST The authors' institution has received educational grants from Medtronic, Abbott, and Boston Scientific companies.
Collapse
Affiliation(s)
- Tahir Khaleeq
- Department of Neurosurgery, King's College Hospital, Denmark Hill, London, UK
| | - Harutomo Hasegawa
- Department of Neurosurgery, King's College Hospital, Denmark Hill, London, UK
| | - Michael Samuel
- Department of Neurosurgery, King's College Hospital, Denmark Hill, London, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital, Denmark Hill, London, UK
| |
Collapse
|
12
|
Sun Q, Zhao D, Cheng S, Hou X, Zhao X, Tian Y. A feature extraction method for adaptive DBS using an improved EMD. Int J Neurosci 2018. [PMID: 29527963 DOI: 10.1080/00207454.2018.1450253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Local field potential (LFP) of a patient with Parkinson's disease often shows abnormal oscillation phenomenon. Extracting and studying this phenomenon and designing adaptive deep brain stimulation (DBS) control library have great significance in the treatment of disease. MATERIALS AND METHODS This paper has designed a feature extraction method based on modified empirical mode decomposition (EMD) which extracts the abnormal oscillation signal in the time domain to increase the overall performance. The intrinsic mode function (IMF) component which contains abnormal oscillation is extracted by using EMD before an intrinsic characteristic of the oscillation signal is obtained. Abnormal oscillation signal is acquired using signal normalization, peak counting, and envelope method with a threshold which in turn keeps the integrity and accuracy as well as the efficiency. RESULTS Comparative study of eight patients (six patients with DBS closed and drugs stopped; two patients with stimulation) has verified the feasibility of using modified EMD in extracting abnormal oscillation signal. The results showed that patients who take DBS suffer less abnormal oscillation than those who take no treatment. These results match the energy rise in the band of 3-30 Hz on local field potential spectrum of the patient with Parkinson's disease. CONCLUSIONS Unlike previous oscillation extraction algorithm, improved EMD feature extraction method directly isolates abnormal oscillation signal from LFP. Significant improvement has been made in feature extraction algorithm in adaptability, real-time performance, and accuracy.
Collapse
Affiliation(s)
- Qifeng Sun
- a Department of Biomedical Engineering, College of Bio-information, Chongqing University of Posts and Telecommunications , Chongqing , China
| | - Dechun Zhao
- a Department of Biomedical Engineering, College of Bio-information, Chongqing University of Posts and Telecommunications , Chongqing , China
| | - Shanshan Cheng
- a Department of Biomedical Engineering, College of Bio-information, Chongqing University of Posts and Telecommunications , Chongqing , China
| | - Xiaorong Hou
- b Information Management Department, College of Medical informatics, Chongqing Medical University , Chongqing , China
| | - Xing Zhao
- a Department of Biomedical Engineering, College of Bio-information, Chongqing University of Posts and Telecommunications , Chongqing , China
| | - Yin Tian
- a Department of Biomedical Engineering, College of Bio-information, Chongqing University of Posts and Telecommunications , Chongqing , China
| |
Collapse
|