1
|
Small molecule inhibiting microglial nitric oxide release could become a potential treatment for neuroinflammation. PLoS One 2023; 18:e0278325. [PMID: 36745631 PMCID: PMC9901772 DOI: 10.1371/journal.pone.0278325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 11/14/2022] [Indexed: 02/07/2023] Open
Abstract
Microglia are the immune effector cells of the central nervous system (CNS) and react to pathologic events with a complex process including the release of nitric oxide (NO). NO is a free radical, which is toxic for all cells at high concentrations. To target an exaggerated NO release, we tested a library of 16 544 chemical compounds for their effect on lipopolysaccharide (LPS)-induced NO release in cell line and primary neonatal microglia. We identified a compound (C1) which significantly reduced NO release in a dose-dependent manner, with a low IC50 (252 nM) and no toxic side effects in vitro or in vivo. Target finding strategies such as in silico modelling and mass spectroscopy hint towards a direct interaction between C1 and the nitric oxide synthase making C1 a great candidate for specific intra-cellular interaction with the NO producing machinery.
Collapse
|
2
|
Kumar S, Duan Q, Wu R, Harris EN, Su Q. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv Drug Deliv Rev 2021; 176:113869. [PMID: 34280515 PMCID: PMC11792083 DOI: 10.1016/j.addr.2021.113869] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease that encompasses a spectrum of pathological conditions, ranging from simple steatosis (NAFL), nonalcoholic steatohepatitis (NASH), fibrosis/cirrhosis which can further progress to hepatocellular carcinoma and liver failure. The progression of NAFL to NASH and liver fibrosis is closely associated with a series of liver injury resulting from lipotoxicity, oxidative stress, redox imbalance (excessive nitric oxide), ER stress, inflammation and apoptosis that occur sequentially in different liver cells which ultimately leads to the activation of liver regeneration and fibrogenesis, augmenting collagen and extracellular matrix deposition and promoting liver fibrosis and cirrhosis. Type 2 diabetes is a significant risk factor in NAFLD development by accelerating liver damage. Here, we overview recent findings from human study and animal models on the pathophysiological communication among hepatocytes (HCs), Kupffer cells (KCs), hepatic stellate cells (HSCs) and liver sinusoidal endothelial cells (LSECs) during the disease development. The mechanisms of crucial signaling pathways, including Toll-like receptor, TGFβ and hedgehog mediated hepatic injury are also discussed. We further highlight the potentials of precisely targeting hepatic individual cell-type using nanotechnology as therapeutic strategy for the treatment of NASH and liver fibrosis.
Collapse
Affiliation(s)
- Santosh Kumar
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Qihua Duan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Rongxue Wu
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, USA
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom.
| |
Collapse
|
3
|
Jiang Y, Xu BH, Rodgers B, Pyrsopoulos N. Characteristics and Inpatient Outcomes of Primary Biliary Cholangitis and Autoimmune Hepatitis Overlap Syndrome. J Clin Transl Hepatol 2021; 9:392-398. [PMID: 34221925 PMCID: PMC8237146 DOI: 10.14218/jcth.2021.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND AIMS Primary biliary cholangitis (PBC) and autoimmune hepatitis (AIH) are hepatobiliary diseases of presumed immune-mediated origin that have been shown to overlap. The aim of this retrospective trial was to use national data to examine the characteristics and outcomes of patients hospitalized with overlapping PBC and AIH (PBC/AIH). METHODS The National Inpatient Sample was used to identify hospitalized adult patients with PBC, AIH, and PBC/AIH from 2010 to 2014 by International Classification of Diseases-Ninth Edition Revision codes; patients with hepatitis B virus and hepatitis C virus infection were excluded. Primary outcomes measures were in-hospital outcomes that included mortality, respiratory failure, septic shock, length of stay, and total hospital charges. Secondary outcomes were the clinical characteristics of PBC/AIH, including the comorbid extrahepatic autoimmune disease pattern and complications of cirrhosis. RESULTS A total of 3,478 patients with PBC/AIH were included in the study. PBC/AIH was associated with higher rates of Sjögren's syndrome (p<0.001; p<0.001), lower rates of Crohn's disease (p<0.05; p<0.05), and higher rates of cirrhosis-related complications when compared to PBC or AIH alone. There were similar rates of mortality between the PBC/AIH, PBC, and AIH groups. The PBC/AIH group had higher rates of septic shock when compared to the PBC group (p<0.05) and AIH group (p<0.05) after adjusting for possible confounders. CONCLUSIONS PBC/AIH is associated with a lower rate of Crohn's disease, a higher rate of Sjögren's syndrome, higher rates of cirrhosis-related complications, and significantly increased risk of septic shock compared to PBC and AIH individually.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Bing-Hong Xu
- Liver Center & Center for Asian Health, RWJBH-Saint Barnabas Medical Center, Florham Park, New Jersey, USA
| | - Brandon Rodgers
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Nikolaos Pyrsopoulos
- Division of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
4
|
Thuy LTT, Hai H, Kawada N. Role of cytoglobin, a novel radical scavenger, in stellate cell activation and hepatic fibrosis. Clin Mol Hepatol 2020; 26:280-293. [PMID: 32492766 PMCID: PMC7364355 DOI: 10.3350/cmh.2020.0037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022] Open
Abstract
Cytoglobin (Cygb), a stellate cell-specific globin, has recently drawn attention due to its association with liver fibrosis. In the livers of both humans and rodents, Cygb is expressed only in stellate cells and can be utilized as a marker to distinguish stellate cells from hepatic fibroblast-derived myofibroblasts. Loss of Cygb accelerates liver fibrosis and cancer development in mouse models of chronic liver injury including diethylnitrosamine-induced hepatocellular carcinoma, bile duct ligation-induced cholestasis, thioacetamide-induced hepatic fibrosis, and choline-deficient L-amino acid-defined diet-induced non-alcoholic steatohepatitis. This review focuses on the history of research into the role of reactive oxygen species and nitrogen species in liver fibrosis and discusses the current perception of Cygb as a novel radical scavenger with an emphasis on its role in hepatic stellate cell activation and fibrosis.
Collapse
Affiliation(s)
- Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hoang Hai
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
5
|
Khomich O, Ivanov AV, Bartosch B. Metabolic Hallmarks of Hepatic Stellate Cells in Liver Fibrosis. Cells 2019; 9:24. [PMID: 31861818 PMCID: PMC7016711 DOI: 10.3390/cells9010024] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis is a regenerative process that occurs after injury. It is characterized by the deposition of connective tissue by specialized fibroblasts and concomitant proliferative responses. Chronic damage that stimulates fibrogenic processes in the long-term may result in the deposition of excess matrix tissue and impairment of liver functions. End-stage fibrosis is referred to as cirrhosis and predisposes strongly to the loss of liver functions (decompensation) and hepatocellular carcinoma. Liver fibrosis is a pathology common to a number of different chronic liver diseases, including alcoholic liver disease, non-alcoholic fatty liver disease, and viral hepatitis. The predominant cell type responsible for fibrogenesis is hepatic stellate cells (HSCs). In response to inflammatory stimuli or hepatocyte death, HSCs undergo trans-differentiation to myofibroblast-like cells. Recent evidence shows that metabolic alterations in HSCs are important for the trans-differentiation process and thus offer new possibilities for therapeutic interventions. The aim of this review is to summarize current knowledge of the metabolic changes that occur during HSC activation with a particular focus on the retinol and lipid metabolism, the central carbon metabolism, and associated redox or stress-related signaling pathways.
Collapse
Affiliation(s)
- Olga Khomich
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Birke Bartosch
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
| |
Collapse
|
6
|
Abstract
Linked ContentThis article is linked to Ebadi et al papers. To view these articles, visit https://doi.org/10.1111/apt.15029 and https://doi.org/10.1111/apt.15091.
Collapse
Affiliation(s)
- Narin Nasiroglu Imga
- Department of Endocrinology and Metabolism, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Cumali Efe
- Department of Gastroenterology, Gazi Yaşargil Education and Research Hospital, Diyarbakir, Turkey
| |
Collapse
|
7
|
Lin R, Liu Y, Piao M, Song Y. Magnesium isoglycyrrhizinate positively affects concanavalin A-induced liver damage by regulating macrophage polarization. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2018.1508424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Rui Lin
- Department of Gastroenterology and Hepatology, Tianjin Medical University, General Hospital, Tianjin, People’s Republic of China
| | - Yun Liu
- Tianjin Bonagene Bio-Technology Co. Ltd., Tianjin, People’s Republic of China
- Academician Workstation of Hunan Baodong Farming Co. Ltd., Hunan, People’s Republic of China
| | - Meiyu Piao
- Department of Gastroenterology and Hepatology, Tianjin Medical University, General Hospital, Tianjin, People’s Republic of China
| | - Yan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University, General Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
8
|
Czaja AJ. Under-Evaluated or Unassessed Pathogenic Pathways in Autoimmune Hepatitis and Implications for Future Management. Dig Dis Sci 2018; 63:1706-1725. [PMID: 29671161 DOI: 10.1007/s10620-018-5072-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
Abstract
Autoimmune hepatitis is a consequence of perturbations in homeostatic mechanisms that maintain self-tolerance but are incompletely understood. The goals of this review are to describe key pathogenic pathways that have been under-evaluated or unassessed in autoimmune hepatitis, describe insights that may shape future therapies, and encourage investigational efforts. The T cell immunoglobulin mucin proteins constitute a family that modulates immune tolerance by limiting the survival of immune effector cells, clearing apoptotic bodies, and expanding the population of granulocytic myeloid-derived suppressor cells. Galectins influence immune cell migration, activation, proliferation, and survival, and T cell exhaustion can be induced and exploited as a possible management strategy. The programmed cell death-1 protein and its ligands comprise an antigen-independent inhibitory axis that can limit the performance of activated T cells by altering their metabolism, and epigenetic changes can silence pro-inflammatory genes or de-repress anti-inflammatory genes that affect disease severity. Changes in the intestinal microbiota and permeability of the intestinal mucosal barrier can be causative or consequential events that affect the occurrence and phenotype of immune-mediated disease, and they may help explain the female propensity for autoimmune hepatitis. Perturbations within these homeostatic mechanisms have been implicated in experimental models and limited clinical experiences, and they have been favorably manipulated by monoclonal antibodies, recombinant molecules, pharmacological agents or dietary supplements. In conclusion, pathogenic mechanisms that have been implicated in other systemic immune-mediated and liver diseases but under-evaluated or unassessed in autoimmune hepatitis warrant consideration and rigorous evaluation.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Zhang Q, Luan R, Li H, Liu Y, Liu P, Wang L, Li D, Wang M, Zou Q, Liu H, Matsuzaki K, Zhao F. Anti-inflammatory action of ambuic acid, a natural product isolated from the solid culture of Pestalotiopsis neglecta, through blocking ERK/JNK mitogen-activated protein kinase signaling pathway. Exp Ther Med 2018; 16:1538-1546. [PMID: 30116402 DOI: 10.3892/etm.2018.6294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/24/2018] [Indexed: 02/03/2023] Open
Abstract
Ambuic acid is an organic acid isolated from the solid culture of Pestalotiopsis neglecta, which is an endophytic fungus that widely exists in many species of plants. Ambuic acid has been reported to exert antimicrobial activity against Gram-positive bacterium. The aim of the present study was to investigate the inhibitory effect of ambuic acid on lipopolysaccharide (LPS)-induced inflammation in RAW264.7 macrophages. The results demonstrated that ambuic acid significantly suppressed the overproduction of nitric oxide (NO) and prostaglandin E2 (PGE2) in a dose-dependent manner. Furthermore, ambuic acid also inhibited the release of the proinflammatory cytokine interleukin-6 (IL-6) however, no inhibition of the release of tumor necrosis factor-α (TNF-α) was observed. Further investigations indicated that ambuic acid downregulated the LPS-induced high expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins, as well as inhibited the enzymatic activity of iNOS and COX-2. In addition, ambuic acid suppressed the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2) and c-Jun N-terminal kinase (JNK) induced by LPS. However, ambuic acid did not inhibit the phosphorylation of p38 mitogen-activated protein kinase (MAPK), the degradation of IκB-α protein or the nuclear translocation of nuclear transcription factor-κB (NF-κB) p65 subunit. These results suggested that ambuic acid may exert anti-inflammatory action by blocking the activation of the ERK/JNK MAPK signaling pathway, without the involvement of the p38 MAPK or NF-κB signaling pathways.
Collapse
Affiliation(s)
- Qian Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264003, P.R. China
| | - Ruiling Luan
- Pharmacy Dispensing Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Huixiang Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264003, P.R. China
| | - Yanan Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264003, P.R. China
| | - Pan Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264003, P.R. China
| | - Liying Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264003, P.R. China
| | - Danna Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264003, P.R. China
| | - Mengdi Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264003, P.R. China
| | - Qiang Zou
- Yantai Branch of Shandong Technology Transfer Center, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Keiichi Matsuzaki
- School of Pharmacy, Nihon University, Funabashi, Chiba 274-8555, Japan
| | - Feng Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
10
|
Beyazit F, Türkön H, Pek E, Ozturk FH, Ünsal M. Elevated circulating nitric oxide levels correlates with enhanced oxidative stress in patients with hyperemesis gravidarum. J OBSTET GYNAECOL 2018; 38:668-673. [DOI: 10.1080/01443615.2017.1383371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fatma Beyazit
- Department of Obstetrics and Gynecology, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Hakan Türkön
- Department of Biochemistry, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Eren Pek
- Department of Obstetrics and Gynecology, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Filiz Halici Ozturk
- Department of Obstetrics and Gynecology, Canakkale State Hospital, Canakkale, Turkey
| | - Mesut Ünsal
- Department of Obstetrics and Gynecology, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
11
|
Czaja AJ. Review article: next-generation transformative advances in the pathogenesis and management of autoimmune hepatitis. Aliment Pharmacol Ther 2017; 46:920-937. [PMID: 28901565 DOI: 10.1111/apt.14324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/01/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Advances in autoimmune hepatitis that transform current concepts of pathogenesis and management can be anticipated as products of ongoing investigations driven by unmet clinical needs and an evolving biotechnology. AIM To describe the advances that are likely to become transformative in autoimmune hepatitis, based on the direction of current investigations. METHODS Pertinent abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and a secondary bibliography was developed. The discovery process was repeated, and a tertiary bibliography was identified. The number of abstracts reviewed was 2830, and the number of full-length articles reviewed exceeded 150. RESULTS Risk-laden allelic variants outside the major histocompatibility complex (rs3184504, r36000782) are being identified by genome-wide association studies, and their gene products are potential therapeutic targets. Epigenetic changes associated with environmental cues can enhance the transcriptional activity of genes, and chromatin re-structuring and antagonists of noncoding molecules of ribonucleic acid are feasible interventions. The intestinal microbiome is a discovery field for microbial products and activated immune cells that may translocate to the periphery and respond to manipulation. Epidemiological studies and controlled interview-based surveys may implicate environmental and xenobiotic factors that warrant evidence-based changes in lifestyle, and site-directed molecular and cellular interventions promise to change the paradigm of treatment from one of blanket immunosuppression. CONCLUSIONS Advances in genetics, epigenetics, pathophysiology, epidemiology, and site-directed molecular and cellular interventions constitute the next generation of transformative advances in autoimmune hepatitis.
Collapse
Affiliation(s)
- A J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
12
|
Jin XY, Zhao P. Hepatic stellate cell-targeted therapy for hepatic fibrosis. Shijie Huaren Xiaohua Zazhi 2017; 25:2495-2502. [DOI: 10.11569/wcjd.v25.i28.2495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is the ultimate pathological feature of all forms of chronic hepatic damage. There is currently no clinical cure for advanced liver fibrosis. Activation and proliferation of hepatic stellate cells (HSCs) is a key step in the development of liver fibrosis, and therefore, HSCs are target cells for hepatic fibrosis treatment. Targeted delivery of drugs to activated HSCs would increase the drug concentration in the liver at the sites of active fibrogenesis and avoid undesirable systemic effects. Mannose 6-phosphate modified human serum albumin, vitamin A, and hyaluronic acid are three kinds of the most investigated carriers that deliver drugs to the activated HSCs specifically. Conjugation of these carriers with molecules with anti-fibrosis activity such as angiotensin receptor blockers, activin-like kinase 5 inhibitors, Rho-kinase inhibitors, small interfering RNAs, hepatocyte growth factor gene, or nitrogen monoxide can lead to specific distribution and effects in HSCs. This review will focus on these preclinical developments of HSCs-targeted drug conjugates for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xue-Yuan Jin
- International Center for Liver Disease Treatment, the 302nd Hospital of Chinese PLA, Beijing 100039, China
| | - Ping Zhao
- International Center for Liver Disease Treatment, the 302nd Hospital of Chinese PLA, Beijing 100039, China
| |
Collapse
|
13
|
Affiliation(s)
- Albert J. Czaja
- Professor Emeritus of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
14
|
Montano-Loza AJ, Thandassery RB, Czaja AJ. Targeting Hepatic Fibrosis in Autoimmune Hepatitis. Dig Dis Sci 2016; 61:3118-3139. [PMID: 27435327 DOI: 10.1007/s10620-016-4254-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023]
Abstract
Hepatic fibrosis develops or progresses in 25 % of patients with autoimmune hepatitis despite corticosteroid therapy. Current management regimens lack reliable noninvasive methods to assess changes in hepatic fibrosis and interventions that disrupt fibrotic pathways. The goals of this review are to indicate promising noninvasive methods to monitor hepatic fibrosis in autoimmune hepatitis and identify anti-fibrotic interventions that warrant evaluation. Laboratory methods can differentiate cirrhosis from non-cirrhosis, but their accuracy in distinguishing changes in histological stage is uncertain. Radiological methods include transient elastography, acoustic radiation force impulse imaging, and magnetic resonance elastography. Methods based on ultrasonography are comparable in detecting advanced fibrosis and cirrhosis, but their performances may be compromised by hepatic inflammation and obesity. Magnetic resonance elastography has excellent performance parameters for all histological stages in diverse liver diseases, is uninfluenced by inflammatory activity or body habitus, has been superior to other radiological methods in nonalcoholic fatty liver disease, and may emerge as the preferred instrument to evaluate fibrosis in autoimmune hepatitis. Promising anti-fibrotic interventions are site- and organelle-specific agents, especially inhibitors of nicotinamide adenine dinucleotide phosphate oxidases, transforming growth factor beta, inducible nitric oxide synthase, lysyl oxidases, and C-C chemokine receptors types 2 and 5. Autoimmune hepatitis has a pro-fibrotic propensity, and noninvasive radiological methods, especially magnetic resonance elastography, and site- and organelle-specific interventions, especially selective antioxidants and inhibitors of collagen cross-linkage, may emerge to strengthen current management strategies.
Collapse
Affiliation(s)
- Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, University of Alberta Hospital, Edmonton, AB, Canada
| | - Ragesh B Thandassery
- Division of Gastroenterology and Liver Unit, University of Alberta Hospital, Edmonton, AB, Canada
| | - Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
15
|
Czaja AJ. Nature and Implications of Oxidative and Nitrosative Stresses in Autoimmune Hepatitis. Dig Dis Sci 2016; 61:2784-2803. [PMID: 27411555 DOI: 10.1007/s10620-016-4247-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
Abstract
Oxidative and nitrosative stresses can damage cellular membranes, disrupt mitochondrial function, alter gene expression, promote the apoptosis and necrosis of hepatocytes, and increase fibrosis in diverse acute and chronic liver diseases, including autoimmune hepatitis. The objectives of this review are to describe the mechanisms of oxidative and nitrosative stresses in inflammatory liver disease, indicate the pathogenic implications of these stresses in autoimmune hepatitis, and suggest investigational opportunities to develop interventions that counter them. The principal antioxidant defenses, including glutathione production, the activities of antioxidant enzymes, and the release of the nuclear factor erythroid 2-related factor 2, may be inadequate or suppressed by transforming growth factor beta. The generation of reactive oxygen species can intensify nitrosative stress, and this stress may not be adequately modulated by the thioredoxin-thioredoxin reductase system and induce post-translational modifications of proteins that further disrupt hepatocyte function. The unfolded protein response and autophagy may be unable to restore redox stability, meet metabolic demands, and maintain hepatocyte survival. Emerging interventions with highly selective site- and organelle-specific actions may improve outcomes, and they include inhibitors of nicotinamide adenine dinucleotide phosphate oxidase, nitric oxide synthase, and transforming growth factor beta. Pharmacological manipulation of nuclear transcription factors may favor expression of antioxidant genes, and stimulation of chaperone proteins within the endoplasmic reticulum and modulation of autophagy may prevent hepatic fibrosis and enhance cell survival. These interventions constitute investigational opportunities to improve the management of autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
16
|
Czaja AJ. Transitioning from Idiopathic to Explainable Autoimmune Hepatitis. Dig Dis Sci 2015; 60:2881-900. [PMID: 25999246 DOI: 10.1007/s10620-015-3708-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/06/2015] [Indexed: 02/08/2023]
Abstract
Autoimmune hepatitis lacks an identifiable cause, and its diagnosis requires the exclusion of etiologically defined diseases that resemble it. Insights into its pathogenesis are moving autoimmune hepatitis from an idiopathic to explainable disease, and the goal of this review is to describe the insights that are hastening this transition. Two types of autoimmune hepatitis are justified by serological markers, but they also have distinctive genetic associations (DRB1 and DQB1 genes) and autoantigens. DRB1 alleles are the principal susceptibility factors in white adults, and a six amino acid sequence encoded in the antigen-binding groove of class II molecules of the major histocompatibility complex can influence the selection of autoantigens. Polymorphisms, including variants of SH2B3 and CARD10 genes, may affect immune reactivity and disease severity. The cytochrome mono-oxygenase, CYP2D6, is the autoantigen associated with type 2 autoimmune hepatitis, and it shares homologies with multiple viruses that might promote self-intolerance by molecular mimicry. Chemokines, especially CXCL9 and CXCL10, orchestrate the migration of effector cells to sites of injury and are associated with disease severity. Cells of the innate and adaptive immune responses promote tissue damage, and possible deficiencies in the number and function of regulatory T cells may facilitate the injurious process. Receptor-mediated apoptosis is the principal mechanism of hepatocyte loss, and cell-mediated and antibody-dependent mechanisms of cytotoxicity also contribute. Insights that explain autoimmune hepatitis will allow triggering exogenous antigens to be characterized, risk management to be improved, prognostic indices to be refined, and site-specific therapeutic interventions to emerge.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|