1
|
Sato R, Fukami T, Shimomura K, Zhang Y, Nakano M, Nakajima M. Characterization of human alcohol dehydrogenase 4 and aldehyde dehydrogenase 2 as enzymes involved in the formation of 5-carboxylpirfenidone, a major metabolite of pirfenidone. Drug Metab Dispos 2025; 53:100010. [PMID: 39884816 DOI: 10.1124/dmd.124.001917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 01/22/2025] Open
Abstract
Pirfenidone (PIR) is used in the treatment of idiopathic pulmonary fibrosis. After oral administration, it is metabolized by cytochrome P450 1A2 to 5-hydroxylpirfenidone (5-OH PIR) and further oxidized to 5-carboxylpirfenidone (5-COOH PIR), a major metabolite excreted in the urine (90% of the dose). This study aimed to identify enzymes that catalyze the formation of 5-COOH PIR from 5-OH PIR in the human liver. 5-COOH PIR was formed from 5-OH PIR in the presence of NAD+ by human liver microsomes (HLMs) more than by human liver cytosol (HLC), with the concomitant formation of the aldehyde form (5-CHO PIR) as an intermediate metabolite. By purifying enzymes from HLMs, alcohol dehydrogenases (ADHs) were identified as candidate enzymes catalyzing 5-CHO PIR formation, although ADHs are localized in the cytoplasm. Among constructed recombinant ADH1-5 expressed in HEK293T cells, only ADH4 efficiently catalyzed 5-CHO PIR formation from 5-OH PIR with a Km value (29.0 ± 4.9 μM), which was close to that by HLMs (59.1 ± 4.6 μM). In contrast to commercially available HLC, HLC prepared in-house clearly showed substantial 5-CHO PIR formation, and ADH4 protein levels were significantly (rs = 0.772, P < .0001) correlated with 5-CHO PIR formation in 25 HLC samples prepared in-house. Some components of the commercially available HLC may inhibit ADH4 activity. Disulfiram, an inhibitor of aldehyde dehydrogenases (ALDH), decreased 5-COOH PIR formation and increased 5-CHO PIR formation from 5-OH PIR in HLMs. ALDH2 knockdown in HepG2 cells by siRNA decreased 5-COOH PIR formation by 61%. SIGNIFICANCE STATEMENT: This study clarified that 5-carboxylpirfenidone formation from 5-hydroxylpirfenidone proceeds via a 2-step oxidation reaction catalyzed by ADH4 and disulfiram-sensitive enzymes, including ALDH2. Interindividual differences in the expression levels or functions of these enzymes could cause variations in the pharmacokinetics of pirfenidone.
Collapse
Affiliation(s)
- Rei Sato
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan.
| | - Kazuya Shimomura
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yongjie Zhang
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan; Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| |
Collapse
|
2
|
Li L, Huang YT, Wang LT, Wang XL, Chen ZY, Jiang SL, Zeng QL, Huang HP, Li XL. ADH4-a potential prognostic marker for hepatocellular carcinoma with possible immune-related implications. BMC Cancer 2024; 24:927. [PMID: 39090641 PMCID: PMC11293145 DOI: 10.1186/s12885-024-12675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE This study aims to explore ADH4 expression in hepatocellular carcinoma (HCC), its prognostic impact, and its immune correlation to provide novel insights into HCC prognostication and treatment. METHODS HCC prognostic marker genes were rigorously selected using GEO database, Lasso regression, GEPIA, Kaplan-Meier and pROC analyses. The expression of interested markers (ADH4, DNASE1L3, RDH16, LCAT, HGFAC) in HCC and adjacent tissues was assessed by Immunohistochemistry (IHC). We observed that ADH4 exhibited low expression levels in liver cancer tissues and high expression levels in normal liver tissues. However, the remaining four genes did not manifest any statistically significant differences between hepatocellular carcinoma (HCC) tissue and adjacent non-cancerous tissue. Consequently, ADH4 became the primary focus of our research. ADH4 expression was validated by signed-rank tests and unpaired Wilcoxon rank sum tests across pan-cancer and HCC datasets. Clinical significance and associations with clinicopathological variables were determined using Kaplan-Meier, logistic regression and Cox analyses on TCGA data. The ADH4-related immune responses were explored by Spearman correlation analysis using TIMER2 data. CD68, CD4, and CD19 protein levels were confirmed by IHC in HCC and non-cancerous tissues. RESULTS ADH4 showed significant downregulation in various cancers, particularly in HCC. Moreover, low ADH4 expression was associated with clinicopathological variables and served as an independent prognostic marker for HCC patients. Additionally, ADH4 affects a variety of biochemical functions and may influence cancer development, prognosis, and treatment by binding to immune cells. Furthermore, at the immune level, the low expression pattern of ADH4 is TME-specific, indicating that ADH4 has the potential to be used as a target for cancer immunotherapy. CONCLUSION This study highlights the diagnostic, prognostic and immunomodulatory roles of ADH4 in HCC. ADH4 could serve as a valuable biomarker for HCC diagnosis and prognosis, as well as a potential target for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Ling Li
- Department of Pathology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Yong-Ta Huang
- Department of Pathology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | | | | | | | | | | | - Hui-Pin Huang
- Department of Clinical Laboratory, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Xiao-Long Li
- Department of Cell Biology and Genetics, School of Pre-Clinical Medicine, Key Laboratory of Longevity and Agingrelated Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
4
|
Fukami T, Yokoi T, Nakajima M. Non-P450 Drug-Metabolizing Enzymes: Contribution to Drug Disposition, Toxicity, and Development. Annu Rev Pharmacol Toxicol 2021; 62:405-425. [PMID: 34499522 DOI: 10.1146/annurev-pharmtox-052220-105907] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most clinically used drugs are metabolized in the body via oxidation, reduction, or hydrolysis reactions, which are considered phase I reactions. Cytochrome P450 (P450) enzymes, which primarily catalyze oxidation reactions, contribute to the metabolism of over 50% of clinically used drugs. In the last few decades, the function and regulation of P450s have been extensively studied, whereas the characterization of non-P450 phase I enzymes is still incomplete. Recent studies suggest that approximately 30% of drug metabolism is carried out by non-P450 enzymes. This review summarizes current knowledge of non-P450 phase I enzymes, focusing on their roles in controlling drug efficacy and adverse reactions as an important aspect of drug development. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, and WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, and WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| |
Collapse
|
5
|
Maguire WF, Schmitz JC, Scemama J, Czambel K, Lin Y, Green AG, Wu S, Lin H, Puhalla S, Rhee J, Stoller R, Tawbi H, Lee JJ, Wright JJ, Beumer JH, Chu E, Appleman LJ. Phase 1 study of safety, pharmacokinetics, and pharmacodynamics of tivantinib in combination with bevacizumab in adult patients with advanced solid tumors. Cancer Chemother Pharmacol 2021; 88:643-654. [PMID: 34164713 DOI: 10.1007/s00280-021-04317-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/10/2021] [Indexed: 01/28/2023]
Abstract
PURPOSE We investigated the combination of tivantinib, a c-MET tyrosine kinase inhibitor (TKI), and bevacizumab, an anti-VEGF-A antibody. METHODS Patients with advanced solid tumors received bevacizumab (10 mg/kg intravenously every 2 weeks) and escalating doses of tivantinib (120-360 mg orally twice daily). In addition to safety and preliminary efficacy, we evaluated pharmacokinetics of tivantinib and its metabolites, as well as pharmacodynamic biomarkers in peripheral blood and skin. RESULTS Eleven patients received the combination treatment, which was generally well tolerated. The main dose-limiting toxicity was grade 3 hypertension, which was observed in four patients. Other toxicities included lymphopenia and electrolyte disturbances. No exposure-toxicity relationship was observed for tivantinib or metabolites. No clinical responses were observed. Mean levels of the serum cytokine bFGF increased (p = 0.008) after the bevacizumab-only lead-in and decreased back to baseline (p = 0.047) after addition of tivantinib. Tivantinib reduced levels of both phospho-MET (7/11 patients) and tubulin (4/11 patients) in skin. CONCLUSIONS The combination of tivantinib and bevacizumab produced toxicities that were largely consistent with the safety profiles of the individual drugs. The study was terminated prior to establishment of the recommended phase II dose (RP2D) due to concerns regarding the mechanism of tivantinib, as well as lack of clinical efficacy seen in this and other studies. Tivantinib reversed the upregulation of bFGF caused by bevacizumab, which has been considered a potential mechanism of resistance to therapies targeting the VEGF pathway. The findings from this study suggest that the mechanism of action of tivantinib in humans may involve inhibition of both c-MET and tubulin expression. TRIAL REGISTRATION NCT01749384 (First posted 12/13/2012).
Collapse
Affiliation(s)
- William F Maguire
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John C Schmitz
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA
| | - Jonas Scemama
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA
| | - Ken Czambel
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA
| | - Yan Lin
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center Biostatistics Facility, Pittsburgh, PA, USA.,Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony G Green
- Pitt Biospecimen Core Research Histology Department, Health Sciences Core Research Facilities, Pittsburgh, PA, USA
| | - Shaoyu Wu
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Huang Lin
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Roche Product Development, Roche (China) Holding Ltd., Shanghai, China
| | - Shannon Puhalla
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Rhee
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronald Stoller
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hussein Tawbi
- Department of Melanoma and Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - James J Lee
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John J Wright
- Cancer Therapy Evaluation Program, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jan H Beumer
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Edward Chu
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Oncology and Cancer Therapeutics Program, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Leonard J Appleman
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA. .,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | |
Collapse
|
8
|
De Mattia E, Cecchin E, Guardascione M, Foltran L, Di Raimo T, Angelini F, D’Andrea M, Toffoli G. Pharmacogenetics of the systemic treatment in advanced hepatocellular carcinoma. World J Gastroenterol 2019; 25:3870-3896. [PMID: 31413525 PMCID: PMC6689804 DOI: 10.3748/wjg.v25.i29.3870] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/23/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers. To date, most patients with HCC are diagnosed at an advanced tumor stage, excluding them from potentially curative therapies (i.e., resection, liver transplantation, percutaneous ablation). Treatments with palliative intent include chemoembolization and systemic therapy. Among systemic treatments, the small-molecule multikinase inhibitor sorafenib has been the only systemic treatment available for advanced HCC over 10 years. More recently, other small-molecule multikinase inhibitors (e.g., regorafenib, lenvatinib, cabozantinib) have been approved for HCC treatment. The promising immune checkpoint inhibitors (e.g., nivolumab, pembrolizumab) are still under investigation in Europe while in the US nivolumab has already been approved by FDA in sorafenib refractory or resistant patients. Other molecules, such as the selective CDK4/6inhibitors (e.g., palbociclib, ribociclib), are in earlier stages of clinical development, and the c-MET inhibitor tivantinib did not show positive results in a phase III study. However, even if the introduction of targeted agents has led to great advances in patient response and survival with an acceptable toxicity profile, a remarkable inter-individual heterogeneity in therapy outcome persists and constitutes a significant problem in disease management. Thus, the identification of biomarkers that predict which patients will benefit from a specific intervention could significantly affect decision-making and therapy planning. Germ-line variants have been suggested to play an important role in determining outcomes of HCC systemic therapy in terms of both toxicity and treatment efficacy. Particularly, a number of studies have focused on the role of genetic polymorphisms impacting the drug metabolic pathway and membrane translocation as well as the drug mechanism of action as predictive/prognostic markers of HCC treatment. The aim of this review is to summarize and critically discuss the pharmacogenetic literature evidences, with particular attention to sorafenib and regorafenib, which have been used longer than the others in HCC treatment.
Collapse
Affiliation(s)
- Elena De Mattia
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN) 33081, Italy
| | - Erika Cecchin
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN) 33081, Italy
| | - Michela Guardascione
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN) 33081, Italy
| | - Luisa Foltran
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN) 33081, Italy
| | - Tania Di Raimo
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN) 33081, Italy
- Medical Oncology and Anatomic Pathology Unit, “San Filippo Neri Hospital”, Rome 00135, Italy
| | - Francesco Angelini
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN) 33081, Italy
- Medical Oncology and Anatomic Pathology Unit, “San Filippo Neri Hospital”, Rome 00135, Italy
| | - Mario D’Andrea
- Department of Oncology, “San Filippo Neri Hospital”, Rome 00135, Italy
| | - Giuseppe Toffoli
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN) 33081, Italy
| |
Collapse
|