1
|
Hossen MS, Akter A, Azmal M, Rayhan M, Islam KS, Islam MM, Ahmed S, Abdullah-Al-Shoeb M. Unveiling the molecular basis of paracetamol-induced hepatotoxicity: Interaction of N-acetyl- p-benzoquinone imine with mitochondrial succinate dehydrogenase. Biochem Biophys Rep 2024; 38:101727. [PMID: 38766381 PMCID: PMC11098724 DOI: 10.1016/j.bbrep.2024.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
Background and aim N-acetyl-p-benzoquinoneimine (NAPQI), a toxic byproduct of paracetamol (Acetaminophen, APAP), can accumulate and cause liver damage by depleting glutathione and forming protein adducts in the mitochondria. These adducts disrupt the respiratory chain, increasing superoxide production and reducing ATP. The goal of this study was to provide computational proof that succinate dehydrogenase (SDH), a subunit of complex II in the mitochondrial respiratory chain, is a favorable binding partner for NAPQI in this regard. Method Molecular docking, molecular dynamics simulation, protein-protein interaction networks (PPI), and KEGG metabolic pathway analysis were employed to identify binding characteristics, interaction partners, and their associations with metabolic pathways. A lipid membrane was added to the experimental apparatus to mimic the natural cellular environment of SDH. This modification made it possible to develop a context for investigating the role and interactions of SDH within a cellular ecosystem that was more realistic and biologically relevant. Result The molecular binding affinity score for APAP and NAPQI with SDH was predicted -6.5 and -6.7 kcal/mol, respectively. Furthermore, RMSD, RMSF, and Rog from the molecular dynamics simulations study revealed that NAPQI has slightly higher stability and compactness compared to APAP at 100 ns timeframe with mitochondrial SDH. Conclusion This study serves to predict the mechanistic process of paracetamol toxicity by using different computational approaches. In addition, this study will provide information about the drug target against APAP hepatotoxicity.
Collapse
Affiliation(s)
- Md Sahadot Hossen
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Adiba Akter
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mahir Azmal
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mostakim Rayhan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Kazi Saiful Islam
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md Mahmodul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Shamim Ahmed
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mohammad Abdullah-Al-Shoeb
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
2
|
Kwon D, Seu M, Barnes S. Mind the Anion Gap: 5-Oxoproline-Induced High Anion Gap Metabolic Acidosis in End-Stage Renal Disease. Cureus 2024; 16:e61328. [PMID: 38947688 PMCID: PMC11213694 DOI: 10.7759/cureus.61328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
A rare complication, 5-oxoproline-induced high anion gap metabolic acidosis (HAGMA) is associated with chronic acetaminophen use, predominantly reported in outpatient settings. However, its occurrence in hospitalized patients, particularly those with end-stage renal disease (ESRD), remains underreported. We present a case of a 74-year-old female with ESRD on hemodialysis who developed HAGMA highly suspicious for 5-oxoproline toxicity from acetaminophen usage following cardiac surgery. Despite a standard analgesic dose, the patient's renal impairment likely predisposed her to 5-oxoproline accumulation, resulting in severe metabolic acidosis. Discontinuation of acetaminophen led to the resolution of HAGMA, highlighting the importance of recognizing this rare but potentially life-threatening complication in the inpatient and critical care setting. This case suggests a potential interaction between acetaminophen metabolism and renal dysfunction in the pathogenesis of 5-oxoproline-induced HAGMA.
Collapse
Affiliation(s)
- Danny Kwon
- Department of Internal Medicine, Loyola University Medical Center, Maywood, USA
| | - Michelle Seu
- Department of Neurology, Loyola University Medical Center, Maywood, USA
| | - Sylvester Barnes
- Department of Nephrology, Loyola University Medical Center, Maywood, USA
| |
Collapse
|
3
|
Stewart GW. Pyroglutamate acidosis 2023. A review of 100 cases. Clin Med (Lond) 2024; 24:100030. [PMID: 38431210 PMCID: PMC11091441 DOI: 10.1016/j.clinme.2024.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
This review concerns the rare, acquired, usually iatrogenic, high-anion-gap metabolic acidosis, pyroglutamic acidosis. Pyroglutamate is a derivative of the amino acid glutamate, and is an intermediate in the 'glutathione cycle', by which glutathione is continuously synthesized and broken down. The vast majority of pyroglutamic acidosis cases occur in patients on regular, therapeutic doses of paracetamol. In about a third of cases, flucloxacillin is co-prescribed. In addition, the patients are almost always seriously unwell in other ways, typically with under-nourishment of some form. Paracetamol, with underlying disorders, conspires to divert the glutathione cycle, leading to the overproduction of pyroglutamate. Hypokalaemia is seen in about a third of cases. Once the diagnosis is suspected, it is simple to stop the paracetamol and change the antibiotic (if flucloxacillin is present), pending biochemistry. N-acetyl-cysteine can be given, but while the biochemical justification is compelling, the clinical evidence base is anecdotal.
Collapse
Affiliation(s)
- Gordon W Stewart
- Emeritus Professor of Experimental Medicine, UCL, Division of Medicine, University College London, London WC1E 6JJ, UK.
| |
Collapse
|
4
|
Eldin DN, Fahim HI, Ahmed HY, Abdelgawad MA, Abourehab MAS, Ahmed OM. Preventive Effects of Mandarin Fruit Peel Hydroethanolic Extract, Hesperidin, and Quercetin on Acetaminophen-Induced Hepatonephrotoxicity in Wistar Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7065845. [PMID: 36092164 PMCID: PMC9463012 DOI: 10.1155/2022/7065845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/14/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022]
Abstract
Acetaminophen, also known as N-acetyl-para-aminophenol (NAPAP), is a traditional antipyretic and analgesic that is used extensively around the world to treat colds and fevers. However, a NAPAP excess causes rapid, severe liver and kidney damage. The goal of the study was to examine the protective effects and determine the mechanisms of action of MPHE, hesperidin, and quercetin in NAPAP-induced hepatorenal damage in Wistar rats. Male Wistar rats received a 0.5 g/kg oral supplement of NAPAP every other day for a period of four weeks. During the same period of NAPAP supplementation, MPHE (50 mg/kg), quercetin (20 mg/kg), and hesperidin (20 mg/kg) were administered to rats receiving NAPAP. MPHE, quercetin, and hesperidin treatments significantly improved liver function in NAPAP-supplemented rats. The high serum levels of aminotransferases, alkaline phosphatase, lactate dehydrogenase, and γ-glutamyl transferase as well as total bilirubin were significantly reduced, while the levels of suppressed serum albumin were significantly increased, demonstrating this improvement. Treatments utilizing these natural substances significantly enhanced kidney function as seen by a considerable decline in the increased blood levels of urea, uric acid, and creatinine. Additionally, the injection of MPHE, hesperidin, and quercetin resulted in a decrease in the quantity of lipid peroxides while increasing the activities of superoxide dismutase, glutathione peroxidase, and glutathione-S-transferase in the liver and kidneys. The treatments markedly abated the NAPAP-induced liver and kidney histological perturbations and reduced the NAPAP-induced serum tumor necrosis factor-α level and liver and kidney proapoptotic protein 53 and caspase 3 expressions. Otherwise, serum interleukin-4 level significantly increased by treatments. The MPHE, hesperidin, and quercetin treatments resulted in marked decrease in liver and kidney histopathological scores including inflammation, necrosis, apoptosis, and congestion. In conclusion, the MPHE, quercetin, and hesperidin may induce hepatonephropreventive impacts in NAPAP-supplemented rats via enhancing the antioxidant defense system, anti-inflammatory activity, and antiapoptotic action.
Collapse
Affiliation(s)
- Doaa Nor Eldin
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanaa I. Fahim
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Heba Y. Ahmed
- Rodents Division, Department of Harmful Animals, Plant Protection Research Institute, Agriculture Research Center, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minya 61519, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
5
|
Cai X, Cai H, Wang J, Yang Q, Guan J, Deng J, Chen Z. Molecular pathogenesis of acetaminophen-induced liver injury and its treatment options. J Zhejiang Univ Sci B 2022; 23:265-285. [PMID: 35403383 DOI: 10.1631/jzus.b2100977] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acetaminophen, also known as N-acetyl-p-aminophenol (APAP), is commonly used as an antipyretic and analgesic agent. APAP overdose can induce hepatic toxicity, known as acetaminophen-induced liver injury (AILI). However, therapeutic doses of APAP can also induce AILI in patients with excessive alcohol intake or who are fasting. Hence, there is a need to understand the potential pathological mechanisms underlying AILI. In this review, we summarize three main mechanisms involved in the pathogenesis of AILI: hepatocyte necrosis, sterile inflammation, and hepatocyte regeneration. The relevant factors are elucidated and discussed. For instance, N-acetyl-p-benzoquinone imine (NAPQI) protein adducts trigger mitochondrial oxidative/nitrosative stress during hepatocyte necrosis, danger-associated molecular patterns (DAMPs) are released to elicit sterile inflammation, and certain growth factors contribute to liver regeneration. Finally, we describe the current potential treatment options for AILI patients and promising novel strategies available to researchers and pharmacists. This review provides a clearer understanding of AILI-related mechanisms to guide drug screening and selection for the clinical treatment of AILI patients in the future.
Collapse
Affiliation(s)
- Xiaopeng Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Huiqiang Cai
- Department of Clinical Medicine, University of Aarhus, Palle Juul-Jensens Boulevard 82, 8200 Aarhus N, Denmark
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qin Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jingwen Deng
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China. , .,Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China. ,
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
6
|
Zhang J, Hu C, Li X, Liang L, Zhang M, Chen B, Liu X, Yang D. Protective Effect of Dihydrokaempferol on Acetaminophen-Induced Liver Injury by Activating the SIRT1 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:705-718. [PMID: 33657990 DOI: 10.1142/s0192415x21500324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acetaminophen (APAP) overdose is the leading cause of acute liver failure (ALF) in the Western world, with limited treatment opportunities. 3,5,7,4[Formula: see text]-Tetrahydroxyflavanone (Dihydrokaempferol, DHK, Aromadendrin) is a flavonoid isolated from Chinese herbs and displays high anti-oxidant and anti-inflammatory capacities. In this study, we investigated the protective effect by DHK against APAP-induced liver injury in vitro and in vivo and the potential mechanism of action. Cell viability assays were used to determine the effects of DHK against APAP-induced liver injury. The levels of reactive oxygen species (ROS), serum alanine/aspartate aminotransferases (ALT/AST), liver myeloperoxidase (MPO), and malondialdehyde (MDA) were measured and analyzed to evaluate the effects of DHK on APAP-induced liver injury. Western blotting, immunofluorescence staining, RT-PCR, and Transmission Electron Microscope were carried out to detect the signaling pathways affected by DHK. Here, we found that DHK owned a protective effect on APAP-induced liver injury with a dose-dependent manner. Meanwhile, Western blotting showed that DHK promoted SIRT1 expression and autophagy, activated the NRF2 pathway, and inhibited the translocation of nuclear p65 (NF-[Formula: see text]B) in the presence of APAP. Furthermore, SIRT1 inhibitor EX-527 aggravated APAP-induced hepatotoxicity when treating with DHK. Molecular docking results suggested potential interaction between DHK and SIRT1. Taken together, our study demonstrates that DHK protects against APAP-induced liver injury by activating the SIRT1 pathway, thereby promoting autophagy, reducing oxidative stress injury, and inhibiting inflammatory responses.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China.,Shanghai TCM-Integrated Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional, Chinese Medicine, Shanghai 200082, P. R. China
| | - Cheng Hu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Xiulong Li
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Li Liang
- Department of Respiratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P. R. China
| | - Mingcai Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional, Chinese Medicine, Shanghai 201203, P. R. China
| | - Bo Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional, Chinese Medicine, Shanghai 201203, P. R. China
| | - Xinhua Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Dicheng Yang
- Department of Cardiovascular Surgery, Shanghai General Hospital Shanghai, Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| |
Collapse
|
7
|
Jdiaa SS, Abu-Alfa AK. The Case | Severe high-anion gap metabolic acidosis. Kidney Int 2020; 98:1625-1626. [PMID: 33276873 DOI: 10.1016/j.kint.2020.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Sara S Jdiaa
- Division of Nephrology and Hypertension, Department of Internal Medicine, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Ali K Abu-Alfa
- Division of Nephrology and Hypertension, Department of Internal Medicine, American University of Beirut Faculty of Medicine, Beirut, Lebanon; Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
8
|
Buinitskaya Y, Gurinovich R, Wlodaver CG, Kastsiuchenka S. Centrality of G6PD in COVID-19: The Biochemical Rationale and Clinical Implications. Front Med (Lausanne) 2020; 7:584112. [PMID: 33195336 PMCID: PMC7643021 DOI: 10.3389/fmed.2020.584112] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: COVID-19 is a novel and devastating disease. Its manifestations vary from asymptomatic to lethal. Moreover, mortality rates differ based on underlying health conditions and ethnicity. We investigated the biochemical rationale behind these observations using machine reasoning by the sci.AI system (https://sci.ai/). Facts were extracted and linked from publications available in nlm.nih.gov and Europe PMC to form the dataset which was validated by medical experts. Results: Based on the analysis of experimental and clinical data, we synthesized detailed biochemical pathways of COVID-19 pathogenesis which were used to explain epidemiological and clinical observations. Clinical manifestations and biomarkers are highlighted to monitor the course of COVID-19 and navigate treatment. As depicted in the Graphical Abstract, SARS-CoV-2 triggers a pro-oxidant (PO) response leading to the production of reactive oxygen species (ROS) as a normal innate defense. However, SARS-CoV-2's unique interference with the antioxidant (AO) system, through suppression of nitric oxide (NO) production in the renin- angiotensin-aldosterone system (RAAS), leads to an excessive inflammatory PO response. The excessive PO response becomes critical in cohorts with a compromised AO system such as patients with glucose-6-phosphate dehydrogenase deficiency (G6PDd) where NO and glutathione (GSH) mechanisms are impaired. G6PDd develops in patients with metabolic syndrome. It is mediated by aldosterone (Ald) which also increases specifically in COVID-19. Conclusion: G6PD is essential for an adequate immune response. Both G6PDd and SARS-CoV-2 compromise the AO system through the same pathways rendering G6PDd the Achilles' heel for COVID-19. Thus, the evolutionary antimalarial advantage of the G6PDd cohort can be a disadvantage against SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Clifford G Wlodaver
- Oklahoma University Health Sciences Center, Oklahoma City, OK, United States
| | - Siarhei Kastsiuchenka
- Anesthesiology Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Zhao L, Zhang J, Hu C, Wang T, Lu J, Wu C, Chen L, Jin M, Ji G, Cao Q, Jiang Y. Apigenin Prevents Acetaminophen-Induced Liver Injury by Activating the SIRT1 Pathway. Front Pharmacol 2020; 11:514. [PMID: 32425778 PMCID: PMC7212374 DOI: 10.3389/fphar.2020.00514] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/01/2020] [Indexed: 01/29/2023] Open
Abstract
Acetaminophen (APAP) overdose is the main cause of acute liver failure. Apigenin (API) is a natural dietary flavonol with high antioxidant capacity. Herein, we investigated protection by API against APAP-induced liver injury in mice, and explored the potential mechanism. Cell viability assays and mice were used to evaluate the effects of API against APAP-induced liver injury. Western blotting, immunofluorescence staining, RT-PCR, and Transmission Electron Microscope were carried out to determine the signalling pathways affected by API. Analysis of mouse serum levels of alanine/aspartate aminotransferase (ALT/AST), malondialdehyde (MDA), liver myeloperoxidase (MPO) activity, glutathione (GSH), and reactive oxygen species (ROS) revealed that API (80 mg/kg) owned protective effect on APAP-induced liver injury. Meanwhile, API ameliorated the decreased cell viability in L-02 cells incubated by APAP with a dose dependent. Furthermore, API promoted SIRT1 expression and deacetylated p53. Western blotting showed that API promoted APAP-induced autophagy, activated the NRF2 pathway, and inhibited the transcriptional activation of nuclear p65 in the presence of APAP. Furthermore, SIRT1 inhibitor EX-527 reduced protection by API against APAP-induced hepatotoxicity. Molecular docking results indicate potential interaction between API and SIRT1. API prevents APAP-induced liver injury by regulating the SIRT1-p53 axis, thereby promoting APAP-induced autophagy and ameliorating APAP-induced inflammatory responses and oxidative stress injury.
Collapse
Affiliation(s)
- Licong Zhao
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Second Clinical College, China Medical University, Shenyang, China
| | - Jiaqi Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Hu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wang
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juan Lu
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenqu Wu
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingming Jin
- Shanghai University of Medicine & Health Sciences of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Cao
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanye Jiang
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
van den Bersselaar LR, van den Brule JMD, van der Hoeven JG. Acetaminophen Use Concomitant with Long-Lasting Flucloxacillin Therapy: A Dangerous Combination. Eur J Case Rep Intern Med 2020; 7:001569. [PMID: 32665925 PMCID: PMC7350975 DOI: 10.12890/2020_001569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 11/16/2022] Open
Abstract
Acetaminophen and flucloxacillin both interfere with the γ-glutamyl cycle. Long-lasting concomitant use of flucloxacillin and acetaminophen can lead to 5-oxoproline accumulation and severe high anion gap metabolic acidosis. Females and patients with sepsis, impaired kidney and/or liver function, malnutrition, advanced age, congenital 5-oxoprolinase deficiency and supratherapeutic acetaminophen and flucloxacillin dosage are associated with increased risk. Therefore, a critical attitude towards the prescription of acetaminophen concomitant with flucloxacillin in these patients is needed. We present the case of a 79-year-old woman with severe 5-oxoprolinaemia after long-lasting treatment with flucloxacillin and acetaminophen, explaining the toxicological mechanism and risk factors, and we make recommendations for acetaminophen use in patients with long-lasting flucloxacillin treatment.
Collapse
|
11
|
Sohrabinezhad Z, Dastan D, Asl SS, Nili-Ahmadabadi A. Allium Jesdianum Extract Improve Acetaminophen-Induced Hepatic Failure through Inhibition of Oxidative/Nitrosative Stress. J Pharmacopuncture 2019; 22:239-247. [PMID: 31970021 PMCID: PMC6970575 DOI: 10.3831/kpi.2019.22.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/18/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
Objectives Allium jesdianum (Aj) is a medicinal plant that has highlighted pharmacological features. In this study, the effects of Aj extract were examined on acetaminophen (APAP)-induced hepatic failure in rats. Methods Methanolic fraction of hydro-alcoholic extract of Aj was obtained by silica gel column chromatography method. Animals were randomly divided into four groups each containing six rats and treated by gavage as follows: the first and second groups received normal saline, the third and fourth groups were received with 50 and 100 mg/kg of Aj extract, respectively. After two consecutive weeks, the groups 2–4 were given a single dose of APAP (2 g/kg). After 48 hours, blood and liver samples were collected for biochemical and histological examinations. Results The findings of the study demonstrated that APAP caused a significant increase in ALT (P < 0.001), AST (P < 0.001), LDH (P < 0.001), ALP (P < 0.001) serum levels, hepatic lipid peroxidation (LPO; P < 0.001) and nitric oxide (NO; P < 0.001). In this regard, APAP led to the depletion of the total antioxidant capacity (TAC; P < 0.001), glutathione and total thiol groups (TTGs; P < 0.001), and structural change in the liver. In the Aj extract groups, a considerable improvement was found in the hepatic function alongside the histopathologic changes. Conclusion This investigation indicated that the influential effects of Aj extract in APAP-induced hepatic failure might depend on its effect on improving oxidant/antioxidant balance in hepatic tissue.
Collapse
Affiliation(s)
- Zohreh Sohrabinezhad
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Dara Dastan
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Pharmacognosy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Nili-Ahmadabadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Abstract
Acetaminophen (APAP) is one of the most popular and safe pain medications worldwide. However, due to its wide availability, it is frequently implicated in intentional or unintentional overdoses where it can cause severe liver injury and even acute liver failure (ALF). In fact, APAP toxicity is responsible for 46% of all ALF cases in the United States. Early mechanistic studies in mice demonstrated the formation of a reactive metabolite, which is responsible for hepatic glutathione depletion and initiation of the toxicity. This insight led to the rapid introduction of N-acetylcysteine as a clinical antidote. However, more recently, substantial progress was made in further elucidating the detailed mechanisms of APAP-induced cell death. Mitochondrial protein adducts trigger a mitochondrial oxidant stress, which requires amplification through a MAPK cascade that ultimately results in activation of c-jun N-terminal kinase (JNK) in the cytosol and translocation of phospho-JNK to the mitochondria. The enhanced oxidant stress is responsible for the membrane permeability transition pore opening and the membrane potential breakdown. The ensuing matrix swelling causes the release of intermembrane proteins such as endonuclease G, which translocate to the nucleus and induce DNA fragmentation. These pathophysiological signaling mechanisms can be additionally modulated by removing damaged mitochondria by autophagy and replacing them by mitochondrial biogenesis. Importantly, most of the mechanisms have been confirmed in human hepatocytes and indirectly through biomarkers in plasma of APAP overdose patients. The extensive necrosis caused by APAP overdose leads to a sterile inflammatory response. Although recruitment of inflammatory cells is necessary for removal of cell debris in preparation for regeneration, these cells have the potential to aggravate the injury. This review touches on the newest insight into the intracellular mechanisms of APAP-induced cells death and the resulting inflammatory response. Furthermore, it discusses the translation of these findings to humans and the emergence of new therapeutic interventions.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
13
|
The potential role of pharmacogenomics and biotransformation in hypersensitivity reactions to paracetamol. Curr Opin Allergy Clin Immunol 2018; 18:302-309. [DOI: 10.1097/aci.0000000000000452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Acidose à la 5-oxoproline induite par le paracétamol : une cause rare d’acidose métabolique à trou anionique augmenté. Rev Med Interne 2018; 39:122-126. [DOI: 10.1016/j.revmed.2017.10.423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/02/2017] [Accepted: 10/18/2017] [Indexed: 11/23/2022]
|
15
|
Myers AL, Kawedia JD, Champlin RE, Kramer MA, Nieto Y, Ghose R, Andersson BS. Clarifying busulfan metabolism and drug interactions to support new therapeutic drug monitoring strategies: a comprehensive review. Expert Opin Drug Metab Toxicol 2017; 13:901-923. [PMID: 28766962 DOI: 10.1080/17425255.2017.1360277] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Busulfan (Bu) is an alkylating agent with a limited therapeutic margin and exhibits inter-patient variability in pharmacokinetics (PK). Despite decades of use, mechanisms of Bu PK-based drug-drug interactions (DDIs), as well as the negative downstream effects of these DDIs, have not been fully characterized. Areas covered: This article provides an overview of Bu PK, with a primary focus on how known and potentially unknown drug metabolism pathways influence Bu-associated DDIs. In addition, pharmacogenomics of Bu chemotherapy and Bu-related DDIs observed in the stem cell transplant clinic (SCT) are summarized. Finally the increasing importance of Bu therapeutic drug monitoring is highlighted. Expert opinion: Mechanistic studies of Bu metabolism have shown that in addition to GST isoenzymes, other oxidative enzymes (CYP, FMO) and ABC/MDR drug transporters likely contribute to the overall clearance of Bu. Despite many insights, results from clinical studies, especially in polypharmacy settings and between pediatric and adult patients, remain conflicting. Further basic science and clinical investigative efforts are required to fully understand the key factors determining Bu PK characteristics and its effects on complications after SCT. Improved TDM strategies are promising components to further investigate, for instance DDI mechanisms and patient outcomes, in the highly complex SCT treatment setting.
Collapse
Affiliation(s)
- Alan L Myers
- a Department of Pharmacy Research, Division of Pharmacy , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Jitesh D Kawedia
- a Department of Pharmacy Research, Division of Pharmacy , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Richard E Champlin
- b Department of Stem Cell Transplantation , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Mark A Kramer
- a Department of Pharmacy Research, Division of Pharmacy , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Yago Nieto
- b Department of Stem Cell Transplantation , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Romi Ghose
- c Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy , The University of Houston , Houston , TX , USA
| | - Borje S Andersson
- b Department of Stem Cell Transplantation , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
16
|
Berbee JK, Lammers LA, Krediet CTP, Fischer JC, Kemper EM. Metabolic acidosis caused by concomitant use of paracetamol (acetaminophen) and flucloxacillin? A case report and a retrospective study. Eur J Clin Pharmacol 2017; 73:1459-1465. [PMID: 28782093 PMCID: PMC5662679 DOI: 10.1007/s00228-017-2311-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/24/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE A patient was identified with severe metabolic acidosis, a high anion gap and 5-oxoproline accumulation, probably caused by the simultaneous use of paracetamol (acetaminophen) and flucloxacillin. We wanted to investigate the necessity to control the interaction between both drugs with an automatic alert system. METHODS To investigate the relevance of the interaction of paracetamol and flucloxacillin, a retrospective study was conducted. Data on paracetamol and flucloxacillin prescriptions and laboratory data (pH, Na+, HCO3-, Cl-, albumin and 5-oxoproline levels) were combined to assess the prevalence of acidosis, calculate the anion gap and analyse 5-oxoproline levels in clinically admitted patients using both drugs simultaneously. RESULTS In the 2-year study period, approximately 53,000 admissions took place in our hospital. One thousand and fifty-seven patients used paracetamol and flucloxacillin simultaneously, of which 51 patients (4.8%) had a serum pH ≤ 7.35. One patient, the same patient as presented in the case report, had a high anion gap and a toxic level of 5-oxoproline. CONCLUSION The prevalence of metabolic acidosis is very low and the only patient identified with the interaction was recognised during normal clinical care. We conclude that automatic alerts based on simultaneous use of paracetamol and flucloxacillin will generate too many signals. To recognise patients earlier and prevent severe outcomes, a warning system (clinical rule) based on paracetamol, flucloxacillin and pH measurement may be helpful. Early calculation of the anion gap can narrow the differential diagnosis of patients with metabolic acidosis and measurement of 5-oxoproline can explain acidosis due the interaction of paracetamol and flucloxacillin.
Collapse
Affiliation(s)
- J K Berbee
- Department of Hospital Pharmacy, Academic Medical Centre, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - L A Lammers
- Department of Hospital Pharmacy, Academic Medical Centre, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - C T P Krediet
- Department of Internal Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | - J C Fischer
- Department of Clinical Chemistry, Academic Medical Centre, Amsterdam, the Netherlands
| | - E M Kemper
- Department of Hospital Pharmacy, Academic Medical Centre, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|