1
|
Du J, Yu L, Yang X, Shao F, Xia J, Jin W, Zhang Y, Lei G, Wang Y, Li Y, Zhang J. Regulation of NCOA4-mediated iron recycling ameliorates paraquat-induced lung injury by inhibiting ferroptosis. Cell Commun Signal 2024; 22:146. [PMID: 38388414 PMCID: PMC10885609 DOI: 10.1186/s12964-024-01520-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Paraquat (PQ) is an irreplaceable insecticide in many countries for the advantage of fast-acting and broad-spectrum. However, PQ was classified as the most prevailing poisoning substance for suicide with no specific antidote. Therefore, it is imperative to develop more effective therapeutic agents for the treatment of PQ poisoning. In the present study, both the RNA-Seq and the application of various cell death inhibitors reflected that ferroptosis exerts a crucial regulatory role in PQ poisoning. Moreover, we found PQ strengthens lipid peroxidation as evidenced by different experimental approaches. Of note, pretreatment of iron chelation agent DFO could ameliorate the ferroptotic cell death and alleviate the ferroptosis-related events. Mechanistically, PQ treatment intensively impaired mitochondrial homeostasis, enhanced phosphorylation of AMPK, accelerated the autophagy flux and triggered the activation of Nuclear receptor coactivator 4-ferritin heavy chain (NCOA4-FTH) axis. Importantly, the activation of autophagy was observed prior to the degradation of ferritin, and inhibition of autophagy could inhibit the accumulation of iron caused by the ferritinophagy process. Genetic and pharmacological inhibition of ferritinophagy could alleviate the lethal oxidative events, and rescue the ferroptotic cell death. Excitingly, in the mouse models of PQ poisoning, both the administration of DFO and adeno-associated virus-mediated FTH overexpression significantly reduced PQ-induced ferroptosis and improved the pathological characteristics of pulmonary fibrosis. In summary, the current work provides an in-depth study on the mechanism of PQ intoxication, describes a framework for the further understanding of ferroptosis in PQ-associated biological processes, and demonstrates modulation of iron metabolism may act as a promising therapeutic agent for the management of PQ toxicity.
Collapse
Affiliation(s)
- Jing Du
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinyi Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fangchun Shao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yinhao Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
- Department of Clinical Research Center, Luqiao Second People's Hospital, Taizhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
2
|
Signaling pathways involved in paraquat-induced pulmonary toxicity: Molecular mechanisms and potential therapeutic drugs. Int Immunopharmacol 2022; 113:109301. [DOI: 10.1016/j.intimp.2022.109301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
3
|
Kennedy BE, Giacomantonio M, Murphy JP, Cutler S, Sadek M, Konda P, Paulo JA, Pathak GP, Renkens SH, Grieve S, Pol J, Gygi SP, Richardson C, Gaston D, Reiman A, Kroemer G, Elnenaei MO, Gujar SA. NAD+ depletion enhances reovirus-induced oncolysis in multiple myeloma. Mol Ther Oncolytics 2022; 24:695-706. [PMID: 35284625 PMCID: PMC8904403 DOI: 10.1016/j.omto.2022.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/17/2022] [Indexed: 11/26/2022] Open
Abstract
Cancer cell energy metabolism plays an important role in dictating the efficacy of oncolysis by oncolytic viruses. To understand the role of multiple myeloma metabolism in reovirus oncolysis, we performed semi-targeted mass spectrometry-based metabolomics on 12 multiple myeloma cell lines and revealed a negative correlation between NAD+ levels and susceptibility to oncolysis. Likewise, a negative correlation was observed between the activity of the rate-limiting NAD+ synthesis enzyme NAMPT and oncolysis. Indeed, depletion of NAD+ levels by pharmacological inhibition of NAMPT using FK866 sensitized several myeloma cell lines to reovirus-induced killing. The myelomas that were most sensitive to this combination therapy expressed a functional p53 and had a metabolic and transcriptomic profile favoring mitochondrial metabolism over glycolysis, with the highest synergistic effect in KMS12 cells. Mechanistically, U-13C-labeled glucose flux, extracellular flux analysis, multiplex proteomics, and cell death assays revealed that the reovirus + FK866 combination caused mitochondrial dysfunction and energy depletion, leading to enhanced autophagic cell death in KMS12 cells. Finally, the combination of reovirus and NAD+ depletion achieved greater antitumor effects in KMS12 tumors in vivo and patient-derived CD138+ multiple myeloma cells. These findings identify NAD+ depletion as a potential combinatorial strategy to enhance the efficacy of oncolytic virus-based therapies in multiple myeloma.
Collapse
|
4
|
Zhang D, Liu Z, Liu Q, Lan H, Peng J, Liu X, Liu W. Tenascin-C Participates Pulmonary Injury Induced by Paraquat Through Regulating TLR4 and TGF-β Signaling Pathways. Inflammation 2021; 45:222-233. [PMID: 34463846 DOI: 10.1007/s10753-021-01540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
This study was conducted to investigate the role of Tenascin-C (TNC) in paraquat (PQ)-induced lung injury in vivo and in vitro and explore its related mechanism during this process. Six- to eight-week-old male C57BL/6 mice were injected with 30 mg/kg PQ by intraperitoneal injection and sacrificed on 2 days, 7 days, 14 days, and 28 days after PQ administration. In vivo, we detected the expression of TNC at all time points of lung tissues in mice by reverse transcription-quantitative-polymerase chain reaction, western blotting, and immunohistochemistry. Expression of TLR4, NF-κB p65, TGF-β1, and α-SMA in lung tissues have also been tested. In vitro, siRNA was used to knock down TNC expression in A549 cells and TLR4, NF-κB p65, and TGF-β1 expressions were examined after PQ exposure. TNC expression increased in both lung tissues of mice model and A549 cells after PQ administration. In vivo, TNC mostly located at the extracellular matrix of thickened alveolar septum, especially at sites of injury, together with the increasing of TLR4, NF-κB p65, TGF-β1, and α-SMA. In vitro, PQ exposure also increased the expressions of TLR4, NF-κB p65, and TGF-β1 in A549 cells, but knocking down TNC gene expression obviously down-regulated the expressions of TLR4, NF-κB p65, NF-κB Pp65, and TGF-β1. The results of this study demonstrate, for the first time, that TNC participates in the development of lung injury induced by PQ poisoning. The role of TNC in this process is closely related to TLR4 and TGF-β signaling pathways.
Collapse
Affiliation(s)
- Di Zhang
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Zhi Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Qianqian Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Honghai Lan
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Jinjin Peng
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Xiaowei Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Wei Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China. .,Emergency Department, First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
He B, Wang X, Yang C, Zhu J, Jin Y, Fu Z. The regulation of autophagy in the pesticide-induced toxicity: Angel or demon? CHEMOSPHERE 2020; 242:125138. [PMID: 31670000 DOI: 10.1016/j.chemosphere.2019.125138] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 05/20/2023]
Abstract
Pesticides have become an essential tool for pest kill, weed control and microbiome inhibition for both agricultural and domestic use. However, with the massive use, pesticides can exist in soil, air and water, and sometimes even accumulate in the human or other mammals through food chains. Lots of researches have proven that pesticides possess toxicity to mammals on endocrine, neural and immune systems. Autophagy, as a conservative intracellular process, which is activated by stress-related signals, plays a pivotal role, either "angle" or "demon", in regulation of cell fate and function. Recent evidences in researches elucidated a strong link between the autophagy and the toxicity of pesticides. In this review, we summarized the previous researches which focus on the autophagy regulation in the pesticides-induced toxicity, and hope that this work can help us to discover a potential strategy for the treatment of the disease caused by pesticides.
Collapse
Affiliation(s)
- Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
6
|
Sun DZ, Song CQ, Xu YM, Wang R, Liu W, Liu Z, Dong XS. Involvement of PINK1/Parkin-mediated mitophagy in paraquat- induced apoptosis in human lung epithelial-like A549 cells. Toxicol In Vitro 2018; 53:148-159. [DOI: 10.1016/j.tiv.2018.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 08/19/2018] [Accepted: 08/19/2018] [Indexed: 12/31/2022]
|
7
|
Chloroquine attenuates paraquat-induced lung injury in mice by altering inflammation, oxidative stress and fibrosis. Int Immunopharmacol 2017; 46:16-22. [PMID: 28249220 DOI: 10.1016/j.intimp.2017.02.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 12/14/2022]
Abstract
Paraquat is one of the most extensively used herbicides and has high toxicity for humans and animals. However, there is no effective treatment for paraquat poisoning. The aim of the present study was to evaluate the effects of chloroquine on paraquat-induced lung injury in mice. Mice received a single intraperitoneal injection of paraquat and a daily intraperitoneal injection of the indicated dosages of chloroquine or dexamethasone. The histological changes, inflammation and oxidative stress in the lungs were examined at day 3, and the degree of pulmonary fibrosis was examined at day 28. H&E staining showed that chloroquine markedly attenuated lung injury induced by paraquat. In addition, the inflammatory responses induced by paraquat were inhibited after treatment with chloroquine, as indicated by the decreased number of leukocytes, the reduced levels of TNF-α, IL-1β and IL-6 in the bronchoalveolar lavage fluid, the reduced NO content, and downregulation of iNOS expression in lung tissues. No different effect was found between high-dose chloroquine and dexamethasone. Additionally, the treatment with chloroquine increased the activity of SOD and decreased the level of MDA in the lung tissues. The expressions of the anti-oxidative proteins, Nrf2, HO-1 and NQO1, were also upregulated by chloroquine treatment. The high-dose chloroquine was more effective than dexamethasone in its anti-oxidation ability. Finally, the results of Masson's staining illustrated that chloroquine markedly attenuated fibrosis in the paraquat-exposed lungs. Immunohistochemistry staining showed that the expressions of the pro-fibrotic proteins TGF-β and α-SMA were downregulated after treatment with chloroquine. In conclusion, chloroquine effectively attenuated paraquat-induced lung injury in mice.
Collapse
|