1
|
Ganguly K, Kishore U, Madan T. Interplay between C-type lectin receptors and microRNAs in cellular homeostasis and immune response. FEBS J 2020; 288:4210-4229. [PMID: 33085815 DOI: 10.1111/febs.15603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
C-type lectin receptors (CLRs) belong to the family of pattern recognition receptors (PRRs). They have a critical role to play in the regulation of a range of physiological functions including development, respiration, angiogenesis, inflammation, and immunity. CLRs can recognize distinct and conserved exogenous pathogen-associated as well as endogenous damage-associated molecular patterns. These interactions set off downstream signaling cascades, leading to the production of inflammatory mediators, activation of effector immune cells as well as regulation of the developmental and physiological homeostasis. CLR signaling must be tightly controlled to circumvent the excessive inflammatory burden and to maintain the cellular homeostasis. Recently, MicroRNAs (miRNAs) have been shown to be important regulators of expression of CLRs and their downstream signaling. The delicate balance between miRNAs and CLRs seems crucial in almost all aspects of multicellular life. Any dysregulations in the miRNA-CLR axes may lead to tumorigenesis or inflammatory diseases. Here, we present an overview of the current understanding of the central role of miRNAs in the regulation of CLR expression, profoundly impacting upon homeostasis and immunity, and thus, development of therapeutics against immune disorders.
Collapse
Affiliation(s)
- Kasturi Ganguly
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Taruna Madan
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
2
|
Hsieh MH, Ou CY, Hsieh WY, Kao HF, Lee SW, Wang JY, Wu LSH. Functional Analysis of Genetic Variations in Surfactant Protein D in Mycobacterial Infection and Their Association With Tuberculosis. Front Immunol 2018; 9:1543. [PMID: 30013576 PMCID: PMC6036787 DOI: 10.3389/fimmu.2018.01543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/21/2018] [Indexed: 01/02/2023] Open
Abstract
Surfactant proteins (SPs)-A and -D are C-type lectins of the collectin family and function in the clearance of infectious particles in the lungs. Some polymorphisms of SPs that give rise to amino acid changes have been found to affect their function. Several SP-A gene polymorphisms have been reported to be associated with respiratory infection diseases, such as tuberculosis (TB). However, the relationship between surfactant proteins D (SP-D) polymorphisms and TB is still unclear. To study the associations between SP-D polymorphisms and TB, the correlations of SP-D polymorphisms with TB were examined in a case-control study, which included 364 patients with TB and 177 control subjects. In addition, we cloned two major SP-D exonic polymorphism C92T (rs721917) and A538G (rs2243639) constructs and used these for in vitro assays. The effects of SP-D polymorphisms on agglutination and other interactions with Mycobacterium bovis bacillus Calmette-Guérin (M. bovis BCG) were evaluated. In comparison with SP-D 92C (amino acid residue 16, Threonine), our results showed that SP-D 92T (amino acid residue 16, Methionine) had a lower binding ability to M. bovis BCG, a lower capacity to inhibit phagocytosis, lesser aggregation, poorer survival of bacillus Calmette-Guérin (BCG)-infected MH-S cells, and less inhibition of intracellular growth of M. bovis BCG. The case-control association study showed that the 92T homozygous genotype was a risk factor for TB. However, a lesser effect was seen for polymorphism A538G. In conclusion, the results of functional and genetic analyses of SP-D variants consistently showed that the SP-D 92T variant increased susceptibility to TB, which further confirmed the role of SP-D in pulmonary innate immunity against mycobacterial infection.
Collapse
Affiliation(s)
- Miao-Hsi Hsieh
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Ying Ou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Yu Hsieh
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Fang Kao
- Allergy and Clinical Immunology Research (ACIR) Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Wei Lee
- Chest Medicine, General Taoyuan Hospital, Taoyuan, Taiwan
| | - Jiu-Yao Wang
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Respiratory Research, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lawrence S H Wu
- Allergy and Clinical Immunology Research (ACIR) Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
|
4
|
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5:18. [PMID: 29473039 PMCID: PMC5809447 DOI: 10.3389/fmed.2018.00018] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases is summarized. Perspectives on the development of SP-D therapy are addressed.
Collapse
Affiliation(s)
- Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Qaseem AS, Singh I, Pathan AA, Layhadi JA, Parkin R, Alexandra F, Durham SR, Kishore U, Shamji MH. A Recombinant Fragment of Human Surfactant Protein D Suppresses Basophil Activation and T-Helper Type 2 and B-Cell Responses in Grass Pollen-induced Allergic Inflammation. Am J Respir Crit Care Med 2017; 196:1526-1534. [PMID: 28915062 DOI: 10.1164/rccm.201701-0225oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Recombinant fragment of human surfactant protein D (rfhSP-D) has been shown to suppress house dust mite- and Aspergillus fumigatus-induced allergic inflammation in murine models. OBJECTIVES We sought to elucidate the effect of rfhSP-D on high-affinity IgE receptor- and CD23-mediated, grass pollen-induced allergic inflammatory responses. METHODS rfhSP-D, containing homotrimeric neck and lectin domains, was expressed in Escherichia coli BL21(λDE3)pLysS cells. Peripheral blood mononuclear cells and sera were obtained from individuals with grass pollen allergy (n = 27). The effect of rfhSP-D on basophil activation and histamine release was measured by flow cytometry. IgE-facilitated allergen binding and presentation were assessed by flow cytometry. T-helper cell type 2 (Th2) cytokines were measured in cell culture supernatants. The effect of rfhSP-D on IgE production by B cells when stimulated with CD40L, IL-4, and IL-21 was also determined. MEASUREMENTS AND MAIN RESULTS rfhSP-D bound to Phleum pratense in a dose- and calcium-dependent manner. Allergen-induced basophil responsiveness and histamine release were inhibited in the presence of rfhSP-D, as measured by CD63, CD203c (P = 0.0086, P = 0.04205), and intracellularly labeled diamine oxidase (P = 0.0003, P = 0.0148). The binding of allergen-IgE complexes to B cells was reduced by 51% (P = 0.002) in the presence of rfhSP-D. This decrease was concomitant with reduction in CD23 expression on B cells (P < 0.001). rfhSP-D suppressed allergen-driven CD27-CD4+CRTh2+ T-cell proliferation (P < 0.01), IL-4, and IL-5 levels (all P < 0.01). Moreover, rfhSP-D inhibited CD40L/IL-4- and IL-21-mediated IgE production (77.12%; P = 0.02) by B cells. CONCLUSIONS For the first time, to our knowledge, we show that rfhSP-D inhibited allergen-induced basophil responses at a single-cell level and suppressed CD23-mediated facilitated allergen presentation and Th2 cytokine production. In addition, rfhSP-D inhibited IgE synthesis by B cells, which is also a novel observation.
Collapse
Affiliation(s)
- Asif S Qaseem
- 1 Allergy and Clinical Immunology, Inflammation, Repair and Development, and Immune Modulation and Tolerance Group, National Heart and Lung Institute, Imperial College London, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; and.,2 Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Iesha Singh
- 1 Allergy and Clinical Immunology, Inflammation, Repair and Development, and Immune Modulation and Tolerance Group, National Heart and Lung Institute, Imperial College London, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; and
| | - Ansar A Pathan
- 2 Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Janice A Layhadi
- 1 Allergy and Clinical Immunology, Inflammation, Repair and Development, and Immune Modulation and Tolerance Group, National Heart and Lung Institute, Imperial College London, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; and
| | - Rebecca Parkin
- 1 Allergy and Clinical Immunology, Inflammation, Repair and Development, and Immune Modulation and Tolerance Group, National Heart and Lung Institute, Imperial College London, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; and
| | - Fedina Alexandra
- 1 Allergy and Clinical Immunology, Inflammation, Repair and Development, and Immune Modulation and Tolerance Group, National Heart and Lung Institute, Imperial College London, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; and
| | - Stephen R Durham
- 1 Allergy and Clinical Immunology, Inflammation, Repair and Development, and Immune Modulation and Tolerance Group, National Heart and Lung Institute, Imperial College London, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; and
| | - Uday Kishore
- 2 Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Mohamed H Shamji
- 1 Allergy and Clinical Immunology, Inflammation, Repair and Development, and Immune Modulation and Tolerance Group, National Heart and Lung Institute, Imperial College London, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; and
| |
Collapse
|
6
|
Schneider JP, Arkenau M, Knudsen L, Wedekind D, Ochs M. Lung remodeling in aging surfactant protein D deficient mice. Ann Anat 2017; 211:158-175. [DOI: 10.1016/j.aanat.2017.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/13/2023]
|
7
|
Barfod KK, Roggenbuck M, Al-Shuweli S, Fakih D, Sørensen SJ, Sørensen GL. Alterations of the murine gut microbiome in allergic airway disease are independent of surfactant protein D. Heliyon 2017; 3:e00262. [PMID: 28367508 PMCID: PMC5361934 DOI: 10.1016/j.heliyon.2017.e00262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/09/2017] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
Background SP-D is an important host defense lectin in innate immunity and SP-D deficient mice show several abnormal immune effects and are susceptible to allergen-induced airway disease. At the same time, host microbiome interactions play an important role in the development of allergic airway disease, and alterations to gut microbiota have been linked to airway disease through the gut-lung axis. Currently, it is unknown if the genotype (Sftpd-/- or Sftpd+/+) of the standard SP-D mouse model can affect the host microbiota to such an degree that it would overcome the cohousing effect on microbiota and interfere with the interpretation of immunological data from the model. Generally, little is known about the effect of the SP-D protein in itself and in combination with airway disease on the microbiota. In this study, we tested the hypothesis that microbiome composition would change with the lack of SP-D protein and presence of allergic airway disease in the widely used SP-D-deficient mouse model. Results We describe here for the first time the lung and gut microbiota of the SP-D mouse model with OVA induced allergic airway disease. After the challenge animals were killed and fecal samples were taken from the caecum and lungs were subjected to bronchoalveolar lavage for comparison of gut and lung microbiota by Illumina 16S rRNA gene sequencing. A significant community shift was observed in gut microbiota after challenge with OVA. However, the microbial communities were not significantly different between SP-D deficient and wild type mice from the same cages in either naïve or OVA treated animals. Wild type animals did however show the largest variation between mice. Conclusions Our results show that the composition of the microbiota is not influenced by the SP-D deficient genotype under naïve or OVA induced airway disease. However, OVA sensitization and pulmonary challenge did alter the gut microbiota, supporting a bidirectional lung-gut crosstalk. Future mechanistic investigations of the influence of induced allergic airway disease on gut microbiota are warranted.
Collapse
Affiliation(s)
- Kenneth K Barfod
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen O, Denmark
| | - Michael Roggenbuck
- University of Copenhagen, Department of Biology, Microbiology, Universitetsparken 15, 2100 Copenhagen O, Denmark
| | - Suzan Al-Shuweli
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen O, Denmark
| | - Dalia Fakih
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Laboratory of Immunology, Faculty of public health, Lebanese University, Fanar, Lebanon
| | - Søren J Sørensen
- University of Copenhagen, Department of Biology, Microbiology, Universitetsparken 15, 2100 Copenhagen O, Denmark
| | - Grith L Sørensen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Xiao R, Noël A, Perveen Z, Penn AL. In utero exposure to second-hand smoke activates pro-asthmatic and oncogenic miRNAs in adult asthmatic mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:190-199. [PMID: 26859758 DOI: 10.1002/em.21998] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
Exposures to environmental pollutants contribute to dysregulated microRNA (miRNA) expression profiles, which have been implicated in various diseases. Previously, we reported aggravated asthmatic responses in ovalbumin (OVA)-challenged adult mice that had been exposed in utero to second-hand smoke (SHS). Whether in utero SHS exposure dysregulates miRNA expression patterns in the adult asthma model has not been investigated. Pregnant BALB/c mice were exposed (days 6-19 of pregnancy) to SHS (10 mg/m(3)) or HEPA-filtered air. All offspring were sensitized and challenged with OVA (19-23 weeks) before sacrifice. RNA samples extracted from lung homogenates, were subjected to RNA sequencing (RNA-seq). RNA-seq identified nine miRNAs that were most significantly up-regulated by in utero SHS exposure. Among these nine, miR-155-5p, miR-21-3p, and miR-18a-5p were also highly correlated with pro-asthmatic Th2 cytokine levels in bronchoalveolar lavage fluid. Further analysis indicated that these up-regulated miRNAs shared common chromosome locations, particularly Chr 11C, with pro-asthmatic genes. These three miRNAs have also been characterized as oncogenic miRNAs (oncomirs). We cross-referenced miRNA-mRNA expression profiles and identified 16 tumor suppressor genes that were down-regulated in the in utero-exposed offspring and that are predicted targets of the up-regulated oncomirs. In conclusion, in utero SHS exposure activates pro-asthmatic genes and miRNAs, which colocalize at specific chromosome locations, in OVA-challenged adult mice. The oncogenic characteristics of the miRNAs and putative miRNA-mRNA regulatory networks suggest that the synergistic effect of in utero SHS exposure and certain adult irritants may promote an oncogenic milieu in mouse lungs via inhibition of miRNA-regulated tumor suppressor genes.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Zakia Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Arthur L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
9
|
Brandenberger C, Ochs M, Mühlfeld C. Assessing particle and fiber toxicology in the respiratory system: the stereology toolbox. Part Fibre Toxicol 2015; 12:35. [PMID: 26521139 PMCID: PMC4628359 DOI: 10.1186/s12989-015-0110-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 10/14/2015] [Indexed: 11/16/2022] Open
Abstract
The inhalation of airborne particles can lead to pathological changes in the respiratory tract. For this reason, toxicology studies on effects of inhalable particles and fibers often include an assessment of histopathological alterations in the upper respiratory tract, the trachea and/or the lungs. Conventional pathological evaluations are usually performed by scoring histological lesions in order to obtain "quantitative" information and an estimation of the severity of the lesion. This approach not only comprises a potential subjective bias, depending on the examiner's judgment, but also conveys the risk that mild alterations escape the investigator's eye. The most accurate way of obtaining unbiased quantitative information about three-dimensional (3D) features of tissues, cells, or organelles from two-dimensional physical or optical sections is by means of stereology, the gold standard of image-based morphometry. Nevertheless, it can be challenging to express histopathological changes by morphometric parameters such as volume, surface, length or number only. In this review we therefore provide an overview on different histopathological lesions in the respiratory tract associated with particle and fiber toxicology and on how to apply stereological methods in order to correctly quantify and interpret histological lesions in the respiratory tract. The article further aims at pointing out common pitfalls in quantitative histopathology and at providing some suggestions on how respiratory toxicology can be improved by stereology. Thus, we hope that this article will stimulate scientists in particle and fiber toxicology research to implement stereological techniques in their studies, thereby promoting an unbiased 3D assessment of pathological lesions associated with particle exposure.
Collapse
Affiliation(s)
- Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
10
|
Fakih D, Pilecki B, Schlosser A, Jepsen CS, Thomsen LK, Ormhøj M, Watson A, Madsen J, Clark HW, Barfod KK, Hansen S, Marcussen N, Jounblat R, Chamat S, Holmskov U, Sorensen GL. Protective effects of surfactant protein D treatment in 1,3-β-glucan-modulated allergic inflammation. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1333-43. [PMID: 26432866 DOI: 10.1152/ajplung.00090.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/18/2015] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein D (SP-D) is a pulmonary collectin important in lung immunity. SP-D-deficient mice (Sftpd(-/-)) are reported to be susceptible to ovalbumin (OVA)- and fungal allergen-induced pulmonary inflammation, while treatment with exogenous SP-D has therapeutic effects in such disease models. β-Glucans are a diverse group of polysaccharides previously suggested to serve as fungal ligands for SP-D. We set out to investigate if SP-D could interact with 1,3-β-glucan and attenuate allergic pulmonary inflammation in the presence of 1,3-β-glucan. Allergic airway disease was induced in Sftpd(-/-) and Sftpd(+/+) mice by OVA sensitization and subsequent challenge with OVA, 1,3-β-glucan, or OVA/1,3-β-glucan together. Mice in the combined treatment group were further treated with a high dose of recombinant fragment of human SP-D (rfhSP-D). We demonstrated direct interaction between SP-D and 1,3-β-glucan. OVA-induced mucous cell metaplasia was increased in Sftpd(-/-) mice, supporting previously reported protective effects of endogenous SP-D in allergy. OVA-induced parenchymal CCL11 levels and eosinophilic infiltration in bronchoalveolar lavage were unaffected by 1,3-β-glucan, but were reversed with rfhSP-D treatment. 1,3-β-Glucan treatment did, however, induce pulmonary neutrophilic infiltration and increased TNF-α levels in bronchoalveolar lavage, independently of OVA-induced allergy. This infiltration was also reversed by treatment with rfhSP-D. 1,3-β-Glucan reduced OVA-induced mucous cell metaplasia, T helper 2 cytokines, and IFN-γ production. rfhSP-D treatment further reduced mucous metaplasia and T helper 2 cytokine secretion to background levels. In summary, rfhSP-D treatment resulted in attenuation of both allergic inflammation and 1,3-β-glucan-mediated neutrophilic inflammation. Our data suggest that treatment with high-dose SP-D protects from mold-induced exacerbations of allergic asthma.
Collapse
Affiliation(s)
- Dalia Fakih
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Biology, Faculty of Sciences II, Lebanese University, Fanar, Lebanon; Laboratory of Immunology, Faculty of Public Health, Lebanese University, Fanar, Lebanon
| | - Bartosz Pilecki
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anders Schlosser
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christine S Jepsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Laura K Thomsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Maria Ormhøj
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Alastair Watson
- Department of Child Health, Sir Henry Wellcome Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jens Madsen
- Department of Child Health, Sir Henry Wellcome Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Howard W Clark
- Department of Child Health, Sir Henry Wellcome Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Kenneth K Barfod
- National Research Centre for the Working Environment, Copenhagen, Denmark; and
| | - Soren Hansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Niels Marcussen
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Rania Jounblat
- Department of Biology, Faculty of Sciences II, Lebanese University, Fanar, Lebanon; Laboratory of Immunology, Faculty of Public Health, Lebanese University, Fanar, Lebanon
| | - Soulaima Chamat
- Laboratory of Immunology, Faculty of Public Health, Lebanese University, Fanar, Lebanon
| | - Uffe Holmskov
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Grith L Sorensen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark;
| |
Collapse
|