1
|
Seke M, Zivkovic M, Stankovic A. Versatile applications of fullerenol nanoparticles. Int J Pharm 2024; 660:124313. [PMID: 38857663 DOI: 10.1016/j.ijpharm.2024.124313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Nanomaterials have become increasingly important over time as research technology has enabled the progressively precise study of materials at the nanoscale. Developing an understanding of how nanomaterials are produced and tuned allows scientists to utilise their unique properties for a variety of applications, many of which are already incorporated into commercial products. Fullerenol nanoparticles C60(OH)n, 2 ≤ n ≤ 44 are fullerene derivatives and are produced synthetically. They have good biocompatibility, low toxicity and no immunological reactivity. In addition, their nanometre size, large surface area to volume ratio, ability to penetrate cell membranes, adaptable surface that can be easily modified with different functional groups, drug release, high physical stability in biological media, ability to remove free radicals, magnetic and optical properties make them desirable candidates for various applications. This review comprehensively summarises the various applications of fullerenol nanoparticles in different scientific fields such as nanobiomedicine, including antibacterial and antiviral agents, and provides an overview of their use in agriculture and biosensor technology. Recommendations are also made for future research that would further elucidate the mechanisms of fullerenols actions.
Collapse
Affiliation(s)
- Mariana Seke
- Laboratory for Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O.Box 522, 11 000 Belgrade, Serbia.
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O.Box 522, 11 000 Belgrade, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O.Box 522, 11 000 Belgrade, Serbia
| |
Collapse
|
2
|
Zhang G, Fang H, Chang S, Chen R, Li L, Wang D, Liu Y, Sun R, Zhao Y, Li B. Fullerene [60] encapsulated water-soluble supramolecular cage for prevention of oxidative stress-induced myocardial injury. Mater Today Bio 2023; 21:100693. [PMID: 37404456 PMCID: PMC10316085 DOI: 10.1016/j.mtbio.2023.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023] Open
Abstract
A water-soluble cube-like supramolecular cage was constructed by an engagement of six molecules through a hydrophobic effect in the water. The obtained cage could perfectly encapsulate one fullerene C60 molecule inside of the cavity and significantly improve the water-solubility of the C60 without changing the original structure. The water-soluble complex was further applied to reduce the reactive oxygen species (R.O.S.) in cardiomyocytes (FMC84) through Akt/Nrf2/HO-1 pathway. Furthermore, in the mouse model of myocardial ischemia-reperfusion injury, the application of C60 was found to be effective in reducing myocardial injury and improving cardiac function. It also reduced the levels of R.O.S. in myocardial tissue, inhibited myocardial apoptosis, and mitigated myocardial inflammatory responses. The present study provides a new guideline for constructing water-soluble C60 and verifies the important role of C60 in preventing oxidative stress-related cardiovascular disease injury.
Collapse
Affiliation(s)
- Guanzhao Zhang
- Department of Cardiology, Binzhou Medical University, Zibo Central Hospital, NO.10, South Shanghai Road, Zibo, 255000, China
| | - Hui Fang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Shuting Chang
- Weifang Medical University, NO.7166, Baotong West Street, Weifang, 261053, China
| | - Renzeng Chen
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lanlan Li
- Center of Translational Medicine, Zibo Central Hospital, NO.10, South Shanghai Road, Zibo, 255000, China
| | - Danbo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yamei Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Bo Li
- Department of Cardiology, Binzhou Medical University, Zibo Central Hospital, NO.10, South Shanghai Road, Zibo, 255000, China
| |
Collapse
|
3
|
Iqbal J, Iqbal A, Mukhtar H, Jahangir K, Mashkoor Y, Zeeshan MH, Nadeem A, Ashraf A, Maqbool S, Sadiq SM, Lee KY. Cardioprotective Effects of Nanoparticles in Cardiovascular Diseases: A State-of-the-Art Review. Curr Probl Cardiol 2023; 48:101713. [PMID: 36967067 DOI: 10.1016/j.cpcardiol.2023.101713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 05/09/2023]
Abstract
It has been reported that death related to cardiovascular disease has increased up to 12.5% just in the past decade alone with various factors playing a role. In 2015 alone, it has been estimated that there were 422.7 million cases of CVD with 17.9 million deaths. Various therapies have been discovered to control and treat CVDs and their complications including reperfusion therapies and pharmacological approaches but many patients still progress to heart failure. Due to these proven adverse effects of existing therapies, various novel therapeutic techniques have emerged in the near past. Nano formulation is one of them. It is a practical therapeutic strategy to minimize pharmacological therapy's side effects and nontargeted distribution. Nanomaterials are suitable for treating CVDs due to their small size, which enables them to reach more sites of the heart and arteries. The biological safety, bioavailability, and solubility of the drugs have been increased due to the encapsulation of natural products and their derivatives of drugs.
Collapse
Affiliation(s)
- Javed Iqbal
- Department of Medicine, King Edward Medical University, Lahore, Punjab, Pakistan
| | - Ather Iqbal
- Department of Medicine, Holy Family Hospital, Rawalpindi, Punjab, Pakistan
| | - Hammad Mukhtar
- Department of Surgery, Rawalpindi Medical University, Rawalpindi, Punjab, Pakistan
| | - Kainat Jahangir
- Department of Medicine, Dow University of Health Sciences, Karachi, Sindh, Pakistan
| | - Yusra Mashkoor
- Department of Medicine, Dow University of Health Sciences, Karachi, Sindh, Pakistan
| | | | - Abdullah Nadeem
- Department of Medicine, Dow University of Health Sciences, Karachi, Sindh, Pakistan
| | - Ahmer Ashraf
- Department of Medicine, King Edward Medical University, Lahore, Punjab, Pakistan
| | - Shahzaib Maqbool
- Department of Medicine, Holy Family Hospital, Rawalpindi, Punjab, Pakistan
| | | | - Ka Yiu Lee
- Department of Health Sciences, Mid Sweden University, Sundsvall, Sweden.
| |
Collapse
|
4
|
Injac R. Potential Medical Use of Fullerenols After Two Decades of Oncology Research. Technol Cancer Res Treat 2023; 22:15330338231201515. [PMID: 37724005 PMCID: PMC10510368 DOI: 10.1177/15330338231201515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
Fullerenes are carbon molecules that are found in nature in various forms. They are composed of hexagonal and pentagonal rings that create closed structures. Almost 4 decades ago, fullerenes were identified in the form of C60 and C70, and following the award of the Nobel Prize in Chemistry for this discovery in 1996, many laboratories started working on their water-soluble derivatives that could be used in different industries, including pharmaceutical industries. One of the first fullerene forms that was the focus of different research groups was fullerenol, C60(OH)n (n = 2-44). Both in-vitro and in-vivo studies have shown that polyhydroxylate fullerene derivatives can potentially be used as either antioxidative agents or cytostatics (depending on their co-administration, forms, and concentration/dose) in biological systems. The current review aimed to present a critical view of the potential applications and limitations of fullerenols in oncology, as understood from the past 2 decades of research.
Collapse
Affiliation(s)
- Rade Injac
- Faculty of Pharmacy, Pharmaceutical Biology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Xu B, Ding Z, Hu Y, Zhang T, Shi S, Yu G, Qi X. Preparation and Evaluation of the Cytoprotective Activity of Micelles with DSPE-PEG-C60 as a Carrier Against Doxorubicin-Induced Cytotoxicity. Front Pharmacol 2022; 13:952800. [PMID: 35991873 PMCID: PMC9386048 DOI: 10.3389/fphar.2022.952800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
To deliver doxorubicin (DOX) with enhanced efficacy and safety in vivo, fullerenol-modified micelles were prepared with the amphiphilic polymer DSPE-PEG-C60 as a carrier, which was synthesized by linking C60(OH)22 with DSPE-PEG-NH2. Studies of its particle size, PDI, zeta potential, and encapsulation efficiency were performed. DOX was successfully loaded into the micelles, exhibiting a suitable particle size [97 nm, 211 nm, 260 nm, vector: DOX = 5:1, 10:1; 15:1 (W/W)], a negative zeta potential of around -30 mv, and an acceptable encapsulation efficiency [86.1, 95.4, 97.5%, vector: DOX = 5:1, 10:1; 15:1 (W/W)]. The release behaviors of DOX from DSPE-PEG-C60 micelles were consistent with the DSPE-PEG micelles, and it showed sustained release. There was lower cytotoxicity of DSPE-PEG-C60 micelles on normal cell lines (L02, H9c2, GES-1) than free DOX and DSPE-PEG micelles. We explored the protective role of DSPE-PEG-C60 on doxorubicin-induced cardiomyocyte damage in H9c2 cells, which were evaluated with a reactive oxygen species (ROS) assay kit, JC-1, and an FITC annexin V apoptosis detection kit for cellular oxidative stress, mitochondrial membrane potential, and apoptosis. The results showed that H9c2 cells exposed to DSPE-PEG-C60 micelles displayed decreased intracellular ROS, an increased ratio of red fluorescence (JC-1 aggregates) to green fluorescence (JC-1 monomers), and a lower apoptotic ratio than the control and DSPE-PEG micelle cells. In conclusion, the prepared DOX-loaded DSPE-PEG-C60 micelles have great promise for safe, effective tumor therapy.
Collapse
Affiliation(s)
- Beihua Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongpeng Ding
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Hu
- School of Pharmaceutical Sciences, Zhejiang Pharmaceutical University, Ningbo, China
| | - Ting Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Senlin Shi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People’s Hospital, School of Medicine, Zhejiang University, Shaoxing, China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Sarnatskaya V, Shlapa Y, Lykhova A, Brieieva O, Prokopenko I, Sidorenko A, Solopan S, Kolesnik D, Belous A, Nikolaev V. Structure and biological activity of particles produced from highly activated carbon adsorbent. Heliyon 2022; 8:e09163. [PMID: 35846471 PMCID: PMC9280586 DOI: 10.1016/j.heliyon.2022.e09163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/12/2021] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
Over the recent years, carbon particles have gained relevance in the field of biomedical application to diminish the level of endo-/exogenous intoxication and oxidative stress products, which occur at different pathological states. However, it is very important that such carbon particles, specially developed for parenteral administration or per oral usage, possess a high adsorption potential and can remove hazard toxic substances of the hydrophilic, hydrophobic and amphiphilic nature usually accumulated in the blood due to the disease, and be absolutely safe for normal living cells and tissues of organism. In this work, the stable monodisperse suspension containing very small-sized (Dhydro = 1125.3 ± 243.8 nm) and highly pure carbon particles with an excellent accepting ability were obtained. UV-spectra, fluorescence quenching constant and binding association constant were provided by the information about conformational alterations in an albumin molecule in presence of carbon particles, about the dynamic type of quenching process and low binding affinity between carbon and protein. The later was confirmed by DSC method. In vitro cell culture experiments showed that carbon particles did not possess any cytotoxic effect towards all testing the normal cell lines of different histogenesis, did not show genotoxic effects and were absolutely safe for experimental animals during and after their parenteral administration. These observations may provide more information about how to develop a safe preparation of carbon particles for different biomedical applications, in particular, as a mean for intracorporeal therapy of various heavy diseases accompanied by the increased endogenous intoxication and the level of oxidative stress.
Collapse
Affiliation(s)
- Veronika Sarnatskaya
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| | - Yuliia Shlapa
- V. I. Vernadsky Institute of General and Inorganic Chemistry of the NAS of Ukraine, 32/34, Palladina Ave., Kyiv, 03142, Ukraine
- Corresponding author.
| | - Alexandra Lykhova
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| | - Olga Brieieva
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| | - Igor Prokopenko
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| | - Alexey Sidorenko
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| | - Serhii Solopan
- V. I. Vernadsky Institute of General and Inorganic Chemistry of the NAS of Ukraine, 32/34, Palladina Ave., Kyiv, 03142, Ukraine
| | - Denis Kolesnik
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| | - Anatolii Belous
- V. I. Vernadsky Institute of General and Inorganic Chemistry of the NAS of Ukraine, 32/34, Palladina Ave., Kyiv, 03142, Ukraine
| | - Vladimir Nikolaev
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| |
Collapse
|
7
|
Effects of Metallic and Carbon-Based Nanomaterials on Human Pancreatic Cancer Cell Lines AsPC-1 and BxPC-3. Int J Mol Sci 2021; 22:ijms222212100. [PMID: 34829982 PMCID: PMC8623931 DOI: 10.3390/ijms222212100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer, due to its asymptomatic development and drug-resistance, is difficult to cure. As many metallic and carbon-based nanomaterials have shown anticancer properties, we decided to investigate their potential use as anticancer agents against human pancreatic adenocarcinoma. The objective of the study was to evaluate the toxic properties of the following nanomaterials: silver (Ag), gold (Au), platinum (Pt), graphene oxide (GO), diamond (ND), and fullerenol (C60(OH)40) against the cell lines BxPC-3, AsPC-1, HFFF-2, and HS-5. The potential cytotoxic properties were evaluated by the assessment of the cell morphology, cell viability, and cell membrane damage. The cancer cell responses to GO and ND were analysed by determination of changes in the levels of 40 different pro-inflammatory proteins. Our studies revealed that the highest cytotoxicity was obtained after the ND treatment. Moreover, BxPC-3 cells were more sensitive to ND than AsPC-1 cells due to the ND-induced ROS production. Furthermore, in both of the cancer cell lines, ND caused an increased level of IL-8 and a decreased level of TIMP-2, whereas GO caused only decreased levels of TIMP-2 and ICAM-1 proteins. This work provides important data on the toxicity of various nanoparticles against pancreatic adenocarcinoma cell lines.
Collapse
|
8
|
Xu B, Yuan L, Hu Y, Xu Z, Qin JJ, Cheng XD. Synthesis, Characterization, Cellular Uptake, and In Vitro Anticancer Activity of Fullerenol-Doxorubicin Conjugates. Front Pharmacol 2021; 11:598155. [PMID: 33568999 PMCID: PMC7868567 DOI: 10.3389/fphar.2020.598155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DOX) is one of the most commonly used chemotherapeutic agents for treating human cancer. However, its clinical use has been limited by DOX-induced cardiotoxicity as well as other side effects. In the present study, we designed and synthesized the fullerenol (FU)-DOX conjugates and folic acid (FA)-grafted FU-DOX conjugates for improving the selectivity and activity of DOX in cancer cells. We further characterized the physicochemical properties and examined the release kinetics, cellular uptake, and in vitro anticancer activities of FU-DOX and FA-FU-DOX. The results showed that FU-DOX and FA-FU-DOX had a mean diameter of <200 nm and a low polydispersity. Both FU-DOX and FA-FU-DOX exhibited pH sensitivity and their DOX release rates were higher at pH 5.9 vs. pH 7.4. The cellular uptake studies indicated that FU conjugation enhanced the intracellular accumulation of DOX in human hepatocellular carcinoma (HCC) cell lines (BEL-7402 and HepG2) and the immortalized normal human hepatocytes (L02). The conjugation of FA to FU-DOX further promoted the drug internalization in an FR-dependent manner and enhanced the cytotoxicity against HCC cells. In conclusion, the newly prepared FA-FU-DOX conjugates can optimize the safety and efficacy profile of DOX.
Collapse
Affiliation(s)
- Beihua Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yuan
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Hu
- School of Pharmaceutical Sciences, Zhejiang Pharmaceutical College, Ningbo, China
| | - Zhiyuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
9
|
Seke M, Markelic M, Morina A, Jovic D, Korac A, Milicic D, Djordjevic A. Synergistic mitotoxicity of chloromethanes and fullerene C 60 nanoaggregates in Daphnia magna midgut epithelial cells. PROTOPLASMA 2017; 254:1607-1616. [PMID: 27913906 DOI: 10.1007/s00709-016-1049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Adsorption of non-polar compounds by suspended fullerene nanoaggregates (nC60) may enhance their toxicity and affect the fate, transformation, and transport of non-polar compounds in the environment. The potential of stable fullerene nanoaggregates as contaminant carriers in aqueous systems and the influence of chloromethanes (trichloromethane and dichloromethane) were studied on the midgut epithelial cells of Daphnia magna by light and electron microscopy. The size and shape of fullerene nanoaggregates were observed and measured using dynamic light scattering, transmission electron microscopy, and low vacuum scanning electron microscopy. The nC60 in suspension appeared as a bulk of aggregates of irregular shape with a surface consisting of small clumps 20-30 nm in diameter. The presence of nC60 aggregates was confirmed in midgut lumen and epithelial cells of D. magna. After in vivo acute exposure to chloromethane, light and electron microscopy revealed an extensive cytoplasmic vacuolization with disruption and loss of specific structures of D. magna midgut epithelium (mitochondria, endoplasmic reticulum, microvilli, peritrophic membrane) and increased appearance of necrotic cells. The degree of observed changes depended on the type of treatment: trichloromethane (TCM) induced the most notable changes, whereas fullerene nanoaggregates alone had no negative effects. Transmission electron microscopy also indicated increased lysosomal degradation and severe peroxidative damages of enterocyte mitochondria following combined exposure to chloromethane and fullerene nanoaggregates. In conclusion, the adsorption of chloromethane by fullerene nanoaggregates enhances their toxicity and induces peroxidative mitochondrial damage in midgut enterocytes.
Collapse
Affiliation(s)
- Mariana Seke
- University of Belgrade, Institute of Nuclear Sciences "Vinca", Laboratory for Radiobiology and Molecular Genetics, Belgrade, Republic of Serbia
| | - Milica Markelic
- University of Belgrade, Faculty of Biology, Centre for Electron Microscopy, Belgrade, Republic of Serbia
| | - Arian Morina
- University of Belgrade, Faculty of Biology, Belgrade, Republic of Serbia
| | - Danica Jovic
- University of Novi Sad, Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, Novi Sad, Republic of Serbia
| | - Aleksandra Korac
- University of Belgrade, Faculty of Biology, Centre for Electron Microscopy, Belgrade, Republic of Serbia
| | - Dragana Milicic
- University of Belgrade, Faculty of Biology, Belgrade, Republic of Serbia.
| | - Aleksandar Djordjevic
- University of Novi Sad, Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, Novi Sad, Republic of Serbia
| |
Collapse
|
10
|
Jacevic V, Djordjevic A, Srdjenovic B, Milic-Tores V, Segrt Z, Dragojevic-Simic V, Kuca K. Fullerenol nanoparticles prevents doxorubicin-induced acute hepatotoxicity in rats. Exp Mol Pathol 2017; 102:360-369. [PMID: 28315688 DOI: 10.1016/j.yexmp.2017.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/14/2017] [Accepted: 03/14/2017] [Indexed: 01/16/2023]
Abstract
Doxorubicin (DOX), commonly used antineoplastic agent, affects bone marrow, intestinal tract and heart, but it also has some hepatotoxic effects. Main mechanism of its toxicity is the production of free reactive oxygen species. Polyhidroxilated C60 fullerene derivatives, fullerenol nanoparticles (FNP), act as free radical scavengers in in vitro systems. The aim of the study was to investigate potential FNP protective role against DOX-induced hepatotoxicity in rats. Experiments were performed on adult male Wistar rats. Animals were divided into five groups: (1) 0.9% NaCl (control), (2) 100mg/kg ip FNP, (3) 10mg/kg DOX iv, (4) 50mg/kg ip FNP 30min before 10mg/kg iv DOX, (5) 100mg/kg ip FNP 30min before 10mg/kg iv DOX. A general health condition, body and liver weight, TBARS level and antioxidative enzyme activity, as well as pathohistological examination of the liver tissue were conducted on days 2 and 14 of the study. FNP, applied alone, did not alter any examinated parameters. However, when used as a pretreatment it significantly increased survival rate, body and liver weight, and decreased TBARS level, antioxidative enzyme activity and hepatic damage score in DOX-treated rats. FNP administered at a dose of 100mg/kg significantly attenuated effects of doxorubicin administered in a single high dose in rats, concerning general condition, body and liver weight, lipid peroxidation level and antioxidative enzyme activity as well as structural alterations of the hepatic tissue.
Collapse
Affiliation(s)
- Vesna Jacevic
- Department of Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Aleksandar Djordjevic
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Science, University of Novi Sad, Novi Sad, Serbia
| | - Branislava Srdjenovic
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Vukosava Milic-Tores
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia; Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Zoran Segrt
- Department for Treatment, Military Medical Academy, Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Viktorija Dragojevic-Simic
- Centre for Clinical Pharmacology, Military Medical Academy, Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Kamil Kuca
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
11
|
Seke M, Petrovic D, Djordjevic A, Jovic D, Borovic ML, Kanacki Z, Jankovic M. Fullerenol/doxorubicin nanocomposite mitigates acute oxidative stress and modulates apoptosis in myocardial tissue. NANOTECHNOLOGY 2016; 27:485101. [PMID: 27811390 DOI: 10.1088/0957-4484/27/48/485101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fullerenol (C60(OH)24) is present in aqueous solutions in the form of polyanion nanoparticles with particles' size distribution within the range from 15 to 42 nm. In this research it is assumed that these features could enable fullerenol nanoparticles (FNPs) to bind positively charged molecules like doxorubicin (DOX) and serve as drug carriers. Considering this, fullerenol/doxorubicin nanocomposite (FNP/DOX) is formed and characterized by ultra-performance liquid chromatography tandem mass spectrometry, dynamic light scattering, atomic force microscopy and transmission electron microscopy. Measurements have shown that DOX did not significantly affect particle size (23 nm). It is also assumed that FNP/DOX could reduce the acute cardiotoxic effects of DOX in vivo (Wistar rats treated i.p.). In this study, quantitative real time polymerase chain reaction results have shown that treatment with DOX alone caused significant increase in mRNA levels of catalase (p < 0.05) enzyme indicating the presence of oxidative stress. This effect is significantly reduced by the treatment with FNP/DOX (p < 0.05). Furthermore, mRNA levels of antiapoptotic enzyme (Bcl-2) are significantly increased (p < 0.05) in all treated groups, particularly where FNP/DOX was applied, suggesting cell resistance to apoptosis. Moreover, ultrastructural analysis has shown the absence of myelin figures within the mitochondria in the heart tissue with FNP/DOX treatment, indicating reduction of oxidative stress. Hence, our results have implied that FNP/DOX is generally less harmful to the heart compared to DOX.
Collapse
Affiliation(s)
- Mariana Seke
- Institute of Nuclear Sciences 'Vinca', University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|