1
|
Yi Q, He S, Liao K, Yue Z, Mei L. Nanoparticles integrated with mild photothermal therapy and oxaliplatin for tumor chemotherapy and immunotherapy. Nanomedicine (Lond) 2024; 19:841-854. [PMID: 38436253 DOI: 10.2217/nnm-2023-0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Aims: Preparation and evaluation of nanoparticles for tumor chemotherapy and immunotherapy mild photothermal therapy and oxaliplatin. Methods: The double emulsion method was used for nanoparticle preparations. Polydopamine was deposited on the surface, which was further modified with folic acid. Cytotoxicity assays were carried out by cell counting kit-8. In vivo antitumor assays were carried out on 4T1 tumor-bearing mice. Results: The nanoparticles exhibited a 190 nm-diameter pomegranate-like sphere, which could increase temperature to 43-46°C. In vivo distribution showed enhanced accumulation. The nanoparticles generated stronger immunogenic cell death effects. By stimulating the maturation of dendritic cells, mild photothermal therapy combined with oxaliplatin significantly increased the antitumor effect by a direct killing effect and activation of immunotherapy. Conclusion: This study provided a promising strategy of combination therapy for tumors.
Collapse
Affiliation(s)
- Qiong Yi
- Traditional Chinese Medicine Hospital of Meishan, Meishan, 620010, China
| | - Shumin He
- Affiliated Meishan Hospital of Chengdu University of TCM, Meishan, 620010, China
| | - Kai Liao
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Zongxiang Yue
- Traditional Chinese Medicine Hospital of Meishan, Meishan, 620010, China
| | - Ling Mei
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
2
|
Huang Z, Wu L, Wang W, Wang W, Fu F, Zhang X, Huang Y, Pan X, Wu C. Major difference in particle size, minor difference in release profile: a case study of solid lipid nanoparticles. Pharm Dev Technol 2021; 26:1110-1119. [PMID: 34694203 DOI: 10.1080/10837450.2021.1998114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/29/2023]
Abstract
Solid lipid nanoparticles (SLN) have been widely used in a variety of drug delivery routes, which have the outstanding advantage of controlled drug release. The release of SLN is dominated by many factors, among which the particle size of SLN is a critical one. The aim of this project was to explore the relationship between drug release profile and particle size of SLN. SLN were synthesized via the hot high-pressure homogenization (HPH) method, budesonide (BUD) was used as the model drug, and BUD-SLN1-BUD-SLN4 with increasing particle size was obtained, i.e. 120, 240, 360, and 480 nm. The prepared SLN has good encapsulation efficiency, drug loading capacity, and stability. In vitro release behavior studies showed that the cumulative release of BUD-SLN in Tris-Maleate (Tris-M) media was negligible, while that in Tris-M plus pancreatin media or Tris-M-ethanol media obeyed Ritger-Peppas model or first-order kinetic model, respectively. Noticeably, the release behavior of SLN was to some extent related to the average particle size of SLN, but the correlation was insignificant when the intersection degree of particle size distribution was great. This study provides a new idea for the understanding of in vitro release of SLN and has a certain referencing value for the research and development of novel nanomedicines.
Collapse
Affiliation(s)
| | - Linjing Wu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wenhua Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Fangqin Fu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Parvathaneni V, Kulkarni NS, Chauhan G, Shukla SK, Elbatanony R, Patel B, Kunda NK, Muth A, Gupta V. Development of pharmaceutically scalable inhaled anti-cancer nanotherapy - Repurposing amodiaquine for non-small cell lung cancer (NSCLC). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111139. [PMID: 32600728 PMCID: PMC11938939 DOI: 10.1016/j.msec.2020.111139] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022]
Abstract
New drug and dosage form development faces significant challenges, especially in oncology, due to longer development cycle and associated scale-up complexities. Repurposing of existing drugs with potential anti-cancer activity into new therapeutic regimens provides a feasible alternative. In this project, amodiaquine (AQ), an anti-malarial drug, has been explored for its anti-cancer efficacy through formulating inhalable nanoparticulate systems using high-pressure homogenization (HPH) with scale-up feasibility and high reproducibility. A 32 multifactorial design was employed to better understand critical processes (probe homogenization speed while formulating coarse emulsion) and formulation parameters (concentration of cationic polymer in external aqueous phase) so as to ensure product quality with improved anticancer efficacy in non-small cell lung cancer (NSCLC). Optimized AQ loaded nanoparticles (AQ NP) were evaluated for physicochemical properties, stability profile, in-vitro aerosol deposition behavior, cytotoxic potential against NSCLC cells in-vitro and in 3D simulated tumor spheroid model. The highest probe homogenization speed (25,000 rpm) resulted in lower particle size. Incorporation of cationic polymer, polyethylenimine (0.5% w/v) resulted in high drug loading efficiencies at optimal drug quantity of 5 mg. Formulated nanoparticles (liquid state) exhibited an aerodynamic diameter of 4.7 ± 0.1 μm and fine particle fraction of 81.0 ± 9.1%, indicating drug deposition in the respirable airways. Cytotoxicity studies in different NSCLC cell lines revealed significant reduction in IC50 values with AQ-loaded nanoparticles compared to plain drug, along with significant cell migration inhibition (scratch assay) and reduced % colony growth (clonogenic assay) in A549 cells with AQ NP. Moreover, 3D simulated spheroid studies revealed efficacy of nanoparticles in penetration to tumor core, and growth inhibition. AQ's autophagy inhibition ability significantly increased (increased LC3B-II levels) with nanoparticle encapsulation, along with moderate improvement in apoptosis induction (Caspase-3 levels). No impact was observed on HUVEC angiogenesis suggesting alternative anticancer mechanisms. To conclude, amodiaquine can be a promising candidate for repurposing to treat NSCLC while delivering inhalable nanoparticles developed using a scalable HPH process. Despite the involvement of complex parameters, application of DoE has simplified the process of product and process optimization.
Collapse
Affiliation(s)
- Vineela Parvathaneni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John's University, Queens, NY 11439, USA
| | - Nishant S Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John's University, Queens, NY 11439, USA
| | - Gautam Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John's University, Queens, NY 11439, USA
| | - Snehal K Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John's University, Queens, NY 11439, USA
| | - Rasha Elbatanony
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John's University, Queens, NY 11439, USA; Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University of Egypt, New Cairo 11835, Egypt
| | | | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John's University, Queens, NY 11439, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
4
|
Paulo F, Santos L. Design of experiments for microencapsulation applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1327-1340. [PMID: 28532010 DOI: 10.1016/j.msec.2017.03.219] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/07/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
Microencapsulation techniques have been intensively explored by many research sectors such as pharmaceutical and food industries. Microencapsulation allows to protect the active ingredient from the external environment, mask undesired flavours, a possible controlled release of compounds among others. The purpose of this review is to provide a background of design of experiments in microencapsulation research context. Optimization processes are required for an accurate research in these fields and therefore, the right implementation of micro-sized techniques at industrial scale. This article critically reviews the use of the response surface methodologies in pharmaceutical and food microencapsulation research areas. A survey of optimization procedures in the literature, in the last few years is also presented.
Collapse
Affiliation(s)
- Filipa Paulo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
5
|
Madgulkar A, Bhalekar MR, Dikpati AA. Improving oral bioavailability of acyclovir using nanoparticulates of thiolated xyloglucan. Int J Biol Macromol 2016; 89:689-99. [DOI: 10.1016/j.ijbiomac.2016.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 11/26/2022]
|
6
|
Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm 2015; 496:173-90. [DOI: 10.1016/j.ijpharm.2015.10.057] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022]
|
7
|
Loh ZH, Samanta AK, Sia Heng PW. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2014.12.006] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
8
|
Conjugated linolenic acid nanoparticles inhibit hypercholesterolemia induced by feeding a high-fat diet in male albino rats. Journal of Food Science and Technology 2013. [DOI: 10.1007/s13197-013-0974-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|