1
|
Panigrahi SK, Das S, Majumdar S. Unveiling the potentials of hydrophilic and hydrophobic polymers in microparticle systems: Opportunities and challenges in processing techniques. Adv Colloid Interface Sci 2024; 326:103121. [PMID: 38457900 DOI: 10.1016/j.cis.2024.103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
Conventional drug delivery systems are associated with various shortcomings, including low bioavailability and limited control over release. Biodegradable polymeric microparticles have emerged as versatile carriers in drug delivery systems addressing all these challenges. This comprehensive review explores the dynamic landscape of microparticles, considering the role of hydrophilic and hydrophobic materials. Within the continuously evolving domain of microparticle preparation methods, this review offers valuable insights into the latest advancements and addresses the factors influencing microencapsulation, which is pivotal for harnessing the full potential of microparticles. Exploration of the latest research in this dynamic field unlocks the possibilities of optimizing microencapsulation techniques to produce microparticles of desired characteristics and properties for different applications, which can help contribute to the ongoing evolution in the field of pharmaceutical science.
Collapse
Affiliation(s)
- Subrat Kumar Panigrahi
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India
| | - Sougat Das
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India.
| |
Collapse
|
2
|
Feng H, Linders J, Cantore M, Fabrizi J, Kirsten A, Myszkowska S, Hillen E, Uteschil F, Buchholz S, Hermsen A, Garvin MD, Ferenz KB, Mayer C. Cross-linked Triblock Peptide Capsules as Potential Oxygen Carriers. ChemistryOpen 2024; 13:e202300282. [PMID: 38471961 PMCID: PMC11004465 DOI: 10.1002/open.202300282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Perfluorodecalin (PFD)-filled capsules have been studied for over 15 years as artificial oxygen carriers. However, none of these capsules combines good biocompatibility, good mechanical stability and dispersion stability. Here we propose to use synthetic triblock peptides containing a central block of cysteine units as a cross-linking shell material for capsules with both good biocompatibility and stability. Together with outer aspartate units and inner phenylalanine units, the resulting amphiphilic triblock peptides can encapsulate PFD efficiently to prepare capsules with a suitable diameter, a certain mechanical strength, a large diffusion constant, fast gas exchange rates, and little cytotoxicity. Given the above advantages, these PFD-filled peptide capsules are very promising as potential artificial oxygen carriers.
Collapse
Affiliation(s)
- Huayang Feng
- Institute for Physical ChemistryCeNIDEUniversity of Duisburg-Essen45141EssenGermany
| | - Jürgen Linders
- Institute for Physical ChemistryCeNIDEUniversity of Duisburg-Essen45141EssenGermany
| | - Miriam Cantore
- Institute of PhysiologyUniversity Hospital EssenCeNIDEUniversity of Duisburg-Essen45147EssenGermany
| | - Jonas Fabrizi
- Institute of Inorganic Chemistry and Structural ChemistryHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Annika Kirsten
- Institute for Physical ChemistryCeNIDEUniversity of Duisburg-Essen45141EssenGermany
| | - Sascha Myszkowska
- Institute for Physical ChemistryCeNIDEUniversity of Duisburg-Essen45141EssenGermany
| | - Eva Hillen
- Institute of PhysiologyUniversity Hospital EssenCeNIDEUniversity of Duisburg-Essen45147EssenGermany
| | - Florian Uteschil
- Applied Analytical ChemistryUniversity of Duisburg-Essen45141EssenGermany
| | - Sebastian Buchholz
- Institute for Technical ChemistryUniversity of Duisburg-Essen45141EssenGermany
| | - Andrea Hermsen
- Institute for Physical ChemistryCeNIDEUniversity of Duisburg-Essen45141EssenGermany
- Department of Chemistry and ILOCNiederrhein University of Applied Sciences47805KrefeldGermany
| | - Maria Davila Garvin
- Institute for Physical ChemistryCeNIDEUniversity of Duisburg-Essen45141EssenGermany
| | - Katja Bettina Ferenz
- Institute of PhysiologyUniversity Hospital EssenCeNIDEUniversity of Duisburg-Essen45147EssenGermany
| | - Christian Mayer
- Institute for Physical ChemistryCeNIDEUniversity of Duisburg-Essen45141EssenGermany
| |
Collapse
|
3
|
Sheffey VV, Siew EB, Tanner EEL, Eniola‐Adefeso O. PLGA's Plight and the Role of Stealth Surface Modification Strategies in Its Use for Intravenous Particulate Drug Delivery. Adv Healthc Mater 2022; 11:e2101536. [PMID: 35032406 PMCID: PMC9035064 DOI: 10.1002/adhm.202101536] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/31/2021] [Indexed: 12/17/2022]
Abstract
Numerous human disorders can benefit from targeted, intravenous (IV) drug delivery. Polymeric nanoparticles have been designed to undergo systemic circulation and deliver their therapeutic cargo to target sites in a controlled manner. Poly(lactic-co-glycolic) acid (PLGA) is a particularly promising biomaterial for designing intravenous drug carriers due to its biocompatibility, biodegradability, and history of clinical success across other routes of administration. Despite these merits, PLGA remains markedly absent in clinically approved IV drug delivery formulations. A prominent factor in PLGA particles' inability to succeed intravenously may lie in the hydrophobic character of the polyester, leading to the adsorption of serum proteins (i.e., opsonization) and a cascade of events that end in their premature clearance from the bloodstream. PEGylation, or surface-attached polyethylene glycol chains, is a common strategy for shielding particles from opsonization. Polyethylene glycol (PEG) continues to be regarded as the ultimate "stealth" solution despite the lack of clinical progress of PEGylated PLGA carriers. This review reflects on some of the reasons for the clinical failure of PLGA, particularly the drawbacks of PEGylation, and highlights alternative surface coatings on PLGA particles. Ultimately, a new approach will be needed to harness the potential of PLGA nanoparticles and allow their widespread clinical adoption.
Collapse
Affiliation(s)
- Violet V. Sheffey
- Macromolecular Science and Engineering Program University of Michigan Ann Arbor NCRC Building 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
| | - Emily B. Siew
- Department of Chemical Engineering University of Michigan Ann Arbor NCRC 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
| | - Eden E. L. Tanner
- Department of Chemistry and Biochemistry University of Mississippi 179 Coulter Hall University MS 38677 USA
| | - Omolola Eniola‐Adefeso
- Macromolecular Science and Engineering Program University of Michigan Ann Arbor NCRC Building 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
- Department of Chemical Engineering University of Michigan Ann Arbor NCRC 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
| |
Collapse
|
4
|
Brannon ER, Kelley WJ, Newstead MW, Banka AL, Uhrich KE, O’Connor CE, Standiford TJ, Eniola-Adefeso O. Polysalicylic Acid Polymer Microparticle Decoys Therapeutically Treat Acute Respiratory Distress Syndrome. Adv Healthc Mater 2022; 11:e2101534. [PMID: 34881524 PMCID: PMC8986552 DOI: 10.1002/adhm.202101534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/03/2021] [Indexed: 01/13/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) remain problematic due to high mortality rates and lack of effective treatments. Neutrophilic injury contributes to mortality in ALI/ARDS. Here, technology for rapid ARDS intervention is developed and evaluated, where intravenous salicylic acid-based polymer microparticles, i.e., Poly-Aspirin (Poly-A), interfere with neutrophils in blood, reducing lung neutrophil infiltration and injury in vivo in mouse models of ALI/ARDS. Importantly, Poly-A particles reduce multiple inflammatory cytokines in the airway and bacterial load in the bloodstream in a live bacteria lung infection model of ARDS, drastically improving survival. It is observed that phagocytosis of the Poly-A microparticles, with salicylic acid in the polymer backbone, alters the neutrophil surface expression of adhesion molecules, potentially contributing to their added therapeutic benefits. Given the proven safety profile of the microparticle degradation products-salicylic acid and adipic acid-it is anticipated that the Poly-A particles represent a therapeutic strategy in ARDS with a rare opportunity for rapid clinical translation.
Collapse
Affiliation(s)
- Emma R. Brannon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
| | - William J. Kelley
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
| | | | - Alison L. Banka
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
| | - Kathryn E. Uhrich
- Department of Chemistry, University of California Riverside, Riverside, CA
| | | | | | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| |
Collapse
|
5
|
Feng H, Linders J, Myszkowska S, Mayer C. Capsules from synthetic diblock-peptides as potential artificial oxygen carriers. J Microencapsul 2021; 38:276-284. [PMID: 33722172 DOI: 10.1080/02652048.2021.1903594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The design of an encapsulation system consisting of a synthetic peptide which is fully biodegradable into non-toxic constituents. This system should be capable of encapsulating perfluorinated hydrocarbons and should be a promising basis for oxygen carriers to be used as artificial blood replacement. A diblock-peptide is synthesised following a phosgene-free method and characterised by 1H-NMR. Subsequently, this diblock-peptide is self-assembled with perfluorodecalin (PFD) to form PFD-filled capsules as potential artificial oxygen carriers allowing for rapid oxygen uptake and release. The diblock-peptide Bu-PAsp10-PPhe10 is successfully synthesised and used to encapsulate PFD. The capsules have a spherical shape with an average diameter of 360 nm in stable aqueous dispersion. NMR measurements prove their physical capability for reversible uptake and release of oxygen. The resulting capsules are expected to be fully biodegradable and possibly could act as oxygen carriers for artificial blood replacement.
Collapse
Affiliation(s)
- Huayang Feng
- Institute for Physical Chemistry, CeNIDE, University of Duisburg-Essen, Essen, Germany
| | - Jürgen Linders
- Institute for Physical Chemistry, CeNIDE, University of Duisburg-Essen, Essen, Germany
| | - Sascha Myszkowska
- Institute for Physical Chemistry, CeNIDE, University of Duisburg-Essen, Essen, Germany
| | - Christian Mayer
- Institute for Physical Chemistry, CeNIDE, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
6
|
Perfluorocarbon-based oxygen carriers: from physics to physiology. Pflugers Arch 2020; 473:139-150. [PMID: 33141239 PMCID: PMC7607370 DOI: 10.1007/s00424-020-02482-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/29/2022]
Abstract
Developing biocompatible, synthetic oxygen carriers is a consistently challenging task that researchers have been pursuing for decades. Perfluorocarbons (PFC) are fascinating compounds with a huge capacity to dissolve gases, where the respiratory gases are of special interest for current investigations. Although largely chemically and biologically inert, pure PFCs are not suitable for injection into the vascular system. Extensive research created stable PFC nano-emulsions that avoid (i) fast clearance from the blood and (ii) long organ retention time, which leads to undesired transient side effects. PFC-based oxygen carriers (PFOCs) show a variety of application fields, which are worthwhile to investigate. To understand the difficulties that challenge researchers in creating formulations for clinical applications, this review provides the physical background of PFCs’ properties and then illuminates the reasons for instabilities of PFC emulsions. By linking the unique properties of PFCs and PFOCs to physiology, it elaborates on the response, processing and dysregulation, which the body experiences through intravascular PFOCs. Thereby the reader will receive a scientific and easily comprehensible overview why PFOCs are precious tools for so many diverse application areas from cancer therapeutics to blood substitutes up to organ preservation and diving disease.
Collapse
|
7
|
Schakowski KM, Linders J, Ferenz KB, Kirsch M. Synthesis and characterisation of aqueous haemoglobin-based microcapsules coated by genipin-cross-linked albumin. J Microencapsul 2020; 37:193-204. [PMID: 31950867 DOI: 10.1080/02652048.2020.1715498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bovine serum albumin (BSA)-coated haemoglobin (Hb)-microcapsules prepared by co-precipitation of Hb and MnCO3 may present an alternative type of artificial blood substitute. Prepared microcapsules were analysed by Scanning electron microscopy (SEM) and Respirometry, cytotoxicity was evaluated by addition of microcapsules to murine fibroblast-derived cell line L929 (American Type Culture Collection, NCTC clone 929 of strain L). The capsules come along with a mean diameter of approximately 0.6 μm and a mean volume of 1.13 × 10-19 L, thus an average human red blood cell with a volume of 9 × 10-14 L is about 800,000 times bigger. Hb-microcapsules are fully regenerable by ascorbic acid and maintain oxygen affinity because oxygen is able to pass the BSA wall of the capsules and thereby binding to the ferrous iron of the haemoglobin entity. Therefore, these microcapsules present a suitable type of potential artificial haemoglobin-based oxygen carrier (HbOC).
Collapse
Affiliation(s)
- Kai Melvin Schakowski
- Institute of Physiological Chemistry, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Jürgen Linders
- Department of Physical Chemistry, University of Duisburg-Essen, Essen, Germany.,Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Duisburg, Germany
| | - Katja Bettina Ferenz
- Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Duisburg, Germany.,Institute of Physiology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Michael Kirsch
- Institute of Physiological Chemistry, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| |
Collapse
|
8
|
Mayer D, Ferenz KB. Perfluorocarbons for the treatment of decompression illness: how to bridge the gap between theory and practice. Eur J Appl Physiol 2019; 119:2421-2433. [PMID: 31686213 PMCID: PMC6858394 DOI: 10.1007/s00421-019-04252-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
Decompression illness (DCI) is a complex clinical syndrome caused by supersaturation of respiratory gases in blood and tissues after abrupt reduction in ambient pressure. The resulting formation of gas bubbles combined with pulmonary barotrauma leads to venous and arterial gas embolism. Severity of DCI depends on the degree of direct tissue damage caused by growing bubbles or indirect cell injury by impaired oxygen transport, coagulopathy, endothelial dysfunction, and subsequent inflammatory processes. The standard therapy of DCI requires expensive and not ubiquitously accessible hyperbaric chambers, so there is an ongoing search for alternatives. In theory, perfluorocarbons (PFC) are ideal non-recompressive therapeutics, characterized by high solubility of gases. A dual mechanism allows capturing of excess nitrogen and delivery of additional oxygen. Since the 1980s, numerous animal studies have proven significant benefits concerning survival and reduction in DCI symptoms by intravenous application of emulsion-based PFC preparations. However, limited shelf-life, extended organ retention and severe side effects have prevented approval for human usage by regulatory authorities. These negative characteristics are mainly due to emulsifiers, which provide compatibility of PFC to the aqueous medium blood. The encapsulation of PFC with amphiphilic biopolymers, such as albumin, offers a new option to achieve the required biocompatibility avoiding toxic emulsifiers. Recent studies with PFC nanocapsules, which can also be used as artificial oxygen carriers, show promising results. This review summarizes the current state of research concerning DCI pathology and the therapeutic use of PFC including the new generation of non-emulsified formulations based on nanocapsules.
Collapse
Affiliation(s)
- Dirk Mayer
- Department of Gastroenterology, REGIOMED Klinikum Coburg, 96450, Coburg, Germany
| | - Katja Bettina Ferenz
- Institute of Physiology, CENIDE, University of Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany.
| |
Collapse
|
9
|
Guo S, Liu G, Frazer DM, Liu T, You L, Xu J, Wang Y, Anderson GJ, Nie G. Polymeric Nanoparticles Enhance the Ability of Deferoxamine To Deplete Hepatic and Systemic Iron. NANO LETTERS 2018; 18:5782-5790. [PMID: 30085676 DOI: 10.1021/acs.nanolett.8b02428] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chelators are commonly used to remove excess iron in iron-loading disorders. Deferoxamine (DFO) is an effective and safe iron chelator but an onerous parenteral administration regimen limits its routine use. To develop more effective methods for delivering iron chelators, we examined whether amphiphilic copolymer nanoparticles (NPs) could deliver DFO more efficiently. Physical characterization showed a uniform and stable preparation of DFO nanoparticles (DFO-NPs) with an average diameter of 105.3 nm. In macrophage (RAW264.7) and hepatoma (HepG2) cell lines, DFO-NPs proved more effective at depleting iron than free DFO. In wild-type mice previously loaded with iron dextran, as well as Hbb th3 /+ and Hfe -/- mice, which are predisposed to iron loading, DFO-NPs (40 mg/kg DFO; alternate days; 4 weeks) reduced hepatic iron levels by 71, 46, and 37%, respectively, whereas the equivalent values for free DFO were 53, 7, and 15%. Staining for tissue iron and urinary iron excretion confirmed these findings. Pharmacokinetic analysis showed that NP-encapsulated DFO had a much longer elimination half-life than free DFO (48.63 ± 28.80 vs 1.46 ± 0.59 h), and that DFO-NPs could be readily taken up by tissues and in particular by hepatic Kupffer cells. In vitro, DFO-NPs were less toxic to several cell lines than free DFO, and in vivo they did not elicit any specific inflammatory responses or histological changes. Our results suggest that using a nanoformulation of DFO is a valuable strategy for improving its efficiency as an iron chelator and that this could broaden its clinical use for the treatment of human iron overload disorders.
Collapse
Affiliation(s)
- Shanshan Guo
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , People's Republic of China
- Iron Metabolism Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Queensland 4006 , Australia
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Gang Liu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , People's Republic of China
| | - David M Frazer
- Iron Metabolism Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Queensland 4006 , Australia
| | - Tianqing Liu
- Iron Metabolism Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Queensland 4006 , Australia
| | - Linhao You
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , People's Republic of China
| | - Jiaqi Xu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Yongwei Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Gregory J Anderson
- Iron Metabolism Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Queensland 4006 , Australia
| | - Guangjun Nie
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
10
|
Wrobeln A, Laudien J, Groß-Heitfeld C, Linders J, Mayer C, Wilde B, Knoll T, Naglav D, Kirsch M, Ferenz KB. Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility. Eur J Pharm Biopharm 2017; 115:52-64. [DOI: 10.1016/j.ejpb.2017.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 01/28/2023]
|
11
|
Tasker AL, Hitchcock JP, He L, Baxter EA, Biggs S, Cayre OJ. The effect of surfactant chain length on the morphology of poly(methyl methacrylate) microcapsules for fragrance oil encapsulation. J Colloid Interface Sci 2016; 484:10-16. [DOI: 10.1016/j.jcis.2016.08.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 11/26/2022]
|
12
|
Abstract
A continuous supply of oxygen to tissues is vital to life and interruptions in its delivery are poorly tolerated. The treatment of low-blood oxygen tensions requires restoration of functional airways and lungs. Unfortunately, severe oxygen deprivation carries a high mortality rate and can make otherwise-survivable illnesses unsurvivable. Thus, an effective and rapid treatment for hypoxemia would be revolutionary. The i.v. injection of oxygen bubbles has recently emerged as a potential strategy to rapidly raise arterial oxygen tensions. In this report, we describe the fabrication of a polymer-based intravascular oxygen delivery agent. Polymer hollow microparticles (PHMs) are thin-walled, hollow polymer microcapsules with tunable nanoporous shells. We show that PHMs are easily charged with oxygen gas and that they release their oxygen payload only when exposed to desaturated blood. We demonstrate that oxygen release from PHMs is diffusion-controlled, that they deliver approximately five times more oxygen gas than human red blood cells (per gram), and that they are safe and effective when injected in vivo. Finally, we show that PHMs can be stored at room temperature under dry ambient conditions for at least 2 mo without any effect on particle size distribution or gas carrying capacity.
Collapse
|
13
|
Guan Q, Sun S, Li X, Lv S, Xu T, Sun J, Feng W, Zhang L, Li Y. Preparation, in vitro and in vivo evaluation of mPEG-PLGA nanoparticles co-loaded with syringopicroside and hydroxytyrosol. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:24. [PMID: 26704541 DOI: 10.1007/s10856-015-5641-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
This study investigated the therapeutic efficiency of monomethoxy polyethylene glycol-poly(lactic-co-glycolic acid) (mPEG-PLGA) co-loaded with syringopicroside and hydroxytyrosol as a drug with effective targeting and loading capacity as well as persistent circulation in vivo. The nanoparticles were prepared using a nanoprecipitation method with mPEG-PLGA as nano-carrier co-loaded with syringopicroside and hydroxytyrosol (SH-NPs). The parameters like in vivo pharmacokinetics, biodistribution in vivo, fluorescence in vivo endomicroscopy, and cellular uptake of SH-NPs were investigated. Results showed that the total encapsulation efficiency was 32.38 ± 2.76 %. Total drug loading was 12.01 ± 0.42 %, particle size was 91.70 ± 2.11 nm, polydispersity index was 0.22 ± 0.01, and zeta potential was -24.5 ± 1.16 mV for the optimized SH-NPs. The nanoparticle morphology was characterized using transmission electron microscopy, which indicated that the particles of SH-NPs were in uniformity within the nanosize range and of spherical core shell morphology. Drug release followed Higuchi kinetics. Compared with syringopicroside and hydroxytyrosol mixture (SH), SH-NPs produced drug concentrations that persisted for a significantly longer time in plasma following second-order kinetics. The nanoparticles moved gradually into the cell, thereby increasing the quantity. ALT, AST, and MDA levels were significantly lower on exposure to SH-NPs than in controls. SH-NPs could inhibit the proliferation of HepG2.2.15 cells and could be taken up by HepG2.2.15 cells. The results confirmed that syringopicroside and hydroxytyrosol can be loaded simultaneously into mPEG-PLGA nanoparticles. Using mPEG-PLGA as nano-carrier, sustained release, high distribution in the liver, and protective effects against hepatic injury were observed in comparison to SH.
Collapse
Affiliation(s)
- Qingxia Guan
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Shuang Sun
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Xiuyan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Shaowa Lv
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Ting Xu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Jialin Sun
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Wenjing Feng
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Liang Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Yongji Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
14
|
Ferenz KB, Waack IN, Laudien J, Mayer C, Broecker-Preuss M, Groot HD, Kirsch M. Safety of poly (ethylene glycol)-coated perfluorodecalin-filled poly (lactide-co-glycolide) microcapsules following intravenous administration of high amounts in rats. RESULTS IN PHARMA SCIENCES 2014; 4:8-18. [PMID: 25756002 PMCID: PMC4050377 DOI: 10.1016/j.rinphs.2014.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 01/05/2023]
Abstract
The host response against foreign materials designates the biocompatibility of intravenously administered microcapsules and thus, widely affects their potential for subsequent clinical use as artificial oxygen/drug carriers. Therefore, body distribution and systemic parameters, as well as markers of inflammation and indicators of organ damage were carefully evaluated after administration of short-chained poly (vinyl alcohol, (PVA)) solution or poly (ethylene glycol (PEG))-shielded perfluorodecalin-filled poly (d,l-lactide-co-glycolide, PFD-filled PLGA) microcapsules into Wistar rats. Whereas PVA infusion was well tolerated, all animals survived the selected dose of 1247 mg microcapsules/kg body weight but showed marked toxicity (increased enzyme activities, rising pro-inflammatory cytokines and complement factors) and developed a mild metabolic acidosis. The observed hypotension emerging immediately after start of capsule infusion was transient and mean arterial blood pressure restored to baseline within 70 min. Microcapsules accumulated in spleen and liver (but not in other organs) and partly occluded hepatic microcirculation reducing sinusoidal perfusion rate by about 20%. Intravenous infusion of high amounts of PFD-filled PLGA microcapsules was tolerated temporarily but associated with severe side effects such as hypotension and organ damage. Short-chained PVA displays excellent biocompatibility and thus, can be utilized as emulsifier for the preparation of drug carriers designed for intravenous use.
Collapse
Key Words
- ALAT, alanine aminotransferase
- ANOVA, one-way analysis of variance
- ASAT, aspartate aminotransferase
- Artificial oxygen carriers
- BE, base excess
- Biocompatibility
- Biodegradable microcapsules
- C3, complement factor 3
- C4a, complement factor 4a
- CARPA, complement activation-related pseudoallergy
- CK, creatine kinase
- DAPI, 4',6-diamidin-2-phenylindol
- FITC-dextran, fluorescein isothiocyanate-dextran 150,000
- IFN-?, interferon-gamma
- IL, interleukin
- IVM, intravital microscopy
- LDH, lactate dehydrogenase
- MAP, mean arterial blood pressure
- PEG, poly (ethylene glycol)
- PFD, perfluorodecalin
- PLA)
- PLGA, poly (d,l-lactide-co-glycolide)
- PVA, poly (vinyl alcohol)
- Perfluorocarbon
- Poly (lactic/glycolic) acid (PLGA
- Poly (vinyl alcohol)
- TNF-a, tumor necrosis factor alpha
- pO2, pCO2, oxygen and carbon dioxide partial pressures
Collapse
Affiliation(s)
- Katja B Ferenz
- University of Duisburg-Essen, Institute for Physiological Chemistry, University Hospital Essen, Hufelandstr. 55, Essen 45122, Germany
| | - Indra N Waack
- University of Duisburg-Essen, Institute for Physiological Chemistry, University Hospital Essen, Hufelandstr. 55, Essen 45122, Germany
| | - Julia Laudien
- University of Duisburg-Essen, Institute for Physiological Chemistry, University Hospital Essen, Hufelandstr. 55, Essen 45122, Germany
| | - Christian Mayer
- University of Duisburg-Essen, Institute for Physical Chemistry, CeNIDE, Universitaetsstr. 5, Essen 45141, Germany
| | - Martina Broecker-Preuss
- Department of Endocrinology and Metabolism Illnesses, Division of Laboratory Research, University of Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, Essen 45122, Germany
| | - Herbert de Groot
- University of Duisburg-Essen, Institute for Physiological Chemistry, University Hospital Essen, Hufelandstr. 55, Essen 45122, Germany
| | - Michael Kirsch
- University of Duisburg-Essen, Institute for Physiological Chemistry, University Hospital Essen, Hufelandstr. 55, Essen 45122, Germany
| |
Collapse
|