1
|
Zia G, Lintz A, Hardin C, Bottiglieri A, Sebek J, Prakash P. Assessment of thermochromic phantoms for characterizing microwave ablation devices. Med Phys 2024; 51:8442-8453. [PMID: 39287488 PMCID: PMC11803639 DOI: 10.1002/mp.17404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND AND PURPOSE Thermochromic gel phantoms provide a controlled medium for visual assessment of thermal ablation device performance. However, there are limited studies reporting on the comparative assessment of ablation profiles assessed in thermochromic gel phantoms against those in ex vivo tissue. The objective of this study was to compare microwave ablation zones in a thermochromic tissue-mimicking gel phantom and ex vivo bovine liver and to report on measurements of the temperature-dependent dielectric and thermal properties of the phantom. METHODS Thermochromic polyacrylamide phantoms were fabricated following a previously reported protocol. Phantom samples were heated to temperatures in the range of 20°C-90°C in a temperature-controlled water bath, and colorimetric analysis of images of the phantom taken after heating was used to develop a calibration between color changes and the temperature to which the phantom was heated. Using a custom, 2.45 GHz water-cooled microwave ablation antenna, ablations were performed in fresh ex vivo liver and phantoms using 65 W applied for 5 min or 10 min (n = 3 samples in each medium for each power/time combination). Broadband (500 MHz-6 GHz) temperature-dependent dielectric and thermal properties of the phantom were measured over the temperature range of 22°C-100°C. RESULTS Colorimetric analysis showed that the sharp change in gel phantom color commences at a temperature of 57°C. Short and long axes of the ablation zone in the phantom (as assessed by the 57°C isotherm) for 65 W, 5 min ablations were aligned with the extents of the ablation zone observed in ex vivo bovine liver. However, for the 65 W, 10 min setting, ablations in the phantom were on average 23.7% smaller in the short axis and 7.4 % smaller in the long axis than those observed in ex vivo liver. Measurements of the temperature-dependent relative permittivity, thermal conductivity, and volumetric heat capacity of the phantom largely followed similar trends to published values for ex vivo liver tissue. CONCLUSION Thermochromic tissue-mimicking phantoms provides a controlled, and reproducible medium for comparative assessment of microwave ablation devices and energy delivery settings. However, ablation zone size and shapes in the thermochromic phantom do not accurately represent ablation sizes and shapes observed in ex vivo liver tissue for high energy delivery treatments (65 W, 10 min). One cause for this limitation is the difference in temperature-dependent thermal and dielectric properties of the thermochromic phantom compared to ex vivo bovine liver tissue, as reported in the present study.
Collapse
Affiliation(s)
- Ghina Zia
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Amber Lintz
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Clay Hardin
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Anna Bottiglieri
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Jan Sebek
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
2
|
Zia G, Lintz A, Hardin C, Bottiglieri A, Sebek J, Prakash P. Assessment of thermochromic phantoms for characterizing microwave ablation devices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.23.584886. [PMID: 38617290 PMCID: PMC11014477 DOI: 10.1101/2024.03.23.584886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Background and Purpose Thermochromic gel phantoms provide a controlled medium for visual assessment of thermal ablation device performance. However, there are limited studies reporting on the comparative assessment of ablation profiles assessed in thermochromic gel phantoms against those in ex vivo tissue. The objective of this study was to compare microwave ablation zones in a thermochromic tissue mimicking gel phantom and ex vivo bovine liver, and to report on measurements of the temperature dependent dielectric and thermal properties of the phantom. Methods Thermochromic polyacrylamide phantoms were fabricated following a previously reported protocol. Phantom samples were heated to temperatures in the range of 20 - 90 °C in a temperature-controlled water bath, and colorimetric analysis of images of the phantom taken after heating were used to develop a calibration between color changes and temperature to which the phantom was heated. Using a custom, 2.45 GHz water-cooled microwave ablation antenna, ablations were performed in fresh ex vivo liver and phantoms using 65 W applied for 5 min or 10 min ( n = 3 samples in each medium for each power/time combination). Broadband (500 MHz - 6 GHz) temperature-dependent dielectric and thermal properties of the phantom were measured over the temperature range 22 - 100 °C. Results Colorimetric analysis showed that the sharp change in gel phantom color commences at a temperature of 57 °C. Short and long axes of the ablation zone in the phantom (as assessed by the 57 °C isotherm) for 65 W, 5 min ablations were aligned with extents of the ablation zone observed in ex vivo bovine liver. However, for the 65 W, 10 min setting, ablations in the phantom were on average 23.7% smaller in short axis and 7.4 % smaller in long axis than those observed in ex vivo liver. Measurements of the temperature dependent relative permittivity, thermal conductivity, and volumetric heat capacity of the phantom largely followed similar trends to published values for ex vivo liver tissue. Conclusion Thermochromic tissue mimicking phantoms provide a controlled, and reproducible medium for comparative assessment of microwave ablation devices and energy delivery settings, though ablation zone size and shapes may not accurately represent ablation sizes and shapes observed in ex vivo liver tissue under similar conditions.
Collapse
|
3
|
Geoghegan R, Ter Haar G, Nightingale K, Marks L, Natarajan S. Methods of monitoring thermal ablation of soft tissue tumors - A comprehensive review. Med Phys 2022; 49:769-791. [PMID: 34965307 DOI: 10.1002/mp.15439] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 11/30/2020] [Accepted: 12/15/2021] [Indexed: 11/12/2022] Open
Abstract
Thermal ablation is a form of hyperthermia in which oncologic control can be achieved by briefly inducing elevated temperatures, typically in the range 50-80°C, within a target tissue. Ablation modalities include high intensity focused ultrasound, radiofrequency ablation, microwave ablation, and laser interstitial thermal therapy which are all capable of generating confined zones of tissue destruction, resulting in fewer complications than conventional cancer therapies. Oncologic control is contingent upon achieving predefined coagulation zones; therefore, intraoperative assessment of treatment progress is highly desirable. Consequently, there is a growing interest in the development of ablation monitoring modalities. The first section of this review presents the mechanism of action and common applications of the primary ablation modalities. The following section outlines the state-of-the-art in thermal dosimetry which includes interstitial thermal probes and radiologic imaging. Both the physical mechanism of measurement and clinical or pre-clinical performance are discussed for each ablation modality. Thermal dosimetry must be coupled with a thermal damage model as outlined in Section 4. These models estimate cell death based on temperature-time history and are inherently tissue specific. In the absence of a reliable thermal model, the utility of thermal monitoring is greatly reduced. The final section of this review paper covers technologies that have been developed to directly assess tissue conditions. These approaches include visualization of non-perfused tissue with contrast-enhanced imaging, assessment of tissue mechanical properties using ultrasound and magnetic resonance elastography, and finally interrogation of tissue optical properties with interstitial probes. In summary, monitoring thermal ablation is critical for consistent clinical success and many promising technologies are under development but an optimal solution has yet to achieve widespread adoption.
Collapse
Affiliation(s)
- Rory Geoghegan
- Department of Urology, University of California Los Angeles, Los Angeles, California, USA
| | - Gail Ter Haar
- Department of Physics, Institute of Cancer Research, University of London, Sutton, UK
| | - Kathryn Nightingale
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Leonard Marks
- Department of Urology, University of California Los Angeles, Los Angeles, California, USA
| | - Shyam Natarajan
- Departments of Urology & Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
4
|
Lopresto V, Strigari L, Farina L, Minosse S, Pinto R, D’Alessio D, Cassano B, Cavagnaro M. CT-based investigation of the contraction ofex vivotissue undergoing microwave thermal ablation. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1361-6560/aaaf07] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
CT-guided microwave ablation through the lungs for treating liver tumors near the diaphragm. Oncotarget 2017; 8:79270-79278. [PMID: 29108305 PMCID: PMC5668038 DOI: 10.18632/oncotarget.17422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/20/2017] [Indexed: 01/29/2023] Open
Abstract
Purpose To explore the short-term efficacy and safety of CT-guided microwave ablation (MWA) for treating liver tumors near the diaphragm. Results The complete response (CR) rate for CT-guided MWA through the lung was 94.7% (124/131). The incomplete response (ICR) rate was 5.3% (7/131), of which 6 patients with ICRs achieved CRs after MWA. The CR rate for Group I was higher than Group II (99.0% vs. 80.0%, P=0.001). The mean follow-up time was 11.2 ±7.50 months. The total local recurrence (LR) rate was 15.3% (20/131). The complication rate was 26.5%, and no severe complications were recorded. All complications were controllable and treatable. The incidence of diaphragmatic thickening during the MWA was 18.8% (P>0.05); the incidence of exudative changes inside the lungs was 6.8% (P>0.05). Conclusions CT-guided MWA can detect changes in liver tissue, in the diaphragm and nearby lung tissues during the ablation process. It's safe and effective to treat tumors close to the diaphragm by CT-guided MWA through the lung. Methods CT-guided MWA was used on 131 tumors that were close to the diaphragm (distance between tumor and diaphragm ≤ 5 mm) in 117 patients with liver cancer. The tumors were divided into a < 3.0 cm group (Group I, n= 101) and a ≥ 3.0 cm group (Group II, n= 30) based on tumor diameters. The complications within 2 weeks following treatment were counted, and the safety and short-term efficacy of MWA were analyzed.
Collapse
|
6
|
Role of low-molecular-weight heparins in prevention of thromboembolic complication after transarterial chemoembolization in hepatocellular carcinoma. Eur J Gastroenterol Hepatol 2017; 29:317-321. [PMID: 27893491 DOI: 10.1097/meg.0000000000000790] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Portal vein thrombosis (PVT) is a common complication after transarterial chemoembolization (TACE) in hepatocellular carcinoma (HCC). This is the first clinical study to evaluate the role of low-molecular-weight heparins (LMWHs) with TACE in HCC for the prevention of thromboembolism complications (PVT). PATIENTS AND METHODS This study was carried out on 40 patients with HCC requiring TACE who presented to the Tropical Medicine Department, Tanta University and Interventional Radiology Department of Ain-Shams University Hospitals starting from April 2015. Patients were divided in two groups: group I included 20 patients with HCC treated by TACE only. Group II included 20 patients with HCC treated by TACE and an adjuvant dose of LMWH. Radiological assessment of efficacy of procedure and detection of PVT as a complication was performed using ultrasound abdomen and pelvis and triphasic spiral computed tomography with contrast. RESULTS This study was carried out on 40 patients with HCC requiring TACE who presented to the Tropical Medicine Department of Tanta University and Interventional Radiology Department of Ain-Shams University Hospitals. The incidence of PVT after TACE was higher in group I than group II, with seven cases in group I and only one case in group II. CONCLUSION LMWH with TACE in HCC is strongly recommended for prevention of thromboembolism complications (PVT). However, larger randomized-controlled studies are needed to confirm these obvious findings.
Collapse
|
7
|
Ryan TP, Brace CL. Interstitial microwave treatment for cancer: historical basis and current techniques in antenna design and performance. Int J Hyperthermia 2016; 33:3-14. [DOI: 10.1080/02656736.2016.1214884] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
| | - Christopher L. Brace
- Departments of Radiology and Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
8
|
Lopresto V, Pinto R, Farina L, Cavagnaro M. Treatment planning in microwave thermal ablation: clinical gaps and recent research advances. Int J Hyperthermia 2016; 33:83-100. [PMID: 27431328 DOI: 10.1080/02656736.2016.1214883] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Microwave thermal ablation (MTA) is a minimally invasive therapeutic technique aimed at destroying pathologic tissues through a very high temperature increase induced by the absorption of an electromagnetic field at microwave (MW) frequencies. Open problems, which are delaying MTA applications in clinical practice, are mainly linked to the extremely high temperatures, up to 120 °C, reached by the tissue close to the antenna applicator, as well as to the ability of foreseeing and controlling the shape and dimension of the thermally ablated area. Recent research was devoted to the characterisation of dielectric, thermal and physical properties of tissue looking at their changes with the increasing temperature, looking for possible developments of reliable, automatic and personalised treatment planning. In this paper, a review of the recently obtained results as well as new unpublished data will be presented and discussed.
Collapse
Affiliation(s)
- V Lopresto
- a Division of Health Protection Technologies , Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) , Rome , Italy
| | - R Pinto
- a Division of Health Protection Technologies , Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) , Rome , Italy
| | - L Farina
- b Department of Information Engineering, Electronics and Telecommunications , Sapienza University of Rome , Rome , Italy
| | - M Cavagnaro
- b Department of Information Engineering, Electronics and Telecommunications , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
9
|
Curto S, Taj-Eldin M, Fairchild D, Prakash P. Microwave ablation at 915 MHz vs 2.45 GHz: A theoretical and experimental investigation. Med Phys 2016; 42:6152-61. [PMID: 26520708 DOI: 10.1118/1.4931959] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The relationship between microwave ablation system operating frequency and ablation performance is not currently well understood. The objective of this study was to comparatively assess the differences in microwave ablation at 915 MHz and 2.45 GHz. METHODS Analytical expressions for electromagnetic radiation from point sources were used to compare power deposition at the two frequencies of interest. A 3D electromagnetic-thermal bioheat transfer solver was implemented with the finite element method to characterize power deposition and thermal ablation with asymmetrical insulated dipole antennas (single-antenna and dual-antenna synchronous arrays). Simulation results were validated against experiments in ex vivo tissue. RESULTS Theoretical, computational, and experimental results indicated greater power deposition and larger diameter ablation zones when using a single insulated microwave antenna at 2.45 GHz; experimentally, 32±4.1 mm and 36.3±1.0 mm for 5 and 10 min, respectively, at 2.45 GHz, compared to 24±1.7 mm and 29.5±0.6 mm at 915 MHz, with 30 W forward power at the antenna input port. In experiments, faster heating was observed at locations 5 mm (0.91 vs 0.49 °C/s) and 10 mm (0.28 vs 0.15 °C/s) from the antenna operating at 2.45 GHz. Larger ablation zones were observed with dual-antenna arrays at 2.45 GHz; however, the differences were less pronounced than for single antennas. CONCLUSIONS Single- and dual-antenna arrays systems operating at 2.45 GHz yield larger ablation zone due to greater power deposition in proximity to the antenna, as well as greater role of thermal conduction.
Collapse
Affiliation(s)
- Sergio Curto
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas 66506
| | - Mohammed Taj-Eldin
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas 66506
| | - Dillon Fairchild
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas 66506
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
10
|
Abraham JP, Nelson-Cheeseman BB, Sparrow E, Wentz JE, Gorman JM, Wolf SE. Comprehensive method to predict and quantify scald burns from beverage spills. Int J Hyperthermia 2016; 32:900-910. [PMID: 27405847 DOI: 10.1080/02656736.2016.1211752] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A comprehensive study was performed to quantify the risk of burns from hot beverage spills. The study was comprised of three parts. First, experiments were carried out to measure the cooling rates of beverages in a room-temperature environment by natural convection and thermal radiation. The experiments accounted for different beverage volumes, initial temperatures, cooling period between the time of service and the spill, the material which comprised the cup, the presence or absence of a cap and the presence or absence of an insulating corrugated paper sleeve. Among this list, the parameters which most influenced the temperature variation was the presence or absence of a cover or cap, the volume of the beverage and the duration of the cooling period. The second step was a series of experiments that provided temperatures at the surface of skin or skin surrogate after a spill. The experiments incorporated a single layer of cotton clothing and the exposure duration was 30 s. The outcomes of the experiments were used as input to a numerical model which calculated the temperature distribution and burn depth within tissue. Last was the implementation of the numerical model and a catalogue of burn predictions for various beverage volumes, beverage service temperatures, and durations between beverage service and spill. It is hoped that this catalogue can be used by both beverage industries and consumers to reduce the threat of burn injuries. It can also be used by treating medical professionals who can quickly estimate burn depths following a spill incident.
Collapse
Affiliation(s)
- John P Abraham
- a School of Engineering, University of St Thomas , St Paul , MN , USA
| | | | - Ephraim Sparrow
- b Department of Mechanical Engineering , University of Minnesota , Minneapolis , MN , USA
| | - John E Wentz
- a School of Engineering, University of St Thomas , St Paul , MN , USA
| | - John M Gorman
- b Department of Mechanical Engineering , University of Minnesota , Minneapolis , MN , USA
| | - Steven E Wolf
- c Department of Surgery , University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
11
|
Sebek J, Curto S, Bortel R, Prakash P. Analysis of minimally invasive directional antennas for microwave tissue ablation. Int J Hyperthermia 2016; 33:51-60. [DOI: 10.1080/02656736.2016.1195519] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Jan Sebek
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas, USA
- Department of Circuit Theory, Czech Technical University, Prague, Czech Republic
| | - Sergio Curto
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas, USA
| | - Radoslav Bortel
- Department of Circuit Theory, Czech Technical University, Prague, Czech Republic
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
12
|
Li M, Li Z, Yu X, Liang P, Gao Y, Han Z, Liu F, Dong J. Percutaneous radio-frequency ablation of hepatocellular carcinoma adjacent to the gastrointestinal tract. Int J Hyperthermia 2016; 32:600-6. [PMID: 27112031 DOI: 10.3109/02656736.2016.1157904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Meng Li
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
- Department of Ultrasound, Beijing 302 Hospital, Beijing, China
| | - Zhiyan Li
- Department of Ultrasound, Beijing 302 Hospital, Beijing, China
| | - Xiaoling Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yuejuan Gao
- Department of Ultrasound, Beijing 302 Hospital, Beijing, China
| | - Zhiyu Han
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Fangyi Liu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Jinghui Dong
- Department of Radiology, Beijing 302 Hospital, Beijing, China
| |
Collapse
|
13
|
McWilliams BT, Schnell EE, Curto S, Fahrbach TM, Prakash P. A Directional Interstitial Antenna for Microwave Tissue Ablation: Theoretical and Experimental Investigation. IEEE Trans Biomed Eng 2015; 62:2144-50. [DOI: 10.1109/tbme.2015.2413672] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Li M, Yu X, Liang P, Dong B, Liu F. Ultrasound-guided percutaneous microwave ablation for hepatic malignancy adjacent to the gallbladder. Int J Hyperthermia 2015; 31:579-87. [DOI: 10.3109/02656736.2015.1014869] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
15
|
Biffi Gentili G, Ignesti C. Dual applicator thermal ablation at 2.45 GHz: a numerical comparison and experiments on synchronous versus asynchronous and switched-mode feeding. Int J Hyperthermia 2015; 31:528-37. [DOI: 10.3109/02656736.2015.1032369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Guido Biffi Gentili
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Cosimo Ignesti
- Department of Information Engineering, University of Florence, Florence, Italy
| |
Collapse
|
16
|
Cavagnaro M, Pinto R, Lopresto V. Numerical models to evaluate the temperature increase induced byex vivomicrowave thermal ablation. Phys Med Biol 2015; 60:3287-311. [DOI: 10.1088/0031-9155/60/8/3287] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Evolution of Thermal Dosimetry for Application of Hyperthermia to Treat Cancer. ADVANCES IN HEAT TRANSFER 2015. [DOI: 10.1016/bs.aiht.2015.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Leung U, Kuk D, D'Angelica MI, Kingham TP, Allen PJ, DeMatteo RP, Jarnagin WR, Fong Y. Long-term outcomes following microwave ablation for liver malignancies. Br J Surg 2014; 102:85-91. [PMID: 25296639 DOI: 10.1002/bjs.9649] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/08/2014] [Accepted: 08/13/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND Microwave ablation has emerged as a promising treatment for liver malignancies, but there are scant long-term follow-up data. This study evaluated long-term outcomes, with a comparison of 915-MHz and 2.4-GHz ablation systems. METHODS This was a retrospective review of patients with malignant liver tumours undergoing operative microwave ablation with or without liver resection between 2008 and 2013. Regional or systemic (neo)adjuvant therapy was given selectively. Local recurrence was analysed using competing-risk methods with clustering, and overall survival was determined from Kaplan-Meier curves. RESULTS A total of 176 patients with 416 tumours were analysed. Colorectal liver metastases (CRLM) comprised 81.0 per cent of tumours, hepatocellular carcinoma 8.4 per cent, primary biliary cancer 1.7 per cent and non-CRLM 8.9 per cent. Median follow-up was 20.5 months. Local recurrence developed after treatment of 33 tumours (7.9 per cent) in 31 patients (17.6 per cent). Recurrence rates increased with tumour size, and were 1.0, 9.3 and 33 per cent for lesions smaller than 1 cm, 1-3 cm and larger than 3 cm respectively. On univariable analysis, the local recurrence rate was higher after ablation of larger tumours (hazard ratio (HR) 2.05 per cm; P < 0.001), in those with a perivascular (HR 3.71; P = 0.001) or subcapsular (HR 2.71; P = 0.008) location, or biliary or non-CRLM histology (HR 2.47; P = 0.036), and with use of the 2.4-GHz ablation system (HR 3.79; P = 0.001). Tumour size (P < 0.001) and perivascular position (P = 0.045) remained significant independent predictors on multivariable analysis. Regional chemotherapy was associated with decreased local recurrence (HR 0.49; P = 0.049). Overall survival at 4 years was 58.3 per cent for CRLM and 79.4 per cent for other pathology (P = 0.360). CONCLUSION Microwave ablation of liver malignancies, either combined or not combined with liver resection, and selective regional and systemic therapy resulted in good long-term survival. Local recurrence rates were low after treatment of tumours smaller than 3 cm in diameter, and those remote from vessels.
Collapse
Affiliation(s)
- U Leung
- Departments of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Development of a Novel Switched-Mode 2.45 GHz Microwave Multiapplicator Ablation System. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/973736] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of a novel switched-mode 2.45 GHz microwave (MW) multiapplicator system intended for laparoscopic and open surgical thermoablative treatments is presented. The system differs from the other synchronous and asynchronous commercially available equipments because it employs a fast sequential switching (FSS) technique for feeding an array of up to four high efficiency MW applicators. FSS technology, if properly engineered, allows improving system compactness, modularity, overall efficiency, and operational flexibility. Full-wave electromagnetic (EM) and thermal (TH) simulations have been made to confirm the expected performances of the FSS technology. Here we provide an overview of technical details and early ex-vivo experiments carried out with a full functional β-prototype of the system.
Collapse
|
20
|
Tumor Ablation for Treatment of Colorectal Liver Metastases. CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-014-0214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Alphandéry E. Perspectives of breast cancer thermotherapies. J Cancer 2014; 5:472-9. [PMID: 24959300 PMCID: PMC4066359 DOI: 10.7150/jca.8693] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/08/2014] [Indexed: 01/08/2023] Open
Abstract
In this article, the use of different types of thermotherapies to treat breast cancer is reviewed. While hyperthermia is most commonly used as an adjuvant in combination with radiotherapy, chemotherapy, targeted therapy or cryotherapy to enhance the therapeutic effect of these therapies, thermoablation is usually carried out alone to eradicate small breast tumors. A recently developed thermotherapy, called magnetic hyperthermia, which involves localized heating of nanoparticles under the application of an alternating magnetic field, is also presented. The advantages and drawbacks of these different thermotherapies are highlighted.
Collapse
Affiliation(s)
- Edouard Alphandéry
- 1. Nanobacterie SARL, 36 boulevard Flandrin, 75116, Paris, France. ; 2. Institut de Minéralogie et de Physique des Milieux Condensés, Université Pierre et Marie Curie, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
22
|
Lopresto V, Pinto R, Cavagnaro M. Experimental characterisation of the thermal lesion induced by microwave ablation. Int J Hyperthermia 2014; 30:110-8. [DOI: 10.3109/02656736.2013.879744] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
23
|
Zhai F, Nan Q, Ding J, Xu D, Zhang H, Liu Y, Bai F. Comparative experiments on phantom and ex vivo liver tissue in microwave ablation. Electromagn Biol Med 2014; 34:29-36. [PMID: 24460418 DOI: 10.3109/15368378.2013.868813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The aim of this study is to investigate the thermal field distribution of phantom and ex vivo liver tissue in microwave ablation. We intent to verify if the phantom can be used in future studies in lieu of actual tissue. METHODS This experiment was divided into two groups of phantom and ex vivo porcine liver tissue. 2450 MHz is set. The tests last up to 240 s in 60 W. The velocity of the circulating water pumps were adjusted to 40 rounds/min. Twenty-five copper-constantan thermocouples (TCs) were inserted at the specified position to record temperature data. RESULT For the cooling water, the temperature field was non-symmetric distribution at the gap before (z > z < 0 mm) of two groups of experiments. At the part without cooling water (z > 0 mm), effective ablation areas were larger; near the microwave antenna, the temperature curves showed good consistency for both materials. Far away from the microwave antenna, the value difference increased between phantom and liver tissue. Moreover, the effect of cooling water in phantom is more obvious than it in liver tissue. The shapes of ablation areas from two groups are not same. CONCLUSION The result of the present work implied that heating patterns of liver tissue and phantom are comparable. But the difference of temperature field between two kinds of materials cannot be ignored. In cases of using phantom to verify temperature field in lieu of actual tissue, the researchers should pay full attention to these difference points.
Collapse
Affiliation(s)
- Fei Zhai
- College of Life Science and Bioengineering, Beijing University of Technology , Beijing , China
| | | | | | | | | | | | | |
Collapse
|
24
|
Karampatzakis A, Kühn S, Tsanidis G, Neufeld E, Samaras T, Kuster N. Heating characteristics of antenna arrays used in microwave ablation: A theoretical parametric study. Comput Biol Med 2013; 43:1321-7. [DOI: 10.1016/j.compbiomed.2013.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/18/2013] [Accepted: 07/13/2013] [Indexed: 12/22/2022]
|
25
|
Liu F, Liang P, Yu X, Lu T, Cheng Z, Lei C, Han Z. A three-dimensional visualisation preoperative treatment planning system in microwave ablation for liver cancer: A preliminary clinical application. Int J Hyperthermia 2013; 29:671-7. [DOI: 10.3109/02656736.2013.834383] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
26
|
Ward RC, Healey TT, Dupuy DE. Microwave ablation devices for interventional oncology. Expert Rev Med Devices 2013; 10:225-38. [PMID: 23480091 DOI: 10.1586/erd.12.77] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microwave ablation is one of the several options in the ablation armamentarium for the treatment of malignancy, offering several potential benefits when compared with other ablation, radiation, surgical and medical treatment modalities. The basic microwave system consists of the generator, power distribution system and antennas. Often under image (computed tomography or ultrasound) guidance, a needle-like antenna is inserted percutaneously into the tumor, where local microwave electromagnetic radiation is emitted from the probe's active tip, producing frictional tissue heating, capable of causing cell death by coagulation necrosis. Half of the microwave ablation systems use a 915 MHz generator and the other half use a 2450 MHz generator. To date, there are no completed clinical trials comparing microwave devices head-to-head. Prospective comparisons of microwave technology with other treatment alternatives, as well as head-to-head comparison with each microwave device, is needed if this promising field will garner more widespread support and use in the oncology community.
Collapse
Affiliation(s)
- Robert C Ward
- Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy St, Providence, RI 02903, USA
| | | | | |
Collapse
|
27
|
Abstract
Microwave tissue heating is being increasingly utilised in several medical applications, including focal tumour ablation, cardiac ablation, haemostasis and resection assistance. Computational modelling of microwave ablations is a precise and repeatable technique that can assist with microwave system design, treatment planning and procedural analysis. Advances in coupling temperature and water content to electrical and thermal properties, along with tissue contraction, have led to increasingly accurate computational models. Developments in experimental validation have led to broader acceptability and applicability of these newer models. This review will discuss the basic theory, current trends and future direction of computational modelling of microwave ablations.
Collapse
Affiliation(s)
- Jason Chiang
- Department of Radiology, University of Wisconsin – Madison, Madison WI
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison WI
| | - Peng Wang
- Department of Radiology, University of Wisconsin – Madison, Madison WI
| | - Christopher L. Brace
- Department of Radiology, University of Wisconsin – Madison, Madison WI
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison WI
| |
Collapse
|
28
|
van Rhoon GC, Samaras T, Yarmolenko PS, Dewhirst MW, Neufeld E, Kuster N. CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels? Eur Radiol 2013; 23:2215-27. [PMID: 23553588 DOI: 10.1007/s00330-013-2825-y] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 01/30/2013] [Accepted: 02/02/2013] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To define thresholds of safe local temperature increases for MR equipment that exposes patients to radiofrequency fields of high intensities for long duration. These MR systems induce heterogeneous energy absorption patterns inside the body and can create localised hotspots with a risk of overheating. METHODS The MRI + EUREKA research consortium organised a "Thermal Workshop on RF Hotspots". The available literature on thresholds for thermal damage and the validity of the thermal dose (TD) model were discussed. RESULTS/CONCLUSIONS The following global TD threshold guidelines for safe use of MR are proposed: 1. All persons: maximum local temperature of any tissue limited to 39 °C 2. Persons with compromised thermoregulation AND (a) Uncontrolled conditions: maximum local temperature limited to 39 °C (b) Controlled conditions: TD < 2 CEM43°C 3. Persons with uncompromised thermoregulation AND (a) Uncontrolled conditions: TD < 2 CEM43°C (b) Controlled conditions: TD < 9 CEM43°C The following definitions are applied: Controlled conditions A medical doctor or a dedicated trained person can respond instantly to heat-induced physiological stress Compromised thermoregulation All persons with impaired systemic or reduced local thermoregulation KEY POINTS • Standard MRI can cause local heating by radiofrequency absorption. • Monitoring thermal dose (in units of CEM43°C) can control risk during MRI. • 9 CEM43°C seems an acceptable thermal dose threshold for most patients. • For skin, muscle, fat and bone,16 CEM43°C is likely acceptable.
Collapse
Affiliation(s)
- Gerard C van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Center, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
29
|
Prakash P, Salgaonkar VA, Clif Burdette E, Diederich CJ. Multiple applicator hepatic ablation with interstitial ultrasound devices: theoretical and experimental investigation. Med Phys 2013; 39:7338-49. [PMID: 23231283 DOI: 10.1118/1.4765459] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To evaluate multiple applicator implant configurations of interstitial ultrasound devices for large volume ablation of liver tumors. METHODS A 3D bioacoustic-thermal model using the finite element method was implemented to assess multiple applicator implant configurations for thermal ablation with interstitial ultrasound energy. Interstitial applicators consist of linear arrays of up to four 10 mm-long tubular ultrasound transducers, each under separate and dynamic power control, enclosed within a water-cooled delivery catheter (2.4 mm OD). The authors considered parallel implants with two and three applicators (clustered configuration), spaced 2-3 cm apart, to simulate open surgical placement. In addition, the authors considered two applicator implants with applicators converging and diverging at angles of ∼20°, 30°, and 45° to simulate percutaneous placement. Heating experiments (10-15 min) were performed and compared against simulations employing the same experimental parameters. To estimate the performance of parallel, multiple applicator configurations in an in vivo setting, simulations were performed taking into account a range of blood perfusion levels (0, 5, 12, and 15 kg m(-3) s(-1)) that may occur in tumors of varying vascularity. The impact of tailoring the power supplied to individual transducer elements along the length of applicators is explored for applicators inserted in non-parallel (converging and diverging) configurations. Thermal dose (t(43) > 240 min) and temperature thresholds (T > 52 °C) were used to define the ablation zones, with dynamic changes to tissue acoustic and thermal properties incorporated within the model. RESULTS Experiments in ex vivo bovine liver yielded ablation zones ranging between 4.0-5.6 cm × 3.2-4.9 cm, in cross section. Ablation zone dimensions predicted by simulations with similar parameters to the experiments were in close agreement (within 5 mm). Simulations of in vivo heating showed that 15 min heating and interapplicator spacing less than 3 cm are required to obtain contiguous, complete ablation zones. The ability to create complete ablation zone profiles for nonparallel implants was illustrated by tailoring applied power levels along the length of applicators. CONCLUSIONS Parallel implants consisting of three interstitial ultrasound applicators in a triangular configuration yield complete ablation zones measuring up to 6.2 cm × 5.7 cm after 15 min heating. At larger interapplicator spacing, the level of blood perfusion in the tumor may yield indentations along the periphery of the ablation zone. Tailoring applied power along the length of the applicator can accommodate for nonparallel implants, without compromising safety.
Collapse
Affiliation(s)
- Punit Prakash
- Department of Radiation Oncology, University of California, San Francisco, CA, USA.
| | | | | | | |
Collapse
|
30
|
Li M, Yu XL, Liang P, Liu F, Dong B, Zhou P. Percutaneous microwave ablation for liver cancer adjacent to the diaphragm. Int J Hyperthermia 2012; 28:218-26. [PMID: 22515343 DOI: 10.3109/02656736.2012.665565] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE The aim of the study was to prospectively evaluate the safety and effectiveness of percutaneous microwave (MW) ablation for liver cancer adjacent to the diaphragm. MATERIALS AND METHODS From May 2005 to June 2008, 89 patients with 96 hepatic lesions adjacent to the diaphragm (the shortest distance from the lesion margin to the diaphragm less than 5 mm), who underwent ultrasound (US)-guided percutaneous MW ablation, were included in the study group. A total of 100 patients with 127 hepatic lesions not adjacent to the diaphragm (the shortest distance from the lesion to the diaphragm and the first or second branch of the hepatic vessels more than 10 mm), who underwent US-guided percutaneous MW ablation, were included in the control group. During the ablation the temperature of marginal ablation tissue proximal to the diaphragm was monitored and controlled at 50°-60°C for more than 10 min in the study group. We compared the results of ablation between the two groups. RESULTS A total of 91 of 96 tumours (94.8%) in the study group and 123 of 127 tumours (96.9%) in the control group achieved complete ablation (P > 0.05). Local tumour progression was found in 18 of 96 tumours (18.8%) in the study group and 21 of 127 tumours (16.5%) in the control group during follow-up after MW ablation (P > 0.05). No major complications occurred in either group. CONCLUSIONS Under strict temperature monitoring, percutaneous MW ablation is safe and can achieve a high complete ablation rate for the treatment of hepatic tumours adjacent to the diaphragm.
Collapse
Affiliation(s)
- Meng Li
- Department of Interventional Ultrasound, Chinese People's Liberation Army General Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
31
|
Lopresto V, Pinto R, Lodato R, Lovisolo G, Cavagnaro M. Design and realisation of tissue-equivalent dielectric simulators for dosimetric studies on microwave antennas for interstitial ablation. Phys Med 2012; 28:245-53. [DOI: 10.1016/j.ejmp.2011.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/29/2011] [Accepted: 09/26/2011] [Indexed: 11/28/2022] Open
|
32
|
Lopresto V, Pinto R, Lovisolo GA, Cavagnaro M. Changes in the dielectric properties ofex vivobovine liver during microwave thermal ablation at 2.45 GHz. Phys Med Biol 2012; 57:2309-27. [DOI: 10.1088/0031-9155/57/8/2309] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Bruners P, Pandeya GD, Levit E, Roesch E, Penzkofer T, Isfort P, Schmidt B, greuter MJ, Oudkerk M, Schmitz-Rode T, Kuhl CK, Mahnken AH. CT-based temperature monitoring during hepatic RF ablation: Feasibility in an animal model. Int J Hyperthermia 2012; 28:55-61. [DOI: 10.3109/02656736.2011.619155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
34
|
Ding X, Singh R, Burke A, Hatcher H, Olson J, Kraft RA, Schmid M, Carroll D, Bourland JD, Akman S, Torti FM, Torti SV. Development of iron-containing multiwalled carbon nanotubes for MR-guided laser-induced thermotherapy. Nanomedicine (Lond) 2011; 6:1341-52. [PMID: 21506687 DOI: 10.2217/nnm.11.37] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIMS To test iron-containing multiwalled carbon nanotubes (MWCNTs) as bifunctional nanomaterials for imaging and thermal ablation of tumors. MATERIALS & METHODS MWCNTs entrapping iron were synthesized by chemical vapor deposition. The T2-weighted contrast enhancement properties of MWCNTs containing increasing amounts of iron were determined in vitro. Suspensions of these particles were injected into tumor-bearing mice and tracked longitudinally over 7 days by MRI. Heat-generating abilities of these nanomaterials following exposure to near infrared (NIR) laser irradiation was determined in vitro and in vivo. RESULTS The magnetic resonance contrast properties of carbon nanotubes were directly related to their iron content. Iron-containing nanotubes were functional T2-weighted contrast agents in vitro and could be imaged in vivo long-term following injection. Iron content of nanotubes did not affect their ability to generate thermoablative temperatures following exposure to NIR and significant tumor regression was observed in mice treated with MWCNTs and NIR laser irradiation. CONCLUSION These data demonstrate that iron-containing MWCNTs are functional T2-weighted contrast agents and efficient mediators of tumor-specific thermal ablation in vivo.
Collapse
Affiliation(s)
- Xuanfeng Ding
- Wake Forest University, Winston Salem, NC 27106, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|