1
|
Kempuraj D, Mohan RR. Blast injury: Impact to the cornea. Exp Eye Res 2024; 244:109915. [PMID: 38677709 PMCID: PMC11179966 DOI: 10.1016/j.exer.2024.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Visual disorders are common even after mild traumatic brain injury (mTBI) or blast exposure. The cost of blast-induced vision loss in civilians, military personnel, and veterans is significant. The visual consequences of blasts associated with TBI are elusive. Active military personnel and veterans report various ocular pathologies including corneal disorders post-combat blasts. The wars and conflicts in Afghanistan, Iraq, Syria, and Ukraine have significantly increased the number of corneal and other ocular disorders among military personnel and veterans. Binocular vision, visual fields, and other visual functions could be impaired following blast-mediated TBI. Blast-associated injuries can cause visual disturbances, binocular system problems, and visual loss. About 25% of veterans exposed to blasts report corneal injury. Blast exposure induces corneal edema, corneal opacity, increased corneal thickness, damage of corneal epithelium, corneal abrasions, and stromal and endothelial abnormality including altered endothelial density, immune cell infiltration, corneal neovascularization, Descemet membrane rupture, and increased pain mediators in animal models and the blast-exposed military personnel including veterans. Immune response exacerbates blast-induced ocular injury. TBI is associated with dry eyes and pain in veterans. Subjects exposed to blasts that cause TBI should undergo immediate clinical visual and ocular examinations. Delayed visual care may lead to progressive vision loss, lengthening/impairing rehabilitation and ultimately may lead to permanent vision problems and blindness. Open-field blast exposure could induce corneal injuries and immune responses in the cornea. Further studies are warranted to understand corneal pathology after blast exposure. A review of current advancements in blast-induced corneal injury will help elucidate novel targets for potential therapeutic options. This review discusses the impact of blast exposure-associated corneal disorders.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
2
|
Cai Y, Chen J, Sun H, Zhou T, Cai X, Fu Y. Crosstalk between TRPV1 and immune regulation in Fuchs endothelial corneal dystrophy. Clin Immunol 2023; 254:109701. [PMID: 37482117 DOI: 10.1016/j.clim.2023.109701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the leading indication for corneal transplantation worldwide. Our aim was to investigate the role of transient receptor potential vanilloid subtype 1 (TRPV1) and the associated immune regulation contributing to this pathological condition. Significant upregulation of TRPV1 was detected in the H2O2-induced in vitro FECD model. Based on gene expression microarray dataset GSE142538 and in vitro results, a comprehensive immune landscape was studied and a negative correlation was found between TRPV1 with different immune cells, especially regulatory T cells (Tregs). Functional analyses of the 313 TRPV1-related differentially expressed genes (DEGs) revealed the involvement of TRP-regulated calcium transport, as well as inflammatory and immune pathways. Four TRPV1-related core genes (MAPK14, GNB1, GNAQ, and ARRB2) were screened, validated by microarray dataset GSE112039 and the combined validation dataset E-GEAD-399 & 564, and verified by in vitro experiments. Our study suggested a potential crosstalk between TRPV1 and immune regulation contributing to FECD pathogenesis. The identified pivotal biomarkers and immune-related pathways provide a novel framework for future mechanistic and therapeutic studies of FECD.
Collapse
Affiliation(s)
- Yuchen Cai
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jin Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hao Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tianyi Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xueyao Cai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
3
|
Transient Receptor Potential Channels: Important Players in Ocular Pain and Dry Eye Disease. Pharmaceutics 2022; 14:pharmaceutics14091859. [PMID: 36145607 PMCID: PMC9506338 DOI: 10.3390/pharmaceutics14091859] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder in which the eyes respond to minor stimuli with abnormal sensations, such as dryness, blurring, foreign body sensation, discomfort, irritation, and pain. Corneal pain, as one of DED’s main symptoms, has gained recognition due to its increasing prevalence, morbidity, and the resulting social burden. The cornea is the most innervated tissue in the body, and the maintenance of corneal integrity relies on a rich density of nociceptors, such as polymodal nociceptor neurons, cold thermoreceptor neurons, and mechano-nociceptor neurons. Their sensory responses to different stimulating forces are linked to the specific expression of transient receptor potential (TRP) channels. TRP channels are a group of unique ion channels that play important roles as cellular sensors for various stimuli. These channels are nonselective cation channels with variable Ca2+ selectivity. TRP homologs are a superfamily of 28 different members that are subdivided into 7 different subfamilies based on differences in sequence homology. Many of these subtypes are expressed in the eye on both neuronal and non-neuronal cells, where they affect various stress-induced regulatory responses essential for normal vision maintenance. This article reviews the current knowledge about the expression, function, and regulation of TRPs in ocular surface tissues. We also describe their implication in DED and ocular pain. These findings contribute to evidence suggesting that drug-targeting TRP channels may be of therapeutic benefit in the clinical setting of ocular pain.
Collapse
|
4
|
Sensory nerves promote corneal inflammation resolution via CGRP mediated transformation of macrophages to the M2 phenotype through the PI3K/AKT signaling pathway. Int Immunopharmacol 2021; 102:108426. [PMID: 34906854 DOI: 10.1016/j.intimp.2021.108426] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To explore the role of the corneal sensory nerves in Pseudomonas aeruginosa (P. aeruginosa) keratitis, the synergistic effect between the sensory neurons and macrophages in calcitonin gene-related peptide (CGRP) release, and the functional mechanisms of CGRP-mediated transformation of macrophages to the M2 phenotype. METHODS Corneal nerve loss, macrophage recruitment, and CGRP expression were evaluated. To explore the synergistic effect between the sensory neurons and macrophages, RAW 264.7 cells were challenged with lipopolysaccharide (LPS), then trigeminal ganglion (TG) sensory neurons were isolated and co-incubated with macrophages, and CGRP expression was tested. To investigate the biological function of cornea neuron-initiated immune responses mediated by CGRP, BIBN 4096BS was used to inhibit CGRP in vivo and α-CGRP was used to simulate CGRP in vitro. The expressions of inflammatory cytokines (IL-1β, IL-6, TNF-α, and IL-10), M1 (CD80/CD86), M2 (CD163/CD206) macrophage markers, and signal transducers (PI3K/AKT) were detected. RESULTS P. aeruginosa infection induced corneal nerve loss, macrophage recruitment, and CGRP up-expression. CGRP was co-localized with macrophages. Co-culture showed that sensory neurons and macrophages can mediate CGRP release. More CGRP was released when the two types of cells were combined to respond to LPS. BIBN 4096BS promoted pro-inflammatory cytokines and inhibited the anti-inflammatory cytokines and signal transducers, while, α-CGRP inhibited the pro-inflammatory cytokines and M1 markers and promoted the anti-inflammatory cytokine, M2 markers, and signal transducers. CONCLUSIONS P. aeruginosa infection induces corneal sensory neuron activation, macrophage recruitment, and CGRP up-expression. The synergistic effect between the sensory neurons and macrophages promotes CGRP release. CGRP inhibits corneal inflammation and promotes the transformation of macrophages to the M2 phenotype through the PI3K/AKT signaling pathway.
Collapse
|
5
|
Belding JN, Egnoto M, Englert RM, Fitzmaurice S, Thomsen CJ. Getting on the Same Page: Consolidating Terminology to Facilitate Cross-Disciplinary Health-Related Blast Research. Front Neurol 2021; 12:695496. [PMID: 34248831 PMCID: PMC8264539 DOI: 10.3389/fneur.2021.695496] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022] Open
Abstract
The consequences of blast exposure (including both high-level and low-level blast) have been a focal point of military interest and research for years. Recent mandates from Congress (e.g., National Defense Authorization Act for Fiscal Year 2018, section 734) have further accelerated these efforts, facilitating collaborations between research teams from a variety of disciplinary backgrounds. Based on findings from a recent scoping review, we argue that the scientific field of blast research is plagued by inconsistencies in both conceptualization of relevant constructs and terminology used to describe them. These issues hamper our ability to interpret study methods and findings, hinder efforts to integrate findings across studies to reach scientific consensus, and increase the likelihood of redundant efforts. We argue that multidisciplinary experts in this field require a universal language and clear, standardized terminology to further advance the important work of examining the effects of blast exposure on human health, performance, and well-being. To this end, we present a summary of descriptive conventions regarding the language scientists currently use when discussing blast-related exposures and outcomes based on findings from a recent scoping review. We then provide prescriptive conventions about how these terms should be used by clearly conceptualizing and explicitly defining relevant constructs. Specifically, we summarize essential concepts relevant to the study of blast, precisely distinguish between high-level blast and low-level blast, and discuss how the terms acute, chronic, exposure, and outcome should be used when referring to the health-related consequences of blast exposure.
Collapse
Affiliation(s)
- Jennifer N Belding
- Leidos, San Diego, CA, United States.,Health and Behavioral Sciences Department, Naval Health Research Center, San Diego, CA, United States
| | - Michael Egnoto
- Study of Terrorism and Responses to Terrorism, University of Maryland, College Park, MD, United States
| | - Robyn M Englert
- Leidos, San Diego, CA, United States.,Health and Behavioral Sciences Department, Naval Health Research Center, San Diego, CA, United States
| | - Shannon Fitzmaurice
- Leidos, San Diego, CA, United States.,Health and Behavioral Sciences Department, Naval Health Research Center, San Diego, CA, United States
| | - Cynthia J Thomsen
- Health and Behavioral Sciences Department, Naval Health Research Center, San Diego, CA, United States
| |
Collapse
|
6
|
Belding JN, Englert RM, Fitzmaurice S, Jackson JR, Koenig HG, Hunter MA, Thomsen CJ, da Silva UO. Potential Health and Performance Effects of High-Level and Low-Level Blast: A Scoping Review of Two Decades of Research. Front Neurol 2021; 12:628782. [PMID: 33776888 PMCID: PMC7987950 DOI: 10.3389/fneur.2021.628782] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/10/2021] [Indexed: 01/06/2023] Open
Abstract
Although blast exposure has been recognized as a significant source of morbidity and mortality in military populations, our understanding of the effects of blast exposure, particularly low-level blast (LLB) exposure, on health outcomes remains limited. This scoping review provides a comprehensive, accessible review of the peer-reviewed literature that has been published on blast exposure over the past two decades, with specific emphasis on LLB. We conducted a comprehensive scoping review of the scientific literature published between January 2000 and 2019 pertaining to the effects of blast injury and/or exposure on human and animal health. A three-level review process with specific inclusion and exclusion criteria was used. A full-text review of all articles pertaining to LLB exposure was conducted and relevant study characteristics were extracted. The research team identified 3,215 blast-relevant articles, approximately half of which (55.4%) studied live humans, 16% studied animals, and the remainder were non-subjects research (e.g., literature reviews). Nearly all (99.49%) of the included studies were conducted by experts in medicine or epidemiology; approximately half of these articles were categorized into more than one medical specialty. Among the 51 articles identified as pertaining to LLB specifically, 45.1% were conducted on animals and 39.2% focused on human subjects. Animal studies of LLB predominately used shock tubes to induce various blast exposures in rats, assessed a variety of outcomes, and clearly demonstrated that LLB exposure is associated with brain injury. In contrast, the majority of LLB studies on humans were conducted among military and law enforcement personnel in training environments and had remarkable variability in the exposures and outcomes assessed. While findings suggest that there is the potential for LLB to harm human populations, findings are mixed and more research is needed. Although it is clear that more research is needed on this rapidly growing topic, this review highlights the detrimental effects of LLB on the health of both animals and humans. Future research would benefit from multidisciplinary collaboration, larger sample sizes, and standardization of terminology, exposures, and outcomes.
Collapse
Affiliation(s)
- Jennifer N. Belding
- Defense Health Group, Leidos, San Diego, CA, United States
- Health and Behavioral Sciences Department, Naval Health Research Center, San Diego, CA, United States
| | - Robyn M. Englert
- Defense Health Group, Leidos, San Diego, CA, United States
- Health and Behavioral Sciences Department, Naval Health Research Center, San Diego, CA, United States
| | - Shannon Fitzmaurice
- Defense Health Group, Leidos, San Diego, CA, United States
- Health and Behavioral Sciences Department, Naval Health Research Center, San Diego, CA, United States
| | - Jourdan R. Jackson
- Defense Health Group, Leidos, San Diego, CA, United States
- Health and Behavioral Sciences Department, Naval Health Research Center, San Diego, CA, United States
| | - Hannah G. Koenig
- Defense Health Group, Leidos, San Diego, CA, United States
- Health and Behavioral Sciences Department, Naval Health Research Center, San Diego, CA, United States
| | - Michael A. Hunter
- Defense Health Group, Leidos, San Diego, CA, United States
- Health and Behavioral Sciences Department, Naval Health Research Center, San Diego, CA, United States
| | - Cynthia J. Thomsen
- Health and Behavioral Sciences Department, Naval Health Research Center, San Diego, CA, United States
| | - Uade Olaghere da Silva
- Health and Behavioral Sciences Department, Naval Health Research Center, San Diego, CA, United States
| |
Collapse
|
7
|
Skotak M, Townsend MT, Ramarao KV, Chandra N. A Comprehensive Review of Experimental Rodent Models of Repeated Blast TBI. Front Neurol 2019; 10:1015. [PMID: 31611839 PMCID: PMC6776622 DOI: 10.3389/fneur.2019.01015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
We reviewed the relevant literature delineating advances in the development of the experimental models of repeated blast TBI (rbTBI). It appears this subject is a relatively unexplored area considering the first work published in 2007 and the bulk of peer-reviewed papers was published post-2011. There are merely 34 papers published to date utilizing rodent rbTBI models. We performed an analysis and extracted basic parameters to capture the characteristics of the exposure conditions (the blast intensity, inter-exposure interval and the number of exposures), the age and weight of the animal models most commonly used in the studies, and their endpoints. Our analysis revealed three strains of rodents are predominantly used: Sprague Dawley and Long Evans rats and wild type (C57BL/6J) mice, and young adult animals 8 to 12-week-old are a preferred choice. Typical exposure conditions are the following: (1) peak overpressure in the 27–145 kPa (4–21 psi) range, (2) number of exposures: 2 (13.9%), 3 (63.9%), 5 (16.7%), or 12 (5.6%) with a single exposure used for a baseline comparison in 41.24% of the studies. Two inter-exposure interval durations were used: (1) short (1–30 min.) and (2) extended (24 h) between consecutive shock wave exposures. The experiments included characterization of repeated blast exposure effects on auditory, ocular and neurological function, with a focus on brain etiology in most of the published work. We present an overview of major histopathological findings, which are supplemented by studies implementing MRI (DTI) and behavioral changes after rbTBI in the acute (1–7 days post-injury), subacute (7–14 days), and chronic (>14 days) phases post-injury.
Collapse
Affiliation(s)
- Maciej Skotak
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Molly T Townsend
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Kakulavarapu V Ramarao
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Namas Chandra
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
8
|
Por ED, Sandoval ML, Thomas-Benson C, Burke TA, Doyle Brackley A, Jeske NA, Cleland JM, Lund BJ. Repeat low-level blast exposure increases transient receptor potential vanilloid 1 (TRPV1) and endothelin-1 (ET-1) expression in the trigeminal ganglion. PLoS One 2017; 12:e0182102. [PMID: 28797041 PMCID: PMC5552217 DOI: 10.1371/journal.pone.0182102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022] Open
Abstract
Blast-associated sensory and cognitive trauma sustained by military service members is an area of extensively studied research. Recent studies in our laboratory have revealed that low-level blast exposure increased expression of transient receptor potential vanilloid 1 (TRPV1) and endothelin-1 (ET-1), proteins well characterized for their role in mediating pain transmission, in the cornea. Determining the functional consequences of these alterations in protein expression is critical to understanding blast-related sensory trauma. Thus, the purpose of this study was to examine TRPV1 and ET-1 expression in ocular associated sensory tissues following primary and tertiary blast. A rodent model of blast injury was used in which anesthetized animals, unrestrained or restrained, received a single or repeat blast (73.8 ± 5.5 kPa) from a compressed air shock tube once or daily for five consecutive days, respectively. Behavioral and functional analyses were conducted to assess blast effects on nocifensive behavior and TRPV1 activity. Immunohistochemistry and Western Blot were also performed with trigeminal ganglia (TG) to determine TRPV1, ET-1 and glial fibrillary associated protein (GFAP) expression following blast. Increased TRPV1, ET-1 and GFAP were detected in the TG of animals exposed to repeat blast. Increased nocifensive responses were also observed in animals exposed to repeat, tertiary blast as compared to single blast and control. Moreover, decreased TRPV1 desensitization was observed in TG neurons exposed to repeat blast. Repeat, tertiary blast resulted in increased TRPV1, ET-1 and GFAP expression in the TG, enhanced nociception and decreased TRPV1 desensitization.
Collapse
Affiliation(s)
- Elaine D. Por
- Ocular Trauma, United States Army Institute of Surgical Research, Fort Sam, Houston, Texas, United States of America
- * E-mail:
| | - Melody L. Sandoval
- Ocular Trauma, United States Army Institute of Surgical Research, Fort Sam, Houston, Texas, United States of America
| | - Chiquita Thomas-Benson
- Ocular Trauma, United States Army Institute of Surgical Research, Fort Sam, Houston, Texas, United States of America
| | - Teresa A. Burke
- Ocular Trauma, United States Army Institute of Surgical Research, Fort Sam, Houston, Texas, United States of America
| | - Allison Doyle Brackley
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Nathaniel A. Jeske
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jeffery M. Cleland
- Ocular Trauma, United States Army Institute of Surgical Research, Fort Sam, Houston, Texas, United States of America
| | - Brian J. Lund
- Ocular Trauma, United States Army Institute of Surgical Research, Fort Sam, Houston, Texas, United States of America
| |
Collapse
|