1
|
Jahromi AS, Erfanian S, Roustazadeh A. Association of OX40L gene polymorphism with multiple sclerosis in Iranians. Heliyon 2024; 10:e27304. [PMID: 38496859 PMCID: PMC10944201 DOI: 10.1016/j.heliyon.2024.e27304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction The exact etiology of multiple sclerosis is unknown but recent studies indicated a link between tumor necrosis factor superfamily member 4 and the disease. Polymorphisms located in the regulatory region of the gene may affect its phenotype. Hence, we aimed to investigate the association of promoter polymorphisms of the gene with multiple sclerosis and also to estimate the frequency of haplotypes in the patients and healthy subjects. Methods Two hundred age- and sex-matched subjects including 100 patients and 100 healthy subjects were investigated in the study. Genotype and allele distributions of rs3850641, rs1234313, and rs10912580 polymorphisms in the promoter region of the gene were investigated by polymerase chain reaction-restriction fragment length polymorphism. In addition, haplotype frequencies estimation and linkage disequilibrium analysis were performed by SNPStats web tool. Results The distribution of AA, AG and GG genotypes of rs3850641 was significantly different between the patient and healthy groups (P = 0.009). In addition, frequencies of A and G alleles of rs3850641 were different between the groups (P < 0.001). Also the distribution of rs3850641 genotypes was different between the women of the both groups (P = 0.007). Our analysis revealed that rs3850641 AG (Odds ratio = 0.393, 95 % confidence interval = 0.170-0.907, P = 0.029) and GG (Odds ratio = 0.373, 95 % confidence interval = 0.168-0.830, P = 0.016) genotypes were associated with decreased risk of the disease. However, rs1234313 genotype and allele distributions were not different between the groups. The distribution of rs10912580polymorphism. AA, AG, and GG genotypes was significantly different between the groups (P = 0.007). rs10912580 AG genotype was associated with low risk of the disease (Odds ratio = 0.252, 95 % confidence interval = 0.102-0.623, P = 0.003). The distribution of haplotypes was statistically different between the patient and healthy groups (P < 0.001). A-G-A was the most frequent haplotype among the patients and the estimated frequency was higher than that of the control group (0.5527 versus 0.3739). Conclusion The distribution of rs3850641 and rs10912580 genotypes was different between the patients and healthy subjects. Moreover, rs3850641 AG and GG genotypes and also rs10912580 AG genotype were associated with low risk of the disease in Iranians. Further studies with large groups are recommended to show whether genotype variation in the patients could alter the response to treatment or not.
Collapse
Affiliation(s)
- Abdolreza Sotoodeh Jahromi
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
- Medical Immunology Department, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Saiedeh Erfanian
- Department of Biochemistry, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Advanced Medical Sciences and Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Abazar Roustazadeh
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Biochemistry, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Advanced Medical Sciences and Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
3
|
Soh PXY, Marin Cely JM, Mortlock SA, Jara CJ, Booth R, Natera S, Roessner U, Crossett B, Cordwell S, Singh Khatkar M, Williamson P. Genome-wide association studies of 74 plasma metabolites of German shepherd dogs reveal two metabolites associated with genes encoding their enzymes. Metabolomics 2019; 15:123. [PMID: 31493001 DOI: 10.1007/s11306-019-1586-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION German shepherd dogs (GSDs) are a popular breed affected by numerous disorders. Few studies have explored genetic variations that influence canine blood metabolite levels. OBJECTIVES To investigate genetic variants affecting the natural metabolite variation in GSDs. METHODS A total of 82 healthy GSDs were genotyped on the Illumina CanineHD Beadchip, assaying 173,650 markers. For each dog, 74 metabolites were measured through liquid and gas chromatography mass spectrometry (LC-MS and GC-MS) and were used as phenotypes for genome-wide association analyses (GWAS). Sliding window and homozygosity analyses were conducted to fine-map regions of interest, and to identify haplotypes and gene dosage effects. RESULTS Summary statistics for 74 metabolites in this population of GSDs are reported. Forty-one metabolites had significant associations at a false discovery rate of 0.05. Two associations were located around genes which encode for enzymes for the relevant metabolites: 4-hydroxyproline was significantly associated to D-amino acid oxidase (DAO), and threonine to L-threonine 3-dehydrogenase (LOC477365). Three of the top ten haplotypes associated to 4-hydroxyproline included at least one SNP on DAO. These haplotypes occurred only in dogs with the highest 15 measurements of 4-hydroxyproline, ranging in frequency from 16.67 to 20%. None of the dogs were homozygous for these haplotypes. The top two haplotypes associated to threonine included SNPs on LOC477365 and were also overrepresented in dogs with the highest 15 measurements of threonine. These haplotypes occurred at a frequency of 90%, with 80% of these dogs homozygous for the haplotypes. In dogs with the lowest 15 measurements of threonine, the haplotypes occurred at a frequency of 26.67% and 0% homozygosity. CONCLUSION DAO and LOC477365 were identified as candidate genes affecting the natural plasma concentration of 4-hydroxyproline and threonine, respectively. Further investigations are needed to validate the effects of the variants on these genes.
Collapse
Affiliation(s)
- Pamela Xing Yi Soh
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| | - Juliana Maria Marin Cely
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| | - Sally-Anne Mortlock
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| | - Christopher James Jara
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| | - Rachel Booth
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| | - Siria Natera
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, Australia
| | - Ute Roessner
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, Australia
| | - Ben Crossett
- Sydney Mass Spectrometry, Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Stuart Cordwell
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
- Sydney Mass Spectrometry, Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Mehar Singh Khatkar
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, Australia
| | - Peter Williamson
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia.
| |
Collapse
|
4
|
Cheng L, Chen J, Fu Q, He S, Li H, Liu Z, Tan G, Tao Z, Wang D, Wen W, Xu R, Xu Y, Yang Q, Zhang C, Zhang G, Zhang R, Zhang Y, Zhou B, Zhu D, Chen L, Cui X, Deng Y, Guo Z, Huang Z, Huang Z, Li H, Li J, Li W, Li Y, Xi L, Lou H, Lu M, Ouyang Y, Shi W, Tao X, Tian H, Wang C, Wang M, Wang N, Wang X, Xie H, Yu S, Zhao R, Zheng M, Zhou H, Zhu L, Zhang L. Chinese Society of Allergy Guidelines for Diagnosis and Treatment of Allergic Rhinitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:300-353. [PMID: 29949830 PMCID: PMC6021586 DOI: 10.4168/aair.2018.10.4.300] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/17/2017] [Accepted: 10/05/2017] [Indexed: 11/20/2022]
Abstract
Allergic rhinitis (AR) is a global health problem that causes major illnesses and disabilities worldwide. Epidemiologic studies have demonstrated that the prevalence of AR has increased progressively over the last few decades in more developed countries and currently affects up to 40% of the population worldwide. Likewise, a rising trend of AR has also been observed over the last 2-3 decades in developing countries including China, with the prevalence of AR varying widely in these countries. A survey of self-reported AR over a 6-year period in the general Chinese adult population reported that the standardized prevalence of adult AR increased from 11.1% in 2005 to 17.6% in 2011. An increasing number of Journal Articles and imporclinical trials on the epidemiology, pathophysiologic mechanisms, diagnosis, management and comorbidities of AR in Chinese subjects have been published in international peer-reviewed journals over the past 2 decades, and substantially added to our understanding of this disease as a global problem. Although guidelines for the diagnosis and treatment of AR in Chinese subjects have also been published, they have not been translated into English and therefore not generally accessible for reference to non-Chinese speaking international medical communities. Moreover, methods for the diagnosis and treatment of AR in China have not been standardized entirely and some patients are still treated according to regional preferences. Thus, the present guidelines have been developed by the Chinese Society of Allergy to be accessible to both national and international medical communities involved in the management of AR patients. These guidelines have been prepared in line with existing international guidelines to provide evidence-based recommendations for the diagnosis and management of AR in China.
Collapse
Affiliation(s)
- Lei Cheng
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoheng He
- Allergy and Clinical Immunology Research Centre, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Huabin Li
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guolin Tan
- Department of Otolaryngology Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Dehui Wang
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Weiping Wen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Xu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Qintai Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chonghua Zhang
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Gehua Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruxin Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Yuan Zhang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Bing Zhou
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Dongdong Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Luquan Chen
- Department of Traditional Chinese Medicine, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Xinyan Cui
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuqin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Zhiqiang Guo
- Department of Otorhinolaryngology Head and Neck Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhenxiao Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Zizhen Huang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Houyong Li
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Jingyun Li
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Wenting Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanqing Li
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Lin Xi
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Hongfei Lou
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Meiping Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuhui Ouyang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Wendan Shi
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Xiaoyao Tao
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiqin Tian
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Nan Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Wang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Hui Xie
- Department of Otorhinolaryngology, Affiliated Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaoqing Yu
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, Tongji University, Shanghai, China
| | - Renwu Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Ming Zheng
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Han Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Luping Zhu
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Luo Zhang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Lew D, Yoon SM, Yan X, Robbins L, Haritunians T, Liu Z, Li D, McGovern DPB. Genetic associations with adverse events from anti-tumor necrosis factor therapy in inflammatory bowel disease patients. World J Gastroenterol 2017; 23:7265-7273. [PMID: 29142473 PMCID: PMC5677193 DOI: 10.3748/wjg.v23.i40.7265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/25/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To study the type and frequency of adverse events associated with anti-tumor necrosis factor (TNF) therapy and evaluate for any serologic and genetic associations.
METHODS This study was a retrospective review of patients attending the inflammatory bowel disease (IBD) centers at Cedars-Sinai IBD Center from 2005-2016. Adverse events were identified via chart review. IBD serologies were measured by ELISA. DNA samples were genotyped at Cedars-Sinai using Illumina Infinium Immunochipv1 array per manufacturer’s protocol. SNPs underwent methodological review and were evaluated using several SNP statistic parameters to ensure optimal allele-calling. Standard and rigorous QC criteria were applied to the genetic data, which was generated using immunochip. Genetic association was assessed by logistic regression after correcting for population structure.
RESULTS Altogether we identified 1258 IBD subjects exposed to anti-TNF agents in whom Immunochip data were available. 269/1258 patients (21%) were found to have adverse events to an anti-TNF-α agent that required the therapy to be discontinued. 25% of women compared to 17% of men experienced an adverse event. All adverse events resolved after discontinuing the anti-TNF agent. In total: n = 66 (5%) infusion reactions; n = 49 (4%) allergic/serum sickness reactions; n = 19 (1.5%) lupus-like reactions, n = 52 (4%) rash, n = 18 (1.4%) infections. In Crohn’s disease, IgA ASCA (P = 0.04) and IgG-ASCA (P = 0.02) levels were also lower in patients with any adverse events, and anti-I2 level in ulcerative colitis was significantly associated with infusion reactions (P = 0.008). The logistic regression/human annotation and network analyses performed on the Immunochip data implicated the following five signaling pathways: JAK-STAT (Janus Kinase-signal transducer and activator of transcription), measles, IBD, cytokine-cytokine receptor interaction, and toxoplasmosis for any adverse event.
CONCLUSION Our study shows 1 in 5 IBD patients experience an adverse event to anti-TNF therapy with novel serologic, genetic , and pathways associations.
Collapse
Affiliation(s)
- Daniel Lew
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Soon Man Yoon
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Xiaofei Yan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Lori Robbins
- Department of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Zhenqiu Liu
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Dalin Li
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Dermot PB McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| |
Collapse
|