1
|
Buttacavoli M, Di Cara G, Roz E, Pucci-Minafra I, Feo S, Cancemi P. Integrated Multi-Omics Investigations of Metalloproteinases in Colon Cancer: Focus on MMP2 and MMP9. Int J Mol Sci 2021; 22:ijms222212389. [PMID: 34830271 PMCID: PMC8622288 DOI: 10.3390/ijms222212389] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) develops by genetic and epigenetic alterations. However, the molecular mechanisms underlying metastatic dissemination remain unclear and could benefit from multi-omics investigations of specific protein families. Matrix metalloproteinases (MMPs) are proteolytic enzymes involved in ECM remodeling and the processing of bioactive molecules. Increased MMP expression promotes the hallmarks of tumor progression, including angiogenesis, invasion, and metastasis, and is correlated with a shortened survival. Nevertheless, the collective role and the possible coordination of MMP members in CRC are poorly investigated. Here, we performed a multi-omics analysis of MMP expression in CRC using data mining and experimental investigations. Several databases were used to deeply mine different expressions between tumor and normal tissues, the genetic and epigenetic alterations, the prognostic value as well as the interrelationships with tumor immune-infiltrating cells (TIICs). A special focus was placed on to MMP2 and MMP9: their expression was correlated with immune markers and the interaction network of co-expressed genes disclosed their implication in epithelial to mesenchymal transition (EMT) and immune response. Finally, the activity levels of MMP2 and MMP9 in a cohort of colon cancer samples, including tissues and the corresponding sera, was also investigated by zymography. Our findings suggested that MMPs could have a high potency, as they are targeted in colon cancer, and might serve as novel biomarkers, especially for their involvement in the immune response. However, further studies are needed to explore the detailed biological functions and molecular mechanisms of MMPs in CRC, also in consideration of their expression and different regulation in several tissues.
Collapse
Affiliation(s)
- Miriam Buttacavoli
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (S.F.)
| | - Gianluca Di Cara
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (S.F.)
| | - Elena Roz
- La Maddalena Hospital III Level Oncological Department, Via San Lorenzo Colli, 90145 Palermo, Italy;
| | | | - Salvatore Feo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (S.F.)
| | - Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (S.F.)
- Experimental Center of Onco Biology (COBS), 90145 Palermo, Italy;
- Correspondence: ; Tel.: +39-091-2389-7330
| |
Collapse
|
2
|
Buttacavoli M, Di Cara G, D’Amico C, Geraci F, Pucci-Minafra I, Feo S, Cancemi P. Prognostic and Functional Significant of Heat Shock Proteins (HSPs) in Breast Cancer Unveiled by Multi-Omics Approaches. BIOLOGY 2021; 10:biology10030247. [PMID: 33810095 PMCID: PMC8004706 DOI: 10.3390/biology10030247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary In this study, we investigated the expression pattern and prognostic significance of the heat shock proteins (HSPs) family members in breast cancer (BC) by using several bioinformatics tools and proteomics investigations. Our results demonstrated that, collectively, HSPs were deregulated in BC, acting as both oncogene and onco-suppressor genes. In particular, two different HSP-clusters were significantly associated with a poor or good prognosis. Interestingly, the HSPs deregulation impacted gene expression and miRNAs regulation that, in turn, affected important biological pathways involved in cell cycle, DNA replication, and receptors-mediated signaling. Finally, the proteomic identification of several HSPs members and isoforms revealed much more complexity of HSPs roles in BC and showed that their expression is quite variable among patients. In conclusion, we elaborated two panels of HSPs that could be further explored as potential biomarkers for BC progression and prognosis. Abstract Heat shock proteins (HSPs) are a well-characterized molecular chaperones protein family, classified into six major families, according to their molecular size. A wide range of tumors have been shown to express atypical levels of one or more HSPs, suggesting that they could be used as biomarkers. However, the collective role and the possible coordination of HSP members, as well as the prognostic significance and the functional implications of their deregulated expression in breast cancer (BC) are poorly investigated. Here, we used a systematic multi-omics approach to assess the HSPs expression, the prognostic value, and the underlying mechanisms of tumorigenesis in BC. By using data mining, we showed that several HSPs were deregulated in BC and significantly correlated with a poor or good prognosis. Functional network analysis of HSPs co-expressed genes and miRNAs highlighted their regulatory effects on several biological pathways involved in cancer progression. In particular, these pathways concerned cell cycle and DNA replication for the HSPs co-expressed genes, and miRNAs up-regulated in poor prognosis and Epithelial to Mesenchymal Transition (ETM), as well as receptors-mediated signaling for the HSPs co-expressed genes up-regulated in good prognosis. Furthermore, the proteomic expression of HSPs in a large sample-set of breast cancer tissues revealed much more complexity in their roles in BC and showed that their expression is quite variable among patients and confined into different cellular compartments. In conclusion, integrative analysis of multi-omics data revealed the distinct impact of several HSPs members in BC progression and indicate that collectively they could be useful as biomarkers and therapeutic targets for BC management.
Collapse
Affiliation(s)
- Miriam Buttacavoli
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (C.D.); (F.G.); (S.F.)
| | - Gianluca Di Cara
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (C.D.); (F.G.); (S.F.)
| | - Cesare D’Amico
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (C.D.); (F.G.); (S.F.)
| | - Fabiana Geraci
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (C.D.); (F.G.); (S.F.)
| | | | - Salvatore Feo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (C.D.); (F.G.); (S.F.)
| | - Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (C.D.); (F.G.); (S.F.)
- Experimental Center of Onco Biology (COBS), 90145 Palermo, Italy;
- Correspondence: ; Tel.: +39-091-2389-7330
| |
Collapse
|
3
|
Rizzo C, Cancemi P, Mattiello L, Marullo S, D'Anna F. Naphthalimide Imidazolium-Based Supramolecular Hydrogels as Bioimaging and Theranostic Soft Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48442-48457. [PMID: 33070607 DOI: 10.1021/acsami.0c17149] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
1,8-Naphthalimide-based imidazolium salts differing for the alkyl chain length and the nature of the anion were synthesized and characterized to obtain fluorescent probes for bioimaging applications. First, their self-assembly behavior and gelling ability were investigated in water and water/dimethyl sulfoxide binary mixtures. Only salts having longer alkyl chains were able to give supramolecular hydrogels, whose properties were investigated by using a combined approach of fluorescence, resonance light scattering, and rheology measurements. Morphological information was obtained by scanning electron microscopy. In addition, conductive properties of organic salts in solution and gel state were analyzed. Imidazolium salts were successfully tested for their possible application as bioimaging and cytotoxic agents toward three cancer cell lines and a nontumoral epithelial cell line. Characterization of their behavior was performed by MTT and cell-based assays. Finally, the biological activity of hydrogels was also investigated. Collectively, our findings showed that naphthalimide-based imidazolium salts are promising theranostic agents and they were able to preserve their biological properties also in the gel phase.
Collapse
Affiliation(s)
- Carla Rizzo
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica, Viale delle Scienze, Università degli Studi di Palermo, Edificio 17, Palermo 90128, Italy
| | - Patrizia Cancemi
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Sezione di Biologia Cellulare, Viale delle Scienze, Università degli Studi di Palermo, Edificio 17, Palermo 90128, Italy
| | - Leonardo Mattiello
- Dipartimento Scienze di Base e Applicate per l'Ingegneria (SBAI), Sapienza Università di Roma, via Castro Laurenziano 7, Roma 00161, Italy
| | - Salvatore Marullo
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica, Viale delle Scienze, Università degli Studi di Palermo, Edificio 17, Palermo 90128, Italy
| | - Francesca D'Anna
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica, Viale delle Scienze, Università degli Studi di Palermo, Edificio 17, Palermo 90128, Italy
| |
Collapse
|
4
|
Investigating REPAIRv2 as a Tool to Edit CFTR mRNA with Premature Stop Codons. Int J Mol Sci 2020; 21:ijms21134781. [PMID: 32640650 PMCID: PMC7369808 DOI: 10.3390/ijms21134781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding the transmembrane conductance regulator (CFTR) protein. Some CF patients are compound heterozygous or homozygous for nonsense mutations in the CFTR gene. This implies the presence in the transcript of premature termination codons (PTCs) responsible for a truncated CFTR protein and a more severe form of the disease. Aminoglycoside and PTC124 derivatives have been used for the read-through of PTCs to restore the full-length CFTR protein. However, in a precision medicine framework, the CRISPR/dCas13b-based molecular tool “REPAIRv2” (RNA Editing for Programmable A to I Replacement, version 2) could be a good alternative to restore the full-length CFTR protein. This RNA editing approach is based on the targeting of the deaminase domain of the hADAR2 enzyme fused to the dCas13b protein to a specific adenosine to be edited to inosine in the mutant mRNA. Targeting specificity is allowed by a guide RNA (gRNA) complementarily to the target region and recognized by the dCas13b protein. Here, we used the REPAIRv2 platform to edit the UGA PTC to UGG in different cell types, namely IB3-1 cells, HeLa, and FRT cells engineered to express H2BGFPopal and CFTRW1282X, respectively.
Collapse
|
5
|
New Synthetic Nitro-Pyrrolomycins as Promising Antibacterial and Anticancer Agents. Antibiotics (Basel) 2020; 9:antibiotics9060292. [PMID: 32486200 PMCID: PMC7345095 DOI: 10.3390/antibiotics9060292] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pyrrolomycins (PMs) are polyhalogenated antibiotics known as powerful biologically active compounds, yet featuring high cytotoxicity. The present study reports the antibacterial and antitumoral properties of new chemically synthesized PMs, where the three positions of the pyrrolic nucleus were replaced by nitro groups, aiming to reduce their cytotoxicity while maintaining or even enhancing the biological activity. Indeed, the presence of the nitro substituent in diverse positions of the pyrrole determined an improvement of the minimal bactericidal concentration (MBC) against Gram-positive (i.e., Staphylococcus aureus) or -negative (i.e., Pseudomonas aeruginosa) pathogen strains as compared to the natural PM-C. Moreover, some new nitro-PMs were as active as or more than PM-C in inhibiting the proliferation of colon (HCT116) and breast (MCF 7) cancer cell lines and were less toxic towards normal epithelial (hTERT RPE-1) cells. Altogether, our findings contribute to increase the knowledge of the mode of action of these promising molecules and provide a basis for their rationale chemical or biological manipulation.
Collapse
|
6
|
Cancemi P, Aiello A, Accardi G, Caldarella R, Candore G, Caruso C, Ciaccio M, Cristaldi L, Di Gaudio F, Siino V, Vasto S. The Role of Matrix Metalloproteinases (MMP-2 and MMP-9) in Ageing and Longevity: Focus on Sicilian Long-Living Individuals (LLIs). Mediators Inflamm 2020; 2020:8635158. [PMID: 32454796 PMCID: PMC7222606 DOI: 10.1155/2020/8635158] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/29/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
Extracellular matrix metalloproteinases (MMPs) are a group of proteins that activate substrates by enzymatic cleavage and, on the basis of their activities, have been demonstrated to play a role in ageing. Thus, in order to gain insight into the pathophysiology of ageing and to identify new markers of longevity, we analysed the activity levels of MMP-2 and MMP-9 in association with some relevant haematochemical parameters in a Sicilian population, including long-living individuals (LLIs, ≥95 years old). A cohort of 154 healthy subjects (72 men and 82 women) of different ages (age range 20-112) was recruited. The cohort was divided into five subgroups: the first group with subjects less than 40 years old, the second group ranging from 40 to 64 years old, the third group ranging from 65 to 89 years old, the fourth group ranging from 90 to 94 years old, and the fifth group with subjects more than 95 years old. A relationship was observed between LLIs and MMP-2, but not between LLIs and MMP-9. However, in the LLI group, MMP-2 and MMP-9 values were significantly correlated. Furthermore, in LLIs, we found a positive correlation of MMP-2 with the antioxidant catabolite uric acid and a negative correlation with the inflammatory marker C-reactive protein. Finally, in LLIs MMP-9 values correlated directly both with cholesterol and with low-density lipoproteins. On the whole, our data suggest that the observed increase of MMP-2 in LLIs might play a positive role in the attainment of longevity. This is the first study that shows that serum activity of MMP-2 is increased in LLIs as compared to younger subjects. As far as we are concerned, it is difficult to make wide-ranging conclusions/assumptions based on these observations in view of the relatively small sample size of LLIs. However, this is an important starting point. Larger-scale future studies will be required to clarify these findings including the link with other systemic inflammatory and antioxidant markers.
Collapse
Affiliation(s)
- Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rosalia Caldarella
- Department of Laboratory Medicine, “P. Giaccone” Palermo University Hospital, Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marcello Ciaccio
- Department of Laboratory Medicine, “P. Giaccone” Palermo University Hospital, Palermo, Italy
- Unit of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Laura Cristaldi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Francesca Di Gaudio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Medicon Village, Lund, Sweden
| | - Sonya Vasto
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| |
Collapse
|
7
|
Buttacavoli M, Albanese NN, Roz E, Pucci-Minafra I, Feo S, Cancemi P. Proteomic Profiling of Colon Cancer Tissues: Discovery of New Candidate Biomarkers. Int J Mol Sci 2020; 21:ijms21093096. [PMID: 32353950 PMCID: PMC7247674 DOI: 10.3390/ijms21093096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Colon cancer is an aggressive tumor form with a poor prognosis. This study reports a comparative proteomic analysis performed by using two-dimensional differential in-gel electrophoresis (2D-DIGE) between 26 pooled colon cancer surgical tissues and adjacent non-tumoral tissues, to identify potential target proteins correlated with carcinogenesis. The DAVID functional classification tool revealed that most of the differentially regulated proteins, acting both intracellularly and extracellularly, concur across multiple cancer steps. The identified protein classes include proteins involved in cell proliferation, apoptosis, metabolic pathways, oxidative stress, cell motility, Ras signal transduction, and cytoskeleton. Interestingly, networks and pathways analysis showed that the identified proteins could be biologically inter-connected to the tumor-host microenvironment, including innate immune response, platelet and neutrophil degranulation, and hemostasis. Finally, transgelin (TAGL), here identified for the first time with four different protein species, collectively down-regulated in colon cancer tissues, emerged as a top-ranked biomarker for colorectal cancer (CRC). In conclusion, our findings revealed a different proteomic profiling in colon cancer tissues characterized by the deregulation of specific pathways involved in hallmarks of cancer. All of these proteins may represent promising novel colon cancer biomarkers and potential therapeutic targets, if validated in larger cohorts of patients.
Collapse
Affiliation(s)
- Miriam Buttacavoli
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d’Orleans, Building 16, 90128 Palermo, Italy
| | - Nadia Ninfa Albanese
- Experimental Center of Onco Biology (COBS), Via San Lorenzo Colli, 312, 90145 Palermo, Italy
| | - Elena Roz
- La Maddalena Hospital III Level Oncological Department, Via San Lorenzo Colli, 312, 90145 Palermo, Italy
| | - Ida Pucci-Minafra
- Experimental Center of Onco Biology (COBS), Via San Lorenzo Colli, 312, 90145 Palermo, Italy
| | - Salvatore Feo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d’Orleans, Building 16, 90128 Palermo, Italy
| | - Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d’Orleans, Building 16, 90128 Palermo, Italy
- Experimental Center of Onco Biology (COBS), Via San Lorenzo Colli, 312, 90145 Palermo, Italy
- Correspondence:
| |
Collapse
|
8
|
Saladino ML, Markowska M, Carmone C, Cancemi P, Alduina R, Presentato A, Scaffaro R, Biały D, Hasiak M, Hreniak D, Wawrzyńska M. Graphene Oxide Carboxymethylcellulose Nanocomposite for Dressing Materials. MATERIALS 2020; 13:ma13081980. [PMID: 32340390 PMCID: PMC7216044 DOI: 10.3390/ma13081980] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022]
Abstract
Sore, infected wounds are a major clinical issue, and there is thus an urgent need for novel biomaterials as multifunctional constituents for dressings. A set of biocomposites was prepared by solvent casting using different concentrations of carboxymethylcellulose (CMC) and exfoliated graphene oxide (Exf-GO) as a filler. Exf-GO was first obtained by the strong oxidation and exfoliation of graphite. The structural, morphological and mechanical properties of the composites (CMCx/Exf-GO) were evaluated, and the obtained composites were homogenous, transparent and brownish in color. The results confirmed that Exf-GO may be homogeneously dispersed in CMC. It was found that the composite has an inhibitory activity against the Gram-positive Staphylococcus aureus, but not against Gram-negative Pseudomonas aeruginosa. At the same time, it does not exhibit any cytotoxic effect on normal fibroblasts.
Collapse
Affiliation(s)
- Maria Luisa Saladino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Bld. 16-17, I-90128 Palermo, Italy; (C.C.); (P.C.); (R.A.); (A.P.)
- Correspondence: (M.L.S.); (D.B.); (M.W.)
| | - Marta Markowska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wrocław, Poland; (M.M.); (D.H.)
- Carbonmed Spółka z Ograniczoną Odpowiedzialnością, ul. Okólna 2, 50-422 Wrocław, Poland
| | - Clara Carmone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Bld. 16-17, I-90128 Palermo, Italy; (C.C.); (P.C.); (R.A.); (A.P.)
| | - Patrizia Cancemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Bld. 16-17, I-90128 Palermo, Italy; (C.C.); (P.C.); (R.A.); (A.P.)
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Bld. 16-17, I-90128 Palermo, Italy; (C.C.); (P.C.); (R.A.); (A.P.)
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Bld. 16-17, I-90128 Palermo, Italy; (C.C.); (P.C.); (R.A.); (A.P.)
| | - Roberto Scaffaro
- Department of Engineering, University of Palermo, Viale Delle Scienze Bld. 6, I-90128 Palermo, Italy;
| | - Dariusz Biały
- Carbonmed Spółka z Ograniczoną Odpowiedzialnością, ul. Okólna 2, 50-422 Wrocław, Poland
- Division of Preclinical Research, Faculty of Health Sciences, Wroclaw Medical University, Ludwika Pasteura 1, PL-50-367 Wrocław, Poland
- Correspondence: (M.L.S.); (D.B.); (M.W.)
| | - Mariusz Hasiak
- Department of Mechanics and Material Science Engineering, Wrocław University of Science and Technology, Smoluchowskiego 25, PL-50-370 Wrocław, Poland;
| | - Dariusz Hreniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wrocław, Poland; (M.M.); (D.H.)
- Carbonmed Spółka z Ograniczoną Odpowiedzialnością, ul. Okólna 2, 50-422 Wrocław, Poland
| | - Magdalena Wawrzyńska
- Carbonmed Spółka z Ograniczoną Odpowiedzialnością, ul. Okólna 2, 50-422 Wrocław, Poland
- Division of Preclinical Research, Faculty of Health Sciences, Wroclaw Medical University, Ludwika Pasteura 1, PL-50-367 Wrocław, Poland
- Correspondence: (M.L.S.); (D.B.); (M.W.)
| |
Collapse
|
9
|
Expression of Alpha-Enolase (ENO1), Myc Promoter-Binding Protein-1 (MBP-1) and Matrix Metalloproteinases (MMP-2 and MMP-9) Reflect the Nature and Aggressiveness of Breast Tumors. Int J Mol Sci 2019; 20:ijms20163952. [PMID: 31416219 PMCID: PMC6720302 DOI: 10.3390/ijms20163952] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is a complex and heterogeneous disease: Several molecular alterations cause cell proliferation and the acquisition of an invasive phenotype. Extracellular matrix (ECM) is considered essential for sustaining tumor growth and matrix metalloproteinases (MMPs) have been identified as drivers of many aspects of the tumor phenotype. Mounting evidence indicates that both α-enolase (ENO1) and Myc promoter-binding protein-1 (MBP-1) also played pivotal roles in tumorigenesis, although as antagonists. ENO1 is involved in cell growth, hypoxia tolerance and autoimmune activities besides its major role in the glycolysis pathway. On the contrary, MBP-1, an alternative product of ENO1, suppresses cell proliferation and the invasive ability of cancer cells. Since an important task in personalized medicine is to discriminate a different subtype of patients with different clinical outcomes including chances of recurrence and metastasis, we investigated the functional relationship between ENO1/MBP-1 expression and MMP-2 and MMP-9 activity levels in both tissues and sera of breast cancer patients. We focused on the clinical relevance of ENO1 and MMPs (MMP-2 and MMP-9) overexpression in breast cancer tissues: The association between the higher ENO1, MMP-2 and MMP-9 expression with a worse prognosis suggest that the elevated ENO1 and MMPs expression are promising biomarkers for breast cancer. A relationship seems to exist between MBP-1 expression and the decrease in the activity levels of MMP-9 in cancer tissues and MMP-2 in sera. Moreover, the sera of breast cancer patients grouped for MBP-1 expression differentially induced, in vitro, cell proliferation and migration. Our findings support the hypothesis of patient’s stratification based on ENO1, MBP-1 and MMPs expression. Elucidating the molecular pathways through which MBP-1 influences MMPs expression and breast cancer regression can lead to the discovery of new management strategies.
Collapse
|
10
|
Wang M, Li Q, Dong H. Proteomic evidence that ABCA4 is vital for traumatic proliferative vitreoretinopathy formation and development. Exp Eye Res 2019; 181:232-239. [DOI: 10.1016/j.exer.2019.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/12/2019] [Accepted: 02/05/2019] [Indexed: 01/22/2023]
|
11
|
Cancemi P, Di Falco F, Feo S, Arizza V, Vizzini A. The gelatinase MMP-9like is involved in regulation of LPS inflammatory response in Ciona robusta. FISH & SHELLFISH IMMUNOLOGY 2019; 86:213-222. [PMID: 30453047 DOI: 10.1016/j.fsi.2018.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/04/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of endopeptidases collectively able to degrade the components of the extracellular matrix (ECM), with important roles in many biological processes, such as embryogenesis, normal tissue remodelling, angiogenesis and wound healing. New views on the function of MMPs reveal that they regulate inflammatory response and therefore might represent an early step in the evolution of the immune system. MMPs can affect the activity of cytokines involved in inflammation including TGF-β and TNF-α. MMPs are widely distributed in all kingdoms of life and have likely evolved from a single-domain protein which underwent successive rounds of duplications. In this study, we focused on the Ciona robusta (formerly known as Ciona intestinalis) MMP gelatinase homologue. Gene organization, phylogenetic analysis and 3D modeling supported the closest correlation of C. robusta gelatinase with the human MMP-9. Real-time PCR analysis and zymographic assay showed a prompt expression induced by LPS inoculation and an upregulation of enzymatic activity. Furthermore, we showed that before of the well-known increase of TGF-β and TNF-α levels, a MMP-9like boost occurred, suggesting a possible involvement of MMP-9like in regulating inflammatory response in C. robusta.
Collapse
Affiliation(s)
- Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy; Advanced Technologies Network Center (ATeN), University of Palermo, Palermo, Italy
| | - Felicia Di Falco
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Salvatore Feo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy; Advanced Technologies Network Center (ATeN), University of Palermo, Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Aiti Vizzini
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| |
Collapse
|
12
|
Cancemi P, Buttacavoli M, Di Cara G, Albanese NN, Bivona S, Pucci-Minafra I, Feo S. A multiomics analysis of S100 protein family in breast cancer. Oncotarget 2018; 9:29064-29081. [PMID: 30018736 PMCID: PMC6044374 DOI: 10.18632/oncotarget.25561] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/19/2018] [Indexed: 12/11/2022] Open
Abstract
The S100 gene family is the largest subfamily of calcium binding proteins of EF-hand type, expressed in tissue and cell-specific manner, acting both as intracellular regulators and extracellular mediators. There is a growing interest in the S100 proteins and their relationships with different cancers because of their involvement in a variety of biological events closely related to tumorigenesis and cancer progression. However, the collective role and the possible coordination of this group of proteins, as well as the functional implications of their expression in breast cancer (BC) is still poorly known. We previously reported a large-scale proteomic investigation performed on BC patients for the screening of multiple forms of S100 proteins. Present study was aimed to assess the functional correlation between protein and gene expression patterns and the prognostic values of the S100 family members in BC. By using data mining, we showed that S100 members were collectively deregulated in BC, and their elevated expression levels were correlated with shorter survival and more aggressive phenotypes of BC (basal like, HER2 enriched, ER-negative and high grading). Moreover a multi-omics functional network analysis highlighted the regulatory effects of S100 members on several cellular pathways associated with cancer and cancer progression, expecially immune response and inflammation. Interestingly, for the first time, a pathway analysis was successfully applied on different omics data (transcriptomics and proteomics) revealing a good convergence between pathways affected by S100 in BC. Our data confirm S100 members as a promising panel of biomarkers for BC prognosis.
Collapse
Affiliation(s)
- Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Center of Experimental Oncobiology (C.OB.S.), La Maddalena Hospital III Level Oncological Dept., Palermo, Italy.,Advanced Technologies Network Center (ATeN), University of Palermo, Palermo, Italy
| | - Miriam Buttacavoli
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Gianluca Di Cara
- Center of Experimental Oncobiology (C.OB.S.), La Maddalena Hospital III Level Oncological Dept., Palermo, Italy
| | - Nadia Ninfa Albanese
- Center of Experimental Oncobiology (C.OB.S.), La Maddalena Hospital III Level Oncological Dept., Palermo, Italy
| | - Serena Bivona
- Advanced Technologies Network Center (ATeN), University of Palermo, Palermo, Italy
| | - Ida Pucci-Minafra
- Center of Experimental Oncobiology (C.OB.S.), La Maddalena Hospital III Level Oncological Dept., Palermo, Italy
| | - Salvatore Feo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Advanced Technologies Network Center (ATeN), University of Palermo, Palermo, Italy.,Institute of Biomedicine and Molecular Immunology, CNR, Palermo, Italy
| |
Collapse
|
13
|
Buttacavoli M, Albanese NN, Di Cara G, Alduina R, Faleri C, Gallo M, Pizzolanti G, Gallo G, Feo S, Baldi F, Cancemi P. Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation. Oncotarget 2017. [PMID: 29515763 PMCID: PMC5839394 DOI: 10.18632/oncotarget.23859] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Silver nanoparticles (AgNPs), embedded into a specific polysaccharide (EPS), were biogenerated by Klebsiella oxytoca DSM 29614 under aerobic (AgNPs-EPSaer) and anaerobic conditions (AgNPs-EPSanaer). Both AgNPs-EPS matrices were tested by MTT assay for cytotoxic activity against human breast (SKBR3 and 8701-BC) and colon (HT-29, HCT 116 and Caco-2) cancer cell lines, revealing AgNPs-EPSaer as the most active, in terms of IC50, with a more pronounced efficacy against breast cancer cell lines. Therefore, colony forming capability, morphological changes, generation of reactive oxygen species (ROS), induction of apoptosis and autophagy, inhibition of migratory and invasive capabilities and proteomic changes were investigated using SKBR3 breast cancer cells with the aim to elucidate AgNPs-EPSaer mode of action. In particular, AgNPs-EPSaer induced a significant decrease of cell motility and MMP-2 and MMP-9 activity and a significant increase of ROS generation, which, in turn, supported cell death mainly through autophagy and in a minor extend through apoptosis. Consistently, TEM micrographs and the determination of total silver in subcellular fractions indicated that the Ag+ accumulated preferentially in mitochondria and in smaller concentrations in nucleus, where interact with DNA. Interestingly, these evidences were confirmed by a differential proteomic analysis that highlighted important pathways involved in AgNPs-EPSaer toxicity, including endoplasmic reticulum stress, oxidative stress and mitochondrial impairment triggering cell death trough apoptosis and/or autophagy activation.
Collapse
Affiliation(s)
- Miriam Buttacavoli
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Nadia Ninfa Albanese
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Gianluca Di Cara
- Center of Experimental Oncobiology (C.OB.S.), La Maddalena Hospital III Level Oncological Dept., Palermo, Italy
| | - Rosa Alduina
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Claudia Faleri
- Department of Life Science, University of Siena, Siena, Italy
| | - Michele Gallo
- Department of Molecular Science and Nanosystems, Cà Foscari University of Venice, Venice, Italy
| | - Giuseppe Pizzolanti
- Biomedical Department of Internal and Specialist Medicine (DIBIMIS), Section of Endocrinology, University of Palermo, Palermo, Italy.,Advanced Technologies Network Center (ATeN), University of Palermo, Palermo, Italy
| | - Giuseppe Gallo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Advanced Technologies Network Center (ATeN), University of Palermo, Palermo, Italy
| | - Salvatore Feo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Advanced Technologies Network Center (ATeN), University of Palermo, Palermo, Italy
| | - Franco Baldi
- Department of Molecular Science and Nanosystems, Cà Foscari University of Venice, Venice, Italy
| | - Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Center of Experimental Oncobiology (C.OB.S.), La Maddalena Hospital III Level Oncological Dept., Palermo, Italy.,Advanced Technologies Network Center (ATeN), University of Palermo, Palermo, Italy
| |
Collapse
|
14
|
Cancemi P, Buttacavoli M, D'Anna F, Feo S, Fontana RM, Noto R, Sutera A, Vitale P, Gallo G. The effects of structural changes on the anti-microbial and anti-proliferative activities of diimidazolium salts. NEW J CHEM 2017. [DOI: 10.1039/c6nj03904a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Anti-microbial and anti-proliferative activities of diimidazolium salts have been analyzed as a function of the main changes in their structural features.
Collapse
Affiliation(s)
- Patrizia Cancemi
- Dipartimento STEBICEF
- Sezione di Biologia Cellulare
- Viale delle Scienze
- 90128 Palermo
- Italy
| | - Miriam Buttacavoli
- Dipartimento STEBICEF
- Sezione di Biologia Cellulare
- Viale delle Scienze
- 90128 Palermo
- Italy
| | - Francesca D'Anna
- Dipartimento STEBICEF
- Sezione di Chimica
- Viale delle Scienze
- 90128 Palermo
- Italy
| | - Salvatore Feo
- Dipartimento STEBICEF
- Sezione di Biologia Cellulare
- Viale delle Scienze
- 90128 Palermo
- Italy
| | - Rosa Maria Fontana
- Dipartimento STEBICEF
- Sezione di Biologia Cellulare
- Viale delle Scienze
- 90128 Palermo
- Italy
| | - Renato Noto
- Dipartimento STEBICEF
- Sezione di Chimica
- Viale delle Scienze
- 90128 Palermo
- Italy
| | - Alberto Sutera
- Dipartimento STEBICEF
- Sezione di Biologia Cellulare
- Viale delle Scienze
- 90128 Palermo
- Italy
| | - Paola Vitale
- Dipartimento STEBICEF
- Sezione di Chimica
- Viale delle Scienze
- 90128 Palermo
- Italy
| | - Giuseppe Gallo
- Dipartimento STEBICEF
- Sezione di Biologia Cellulare
- Viale delle Scienze
- 90128 Palermo
- Italy
| |
Collapse
|
15
|
Musso R, Di Cara G, Albanese NN, Marabeti MR, Cancemi P, Martini D, Orsini E, Giordano C, Pucci-Minafra I. Differential proteomic and phenotypic behaviour of papillary and anaplastic thyroid cell lines. J Proteomics 2013; 90:115-25. [PMID: 23385357 DOI: 10.1016/j.jprot.2013.01.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 01/16/2013] [Accepted: 01/22/2013] [Indexed: 12/11/2022]
Abstract
Thyroid carcinomas account for a minority of all malignant tumours but, after those of the gonads, they represent the most common forms of endocrine cancers. They include several types, among which the papillary thyroid cancer (PTC) and the anaplastic thyroid cancer (ATC) are the best known. The two hystotypes display significant biological and clinical differences: PTC is a well differentiated form of tumour with a high incidence and a good prognosis, while the ATC is less frequent but represents one of the most aggressive endocrine tumours with morphological features of an undifferentiated type. To date, as far as we know, no conclusive studies, useful to design arrays of molecular markers, have been published illustrating the phenotypic and proteomic differences between these two tumours. The aim of this work was to perform a comparative analysis of two thyroid cancer cell lines, derived respectively from papillary (BCPAP) and anaplastic (8505C) thyroid carcinomas. The comparative analysis included cell behaviour assays and proteomic analysis by 2D-PAGE and mass spectrometry. The results have highlighted a new proteomic signature for the anaplastic carcinoma-derived cells, consistent with their high proliferation rate, motility propensity and metabolic shift, in relation to the well-differentiated PTC cells.
Collapse
Affiliation(s)
- Rosa Musso
- Center of Experimental Oncobiology (C.OB.S.), La Maddalena Hospital III Level Oncological Dept., Palermo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Karagiannis GS, Pavlou MP, Diamandis EP. Cancer secretomics reveal pathophysiological pathways in cancer molecular oncology. Mol Oncol 2010; 4:496-510. [PMID: 20934395 DOI: 10.1016/j.molonc.2010.09.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 12/31/2022] Open
Abstract
Emerging proteomic tools and mass spectrometry play pivotal roles in protein identification, quantification and characterization, even in complex biological samples. The cancer secretome, namely the whole collection of proteins secreted by cancer cells through various secretory pathways, has only recently been shown to have significant potential for diverse applications in oncoproteomics. For example, secreted proteins might represent putative tumor biomarkers or therapeutic targets for various types of cancer. Consequently, many proteomic strategies for secretome analysis have been extensively deployed over the last few years. These efforts generated a large amount of information awaiting deeper mining, better understanding and careful interpretation. Distinct sub-fields, such as degradomics, exosome proteomics and tumor-host cell interactions have been developed, in an attempt to provide certain answers to partially elucidated mechanisms of cancer pathobiology. In this review, advances, concerns and challenges in the field of secretome analysis as well as possible clinical applications are discussed.
Collapse
Affiliation(s)
- George S Karagiannis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | |
Collapse
|