1
|
Chien WC, Tsai TF. Pressure and Skin: A Review of Disease Entities Driven or Influenced by Mechanical Pressure. Am J Clin Dermatol 2024; 25:261-280. [PMID: 38159214 DOI: 10.1007/s40257-023-00833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Skin perceives and reacts to external mechanical forces to create resistance against the external environment. Excessive or inappropriate stimuli of pressure may lead to cellular alterations of the skin and the development of both benign and malignant skin disorders. We conducted a comprehensive literature review to delve into the pressure-induced and aggravated skin disorders and their underlying pressure-related mechanisms. Dysregulated mechanical responses of the skin give rise to local inflammation, ischemia, necrosis, proliferation, hyperkeratosis, impaired regeneration, atrophy, or other injurious reactions, resulting in various disease entities. The use of personal devices, activities, occupations, weight bearing, and even unintentional object contact and postures are potential scenarios that account for the development of pressure-related skin disorders. The spectrum of these skin disorders may involve the epidermis (keratinocytes and melanocytes), hair follicles, eccrine glands, nail apparatuses, dermis (fibroblasts, mast cells, and vasculature), subcutis, and fascia. Clarifying the clinical context of each patient and recognizing how pressure at the cellular and tissue levels leads to skin lesions can enhance our comprehension of pressure-related skin disorders to attain better management.
Collapse
Affiliation(s)
- Wei-Chen Chien
- Department of Medical Education, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, Taiwan
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Road, Taipei, Taiwan.
| |
Collapse
|
2
|
De Decker I, Klotz T, Vu P, Hoeksema H, De Mey K, Beeckman A, Vermeulen B, Speeckaert M, Blondeel P, Wagstaff M, Monstrey S, Claes KEY. Influence of Moisturizers on Skin Microcirculation: An Assessment Study Using Laser Speckle Contrast Imaging. J Pers Med 2023; 13:1507. [PMID: 37888118 PMCID: PMC10608544 DOI: 10.3390/jpm13101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Non-invasive scar management typically involves pressure therapy, hydration with silicones or moisturizers, and UV protection. Moisture loss from scars can lead to hypertrophic scar formation. Pressure therapy reduces blood flow, fibroblast activity, and transforming growth factor beta 1 (TGF-β1) release. This study examined various moisturizers and liquid silicone gel's impact on microcirculation. 40 volunteers participated in a study where superficial abrasions were created to induce trans epidermal water loss (TEWL). Five moisturizers (TEDRA®, TEDRA® NT1, TEDRA® NT3, Alhydran®, Lipikar®) and BAP Scar Care® silicone gel were tested. TEWL, hydration, and blood flow were measured up to 4 h post-application. Results showed that silicone had the least impact on occlusion and hydration. Alhydran® reduced blood flow the most, while Lipikar® increased it the most. TEDRA® NT1 had reduced flow compared to TEDRA® and TEDRA® NT3. All TEDRA® products exhibited high hydration, and all but silicone showed good occlusion. Moisturizers influenced skin microcirculation, with some causing decrease, while others increased flow. However, the clinical impact on scarring remains unclear compared to the evident effects of hydration and occlusion. More research is necessary to study moisturizers alone and with pressure therapy on scars, along with potential adverse effects of increased microcirculation on scars.
Collapse
Affiliation(s)
- Ignace De Decker
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; (H.H.); (K.D.M.); (P.B.); (S.M.); (K.E.Y.C.)
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Tanja Klotz
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia; (T.K.); (M.W.)
- Department of Occupational Therapy, Royal Adelaide Hospital, Port Rd., Adelaide, SA 5000, Australia
| | - Peter Vu
- SA Pharmacy, Royal Adelaide Hospital, Adelaide, SA 5000, Australia;
| | - Henk Hoeksema
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; (H.H.); (K.D.M.); (P.B.); (S.M.); (K.E.Y.C.)
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Kimberly De Mey
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; (H.H.); (K.D.M.); (P.B.); (S.M.); (K.E.Y.C.)
| | - Anse Beeckman
- Faculty of Medicine and Health Sciences, Sint-Pietersnieuwsstraat 33, 9000 Ghent, Belgium;
| | - Bob Vermeulen
- Department of Plastic Surgery, Ziekenhuis Oost-Limburg, Synaps Park 1, 3600 Genk, Belgium
| | - Marijn Speeckaert
- Department of Nephrology, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium;
| | - Phillip Blondeel
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; (H.H.); (K.D.M.); (P.B.); (S.M.); (K.E.Y.C.)
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Marcus Wagstaff
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia; (T.K.); (M.W.)
- Adult Burns Service and Department of Plastic Surgery, Royal Adelaide Hospital, Port Rd., Adelaide, SA 5000, Australia
| | - Stan Monstrey
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; (H.H.); (K.D.M.); (P.B.); (S.M.); (K.E.Y.C.)
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Karel E. Y. Claes
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; (H.H.); (K.D.M.); (P.B.); (S.M.); (K.E.Y.C.)
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
3
|
De Decker I, Beeckman A, Hoeksema H, De Mey K, Verbelen J, De Coninck P, Blondeel P, Speeckaert MM, Monstrey S, Claes KEY. Pressure therapy for scars: Myth or reality? A systematic review. Burns 2023; 49:741-756. [PMID: 36941176 DOI: 10.1016/j.burns.2023.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Hypertrophic scarring is a deviate occurrence after wound closure and is a common burn sequela. The mainstay of scar treatment consists of a trifold approach: hydration, UV-protection and the use of pressure garments with or without extra paddings or inlays to provide additional pressure. Pressure therapy has been reported to induce a state of hypoxia and to reduce the expression pattern of transforming growth factor-β1 (TGF-β1), therefore limiting the activity of fibroblasts. However, pressure therapy is said to be largely based on empirical evidence and a lot of controversy concerning the effectiveness still prevails. Many variables influencing its effectivity, such as adherence to treatment, wear time, wash frequency, number of available pressure garment sets and amount of pressure remain only partially understood. This systematic review aims to give a complete and comprehensive overview of the currently available clinical evidence of pressure therapy. METHODS A systematic search for articles concerning the use of pressure therapy in the treatment and prevention of scars was performed in 3 different databases (Pubmed, Embase, and Cochrane library) according to the PRISMA statement. Only case series, case-control studies, cohort studies, and RCTs were included. The qualitative assessment was done by 2 separate reviewers with the appropriate quality assessment tools. RESULTS The search yielded 1458 articles. After deduplication and removal of ineligible records, 1280 records were screened on title and abstract. Full text screening was done for 23 articles and ultimately 17 articles were included. Comparisons between pressure or no pressure, low vs high pressure, short vs long duration and early vs late start of treatment were investigated. CONCLUSION There is sufficient evidence that indicates the value of prophylactic and curative use of pressure therapy for scar management. The evidence suggests that pressure therapy is capable of improving scar color, thickness, pain, and scar quality in general. Evidence also recommends commencing pressure therapy prior to 2 months after injury, and using a minimal pressure of 20-25 mmHg. To be effective, treatment duration should be at least 12 months and even preferably up to 18-24 months. These findings were in line with the best evidence statement by Sharp et al. (2016).
Collapse
Affiliation(s)
- Ignace De Decker
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium.
| | - Anse Beeckman
- Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Henk Hoeksema
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Kimberly De Mey
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Jozef Verbelen
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Petra De Coninck
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Phillip Blondeel
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Stan Monstrey
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Karel E Y Claes
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Qiu C, Wang C, Sun X, Xu J, Wu J, Zhang R, Li G, Xue K, Zhang X, Qian S. CXC‐ receptor 2 promotes extracellular matrix production and attenuates migration in peripapillary human scleral fibroblasts under mechanical strain. J Cell Mol Med 2022; 26:5858-5871. [DOI: 10.1111/jcmm.17609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Chen Qiu
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College Fudan University Shanghai China
- NHC Key Laboratory of Myopia Fudan University Shanghai China
- Laboratory of Myopia Chinese Academy of Medical Sciences Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration Fudan University Shanghai China
| | - Chuandong Wang
- Department of Orthopedic Surgery Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Xinghuai Sun
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College Fudan University Shanghai China
- NHC Key Laboratory of Myopia Fudan University Shanghai China
- Laboratory of Myopia Chinese Academy of Medical Sciences Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration Fudan University Shanghai China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science Fudan University Shanghai China
| | - Jianjiang Xu
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College Fudan University Shanghai China
- NHC Key Laboratory of Myopia Fudan University Shanghai China
- Laboratory of Myopia Chinese Academy of Medical Sciences Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration Fudan University Shanghai China
| | - Jihong Wu
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College Fudan University Shanghai China
- NHC Key Laboratory of Myopia Fudan University Shanghai China
- Laboratory of Myopia Chinese Academy of Medical Sciences Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration Fudan University Shanghai China
| | - Rong Zhang
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College Fudan University Shanghai China
- NHC Key Laboratory of Myopia Fudan University Shanghai China
- Laboratory of Myopia Chinese Academy of Medical Sciences Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration Fudan University Shanghai China
| | - Gang Li
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College Fudan University Shanghai China
- NHC Key Laboratory of Myopia Fudan University Shanghai China
- Laboratory of Myopia Chinese Academy of Medical Sciences Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration Fudan University Shanghai China
| | - Kang Xue
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College Fudan University Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration Fudan University Shanghai China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Shaohong Qian
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College Fudan University Shanghai China
- NHC Key Laboratory of Myopia Fudan University Shanghai China
- Laboratory of Myopia Chinese Academy of Medical Sciences Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration Fudan University Shanghai China
| |
Collapse
|
5
|
Mechanomodulatory Biomaterials Prospects in Scar Prevention and Treatment. Acta Biomater 2022; 150:22-33. [DOI: 10.1016/j.actbio.2022.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
|
6
|
Wong J, Murphy M, Wu YF, Murphy R, Frueh FS, Farnebo S. Basic science approaches to common hand surgery problems. J Hand Surg Eur Vol 2022; 47:117-126. [PMID: 34472390 DOI: 10.1177/17531934211042697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The field of hand surgery is constantly evolving to meet challenges of populations with increasing age and higher demands for active living. While our surgical care has improved over the last decades, it seems that future major improvement in outcomes of clinical treatment will come through advances in biologics and the translation of major discoveries in basic science. This article aims to provide an update on where basic science solutions may answer some of the most critical issues in hand surgery, with a focus on augmentation of tissue repair.
Collapse
Affiliation(s)
- Jason Wong
- Blond McIndoe Laboratories, Manchester, UK.,Department of Plastic Surgery, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Matthew Murphy
- Blond McIndoe Laboratories, Manchester, UK.,Department of Plastic Surgery, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Ya Fang Wu
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ralph Murphy
- Blond McIndoe Laboratories, Manchester, UK.,Department of Plastic Surgery, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Florian S Frueh
- Department of Plastic Surgery and Hand Surgery, University of Zurich, Zurich, Switzerland
| | - Simon Farnebo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Plastic Surgery, Hand Surgery, and Burns, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Zhou S, Wang Q, Huang A, Fan H, Yan S, Zhang Q. Advances in Skin Wound and Scar Repair by Polymer Scaffolds. Molecules 2021; 26:6110. [PMID: 34684690 PMCID: PMC8541489 DOI: 10.3390/molecules26206110] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
Scars, as the result of abnormal wound-healing response after skin injury, may lead to loss of aesthetics and physical dysfunction. Current clinical strategies, such as surgical excision, laser treatment, and drug application, provide late remedies for scarring, yet it is difficult to eliminate scars. In this review, the functions, roles of multiple polymer scaffolds in wound healing and scar inhibition are explored. Polysaccharide and protein scaffolds, an analog of extracellular matrix, act as templates for cell adhesion and migration, differentiation to facilitate wound reconstruction and limit scarring. Stem cell-seeded scaffolds and growth factors-loaded scaffolds offer significant bioactive substances to improve the wound healing process. Special emphasis is placed on scaffolds that continuously release oxygen, which greatly accelerates the vascularization process and ensures graft survival, providing convincing theoretical support and great promise for scarless healing.
Collapse
Affiliation(s)
| | | | | | | | - Shuqin Yan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (S.Z.); (Q.W.); (A.H.); (H.F.)
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (S.Z.); (Q.W.); (A.H.); (H.F.)
| |
Collapse
|
8
|
Szegeczki V, Perényi H, Horváth G, Hinnah B, Tamás A, Radák Z, Ábrahám D, Zákány R, Reglodi D, Juhász T. Physical Training Inhibits the Fibrosis Formation in Alzheimer's Disease Kidney Influencing the TGFβ Signaling Pathways. J Alzheimers Dis 2021; 81:1195-1209. [PMID: 33896841 PMCID: PMC8293655 DOI: 10.3233/jad-201206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Alzheimer’s disease (AD) is a neurodegenerative illness, with several peripheral pathological signs such as accumulation of amyloid-β (Aβ) plaques in the kidney. Alterations of transforming growth factor β (TGFβ) signaling in the kidney can induce fibrosis, thus disturbing the elimination of Aβ. Objective: A protective role of increased physical activity has been proven in AD and in kidney fibrosis, but it is not clear whether TGFβ signalization is involved in this effect. Methods: The effects of long-term training on fibrosis were investigated in the kidneys of mice representing a model of AD (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) by comparing wild type and AD organs. Alterations of canonical and non-canonical TGFβ signaling pathways were followed with PCR, western blot, and immunohistochemistry. Results: Accumulation of collagen type I and interstitial fibrosis were reduced in kidneys of AD mice after long-term training. AD induced the activation of canonical and non-canonical TGFβ pathways in non-trained mice, while expression levels of signal molecules of both TGFβ pathways became normalized in trained AD mice. Decreased amounts of phosphoproteins with molecular weight corresponding to that of tau and the cleaved C-terminal of AβPP were detected upon exercising, along with a significant increase of PP2A catalytic subunit expression. Conclusion: Our data suggest that physical training has beneficial effects on fibrosis formation in kidneys of AD mice and TGFβ signaling plays a role in this phenomenon.
Collapse
Affiliation(s)
- Vince Szegeczki
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Helga Perényi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Horváth
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Barbara Hinnah
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Tamás
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Zsolt Radák
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Dóra Ábrahám
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dóra Reglodi
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Juhász
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
9
|
DeBruler DM, Baumann ME, Zbinden JC, Blackstone BN, Bailey JK, Supp DM, Powell HM. Improved Scar Outcomes with Increased Daily Duration of Pressure Garment Therapy. Adv Wound Care (New Rochelle) 2020; 9:453-461. [PMID: 32320361 DOI: 10.1089/wound.2020.1161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Objective: Despite the development of a number of treatment modalities, scarring remains common postburn injury. To reduce burn scarring, pressure garment therapy has been widely utilized but is complicated by low patient adherence. To improve adherence, reduced hours of daily garment wear has been proposed. Approach: To examine the efficacy of pressure garment therapy at reduced durations of daily wear, a porcine burn-excise-autograft model was utilized. Grafted burns were treated with pressure garments (20 mmHg) for 8, 16, or 24 h of daily wear with untreated burns serving as controls. Scar area, thickness, biomechanical properties, and tissue structure were assessed over time. Results: All treatment groups reduced scar thickness and contraction versus controls and improved scar pliability and elasticity. Pressure garments worn 24 h per day significantly reduced contraction versus the 8- and 16-h groups and prevented alignment of collagen within the dermis. Innovation: Though pressure garment therapy is prescribed for use 23 h per day, the need for almost continuous use has not been previously examined. Adjustable, low-fatigue pressure garments were developed for this porcine study to examine the role of daily duration of wear without confounding factors such as garment fatigue and patient adherence. Conclusion: For maximum efficacy, pressure garments should be worn 23 to 24 h per day; however, garments worn as little as 8 h per day significantly improve scar outcomes versus no treatment.
Collapse
Affiliation(s)
- Danielle M. DeBruler
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Molly E. Baumann
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Jacob C. Zbinden
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Britani N. Blackstone
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, USA
| | - John Kevin Bailey
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Dorothy M. Supp
- Research Department, Shriners Hospitals for Children—Cincinnati, Cincinnati, Ohio, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Heather M. Powell
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Research Department, Shriners Hospitals for Children—Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Akieda Y, Ogamino S, Furuie H, Ishitani S, Akiyoshi R, Nogami J, Masuda T, Shimizu N, Ohkawa Y, Ishitani T. Cell competition corrects noisy Wnt morphogen gradients to achieve robust patterning in the zebrafish embryo. Nat Commun 2019; 10:4710. [PMID: 31624259 PMCID: PMC6797755 DOI: 10.1038/s41467-019-12609-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/18/2019] [Indexed: 12/31/2022] Open
Abstract
Morphogen signalling forms an activity gradient and instructs cell identities in a signalling strength-dependent manner to pattern developing tissues. However, developing tissues also undergo dynamic morphogenesis, which may produce cells with unfit morphogen signalling and consequent noisy morphogen gradients. Here we show that a cell competition-related system corrects such noisy morphogen gradients. Zebrafish imaging analyses of the Wnt/β-catenin signalling gradient, which acts as a morphogen to establish embryonic anterior-posterior patterning, identify that unfit cells with abnormal Wnt/β-catenin activity spontaneously appear and produce noise in the gradient. Communication between unfit and neighbouring fit cells via cadherin proteins stimulates apoptosis of the unfit cells by activating Smad signalling and reactive oxygen species production. This unfit cell elimination is required for proper Wnt/β-catenin gradient formation and consequent anterior-posterior patterning. Because this gradient controls patterning not only in the embryo but also in adult tissues, this system may support tissue robustness and disease prevention. Gradients of morphogens such as Wnt provide instructive cues for cell identities during development. Here, the authors report that in the developing zebrafish embryo, cell competition and elimination of unfit cells are required for proper Wnt gradient formation.
Collapse
Affiliation(s)
- Yuki Akieda
- Laboratory of Integrated Signaling Systems, Department of Molecular Medicine, Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan.,Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Shohei Ogamino
- Laboratory of Integrated Signaling Systems, Department of Molecular Medicine, Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Hironobu Furuie
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.,Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shizuka Ishitani
- Laboratory of Integrated Signaling Systems, Department of Molecular Medicine, Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Ryutaro Akiyoshi
- Biological Evaluation Technology 2, Research and Development, Olympus Corp., Tokyo, 192-8512, Japan
| | - Jumpei Nogami
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takamasa Masuda
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Nobuyuki Shimizu
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tohru Ishitani
- Laboratory of Integrated Signaling Systems, Department of Molecular Medicine, Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan. .,Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan. .,Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
11
|
Grünherz L, Sanchez-Macedo N, Frueh FS, McLuckie M, Lindenblatt N. Nanofat applications: from clinical esthetics to regenerative research. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Botulinum toxin type A prevents the phenotypic transformation of fibroblasts induced by TGF‑β1 via the PTEN/PI3K/Akt signaling pathway. Int J Mol Med 2019; 44:661-671. [PMID: 31173164 PMCID: PMC6605626 DOI: 10.3892/ijmm.2019.4226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
Hypertrophic scar (HS) is a common type of dermatosis. Botulinum toxin type A (BTXA) can exert an anti-HS effect; however, the regulatory mechanisms underlying this effect remain unclear. Thus, the aim of this study was to examine the effects of BTXA on phosphatase and tensin homolog deleted on chromosome ten (PTEN) expression and the fibroblast phenotypic transformation induced by transforming growth factor (TGF)-β1, which is an important regulatory factor involved in the process of HS. For this purpose, fibroblasts were treated with various concentrations of BTXA and then treated with 10 ng/ml of TGF-β1 with gradient concentrations of BTXA. The proliferation and apoptosis of fibroblasts were measured by cell counting kit-8 assay (CCK-8) and flow cytometry, respectively. PTEN methylation was analyzed by methylation-specific PCR (MSP) and DNA methyltransferase (DNMT) activity was determined using a corresponding kit. RT-qPCR and western blot analysis were performed to detect the transcription and translation levels. The results revealed that BTXA suppressed the proliferation and increased the apoptosis of fibroblasts treated with TGF-β1 in a dose-dependent manner. BTXA in combination with TGF-β1 suppressed the expression of molecules related to the extracellular matrix (ECM), epithelial-mesenchymal transition (EMT) and apoptosis. BTXA reduced the PTEN methylation level and downregulated the expression levels of methylation-associated genes. BTXA also inhibited the phosphorylation of phosphoinositide 3-kinase (PI3K) and Akt. On the whole, the findings of this study indicate that BTXA may inhibit fibroblast phenotypic transformation by regulating PTEN methylation and the phosphorylation of related pathways. The findings of this study can provide a theoretical basis for HS treatment.
Collapse
|
13
|
Qiu C, Chen M, Yao J, Sun X, Xu J, Zhang R, Wang X, Li G, Qian S. Mechanical Strain Induces Distinct Human Scleral Fibroblast Lineages: Differential Roles in Cell Proliferation, Apoptosis, Migration, and Differentiation. Invest Ophthalmol Vis Sci 2019; 59:2401-2410. [PMID: 29847646 DOI: 10.1167/iovs.18-23855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to explore the effect of mechanical strain on human scleral fibroblasts (HSFs) and compare cell behaviors of HSFs from distinct regions. Methods Primary HSFs were cultivated using a digestive protocol. Cells were seeded on collagen I-coated Bioflex plates, and a FX-5000 tension system was used to perform biaxial mechanical strain in vitro. We applied 10%, 0.5-Hz mechanical strain. Cell behaviors of peripapillary and periphery HSFs were compared after the strain. Edu imaging, Cell Counting Kit-8 assay, and cell cycle flow cytometry were conducted to analyze cell proliferation ability. For cell apoptosis, flow cytometry of Annexin V/propidium iodide, caspase 3 activity, and Western blot were performed. Immunofluorescence, real-time PCR, and Western blot were used to investigate cell differentiation. A migration assay was also performed. Results Under the mechanical strain of 10%, 0.5 Hz for 24 hours, the proliferation ability and cell apoptosis of peripapillary HSFs did not have a significant change. The expression of alpha-smooth muscle actin (α-SMA) slightly decreased. However, increased cell proliferation, attenuated cell apoptosis and more expression of α-SMA were shown in the periphery HSFs under the same condition. The migration rate was also increased for periphery HSFs, whereas it kept almost the same for peripapillary HSFs under 10%, 0.5-Hz strain for 8 hours. Conclusions Mechanical strain affected the cell behaviors of HSFs. The different performance of cells from distinct regions may suggest familial linages of HSFs, probably induced by mechanical strain.
Collapse
Affiliation(s)
- Chen Qiu
- Department of Ophthalmology, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China
| | - Minjie Chen
- Department of Ophthalmology, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Yao
- Department of Ophthalmology, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Jianjiang Xu
- Department of Ophthalmology, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Zhang
- Department of Ophthalmology, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Ophthalmology, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gang Li
- Department of Ophthalmology, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shaohong Qian
- Department of Ophthalmology, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Klymenko Y, Kim O, Stack MS. Complex Determinants of Epithelial: Mesenchymal Phenotypic Plasticity in Ovarian Cancer. Cancers (Basel) 2017; 9:cancers9080104. [PMID: 28792442 PMCID: PMC5575607 DOI: 10.3390/cancers9080104] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/02/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023] Open
Abstract
Unlike most epithelial malignancies which metastasize hematogenously, metastasis of epithelial ovarian cancer (EOC) occurs primarily via transcoelomic dissemination, characterized by exfoliation of cells from the primary tumor, avoidance of detachment-induced cell death (anoikis), movement throughout the peritoneal cavity as individual cells and multi-cellular aggregates (MCAs), adhesion to and disruption of the mesothelial lining of the peritoneum, and submesothelial matrix anchoring and proliferation to generate widely disseminated metastases. This exceptional microenvironment is highly permissive for phenotypic plasticity, enabling mesenchymal-to-epithelial (MET) and epithelial-to-mesenchymal (EMT) transitions. In this review, we summarize current knowledge on EOC heterogeneity in an EMT context, outline major regulators of EMT in ovarian cancer, address controversies in EMT and EOC chemoresistance, and highlight computational modeling approaches toward understanding EMT/MET in EOC.
Collapse
Affiliation(s)
- Yuliya Klymenko
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA.
| | - Oleg Kim
- Department of Applied and Computational Mathematics and Statistics, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
- Department of Mathematics, University of California Riverside, Riverside, CA 92521, USA.
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
| |
Collapse
|
15
|
Wang G, Yu Y, Sun C, Liu T, Liang T, Zhan L, Lin X, Feng XH. STAT3 selectively interacts with Smad3 to antagonize TGF-β signalling. Oncogene 2016; 35:4388-98. [PMID: 26616859 PMCID: PMC4885808 DOI: 10.1038/onc.2015.446] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022]
Abstract
Smad and STAT proteins are critical signal transducers and transcription factors in controlling cell growth and tumorigenesis. Here we report that the STAT3 signaling pathway attenuates transforming growth factor-β (TGF-β)-induced responses through a direct Smad3-STAT3 interplay. Activated STAT3 blunts TGF-β-mediated signaling. Depletion of STAT3 promotes TGF-β-mediated transcriptional and physiological responses, including cell cycle arrest, apoptosis and epithelial-to-mesenchymal transition. STAT3 directly interacts with Smad3 in vivo and in vitro, resulting in attenuation of the Smad3-Smad4 complex formation and suppression of DNA-binding ability of Smad3. The N-terminal region of DNA-binding domain of STAT3 is responsible for the STAT3-Smad3 interaction and also indispensable for STAT3-mediated inhibition of TGF-β signaling. Thus, our finding illustrates a direct crosstalk between the STAT3 and Smad3 signaling pathways that may contribute to tumor development and inflammation.
Collapse
Affiliation(s)
- Gaohang Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi Yu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuang Sun
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ting Liu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and the Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lixing Zhan
- Institute of Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
16
|
Cremers NAJ, Suttorp M, Gerritsen MM, Wong RJ, van Run-van Breda C, van Dam GM, Brouwer KM, Kuijpers-Jagtman AM, Carels CEL, Lundvig DMS, Wagener FADTG. Mechanical Stress Changes the Complex Interplay Between HO-1, Inflammation and Fibrosis, During Excisional Wound Repair. Front Med (Lausanne) 2015; 2:86. [PMID: 26697429 PMCID: PMC4678194 DOI: 10.3389/fmed.2015.00086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/24/2015] [Indexed: 01/11/2023] Open
Abstract
Mechanical stress following surgery or injury can promote pathological wound healing and fibrosis, and lead to functional loss and esthetic problems. Splinted excisional wounds can be used as a model for inducing mechanical stress. The cytoprotective enzyme heme oxygenase-1 (HO-1) is thought to orchestrate the defense against inflammatory and oxidative insults that drive fibrosis. Here, we investigated the activation of the HO-1 system in a splinted and non-splinted full-thickness excisional wound model using HO-1-luc transgenic mice. Effects of splinting on wound closure, HO-1 promoter activity, and markers of inflammation and fibrosis were assessed. After seven days, splinted wounds were more than three times larger than non-splinted wounds, demonstrating a delay in wound closure. HO-1 promoter activity rapidly decreased following removal of the (epi)dermis, but was induced in both splinted and non-splinted wounds during skin repair. Splinting induced more HO-1 gene expression in 7-day wounds; however, HO-1 protein expression remained lower in the epidermis, likely due to lower numbers of keratinocytes in the re-epithelialization tissue. Higher numbers of F4/80-positive macrophages, αSMA-positive myofibroblasts, and increased levels of the inflammatory genes IL-1β, TNF-α, and COX-2 were present in 7-day splinted wounds. Surprisingly, mRNA expression of newly formed collagen (type III) was lower in 7-day wounds after splinting, whereas, VEGF and MMP-9 were increased. In summary, these data demonstrate that splinting delays cutaneous wound closure and HO-1 protein induction. The pro-inflammatory environment following splinting may facilitate higher myofibroblast numbers and increase the risk of fibrosis and scar formation. Therefore, inducing HO-1 activity against mechanical stress-induced inflammation and fibrosis may be an interesting strategy to prevent negative effects of surgery on growth and function in patients with orofacial clefts or in patients with burns.
Collapse
Affiliation(s)
- Niels A J Cremers
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands ; Experimental Rheumatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| | - Maarten Suttorp
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| | - Marlous M Gerritsen
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| | - Ronald J Wong
- Department of Pediatrics, Stanford University School of Medicine , Stanford, CA , USA
| | - Coby van Run-van Breda
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| | - Gooitzen M van Dam
- Department of Surgery, University Medical Center Groningen , Groningen , Netherlands
| | - Katrien M Brouwer
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, MOVE Research Institute Amsterdam , Amsterdam , Netherlands ; Association of Dutch Burn Centers , Beverwijk , Netherlands
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics and Craniofacial Biology, Cleft Palate Craniofacial Center, Radboud University Medical Center , Nijmegen , Netherlands
| | - Carine E L Carels
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| | - Ditte M S Lundvig
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| | - Frank A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| |
Collapse
|