1
|
Geng M, Shao Q, Fu J, Gu J, Feng L, Zhao L, Liu C, Mu J, Zhang X, Zhao M, Guo X, Song C, Li Y, Wang H, Wang C. Down-regulation of MKP-1 in hippocampus protects against stress-induced depression-like behaviors and neuroinflammation. Transl Psychiatry 2024; 14:130. [PMID: 38424085 PMCID: PMC10904742 DOI: 10.1038/s41398-024-02846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Chronic stress is the primary environmental risk factor for major depressive disorder (MDD), and there is compelling evidence that neuroinflammation is the major pathomechanism linking chronic stress to MDD. Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) is a negative regulator of MAPK signaling pathways involved in cellular stress responses, survival, and neuroinflammation. We examined the possible contributions of MKP-1 to stress-induced MDD by comparing depression-like behaviors (anhedonia, motor retardation, behavioral despair), neuroinflammatory marker expression, and MAPK signaling pathways among rats exposed to chronic unpredictable mild stress (CUMS), overexpressing MKP-1 in the hippocampus, and CUMS-exposed rats underexpressing MKP-1 in the hippocampus. Rats exposed to CUMS exhibited MKP-1 overexpression, greater numbers of activated microglia, and enhanced expressions of neuroinflammatory markers (interleukin [IL]-6, [IL]-1β, tumor necrosis factor [TNF]-ɑ, and decreased phosphorylation levels of ERK and p38 in the hippocampus as well as anhedonia in the sucrose preference test, motor retardation in the open field, and greater immobility (despair) in the forced swimming tests. These signs of neuroinflammation and depression-like behaviors and phosphorylation levels of ERK and p38 were also observed in rats overexpressing MKP-1 without CUMS exposure, while CUMS-induced neuroinflammation, microglial activation, phosphorylation levels of ERK and p38, and depression-like behaviors were significantly reversed by MKP-1 knockdown. Moreover, MKP-1 knockdown promoted the activation of the MAPK isoform ERK, implying that the antidepressant-like effects of MKP-1 knockdown may be mediated by the ERK pathway disinhibition. These findings suggested that hippocampal MKP-1 is an essential regulator of stress-induced neuroinflammation and a promising target for antidepressant development.
Collapse
Affiliation(s)
- Mengjun Geng
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
- Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, 453002, Xinxiang, Henan, China
| | - Qiujing Shao
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
- Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, 453002, Xinxiang, Henan, China
| | - Jiacheng Fu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
- Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, 453002, Xinxiang, Henan, China
| | - Jingyang Gu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
| | - Laipeng Feng
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
- Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, 453002, Xinxiang, Henan, China
| | - Liqin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
| | - Cong Liu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
| | - Junlin Mu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
| | - Xiaoli Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
| | - Mingjun Zhao
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
| | - Xinsheng Guo
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
- Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, 453002, Xinxiang, Henan, China
| | - Cai Song
- Guangdong Ocean University College of Food Science and Technoligy, Zhanjiang, China
| | - Yan Li
- The Second Affiliated Hospital of Zhengzhou University, 450014, Zhengzhou, Henan, China.
| | - Huiying Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China.
- Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, 453002, Xinxiang, Henan, China.
| | - Changhong Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China.
- Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, 453002, Xinxiang, Henan, China.
- Henan Provincial Key Laboratory of Sleep Medicine, 453002, Xinxiang, Henan, China.
| |
Collapse
|
2
|
Wider J, Undyala VVR, Lanske B, Datta NS, Przyklenk K. Parathyroid Hormone-Related Peptide and Its Analog, Abaloparatide, Attenuate Lethal Myocardial Ischemia-Reperfusion Injury. J Clin Med 2022; 11:jcm11092273. [PMID: 35566399 PMCID: PMC9105604 DOI: 10.3390/jcm11092273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
Parathyroid hormone-related peptide (PTHrP) is well-known to play a role in bone formation, and abaloparatide, an analog of PTHrP(1-34), is approved for the treatment of osteoporosis in post-menopausal women. PTHrP has also been reported to have cardiovascular effects, with recent data demonstrating that exogenously administered PTHrP can limit the death of isolated cardiomyocytes subjected to oxidative stress via upregulation of classic ‘survival kinase’ signaling. Our aim in the current study was to extend this concept and, employing both in vitro and in vivo models, establish whether PTHrP(1-36) and abaloparatide are cardioprotective in the setting of lethal myocardial ischemia-reperfusion injury. We report that preischemic administration of PTHrP(1-36) and abaloparatide attenuated cell death in HL-1 cardiomyocytes subjected to simulated ischemia-reperfusion, an effect that was accompanied by the augmented expression of phospho-ERK and improved preservation of phospho-Akt, and blocked by co-administration of the MEK-ERK inhibitor PD98059. Moreover, using the translationally relevant swine model of acute coronary artery occlusion-reperfusion, we make the novel observation that myocardial infarct size was significantly reduced in pigs pretreated with PTHrP(1-36) when compared with placebo-controls (13.1 ± 3.3% versus 42.0 ± 6.6% of the area of at-risk myocardium, respectively; p < 0.01). Taken together, these data provide the first evidence in support of the concept that pretreatment with PTHrP(1-36) and abaloparatide renders cardiomyocytes resistant to lethal myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Joseph Wider
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Vishnu V. R. Undyala
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Clinical Research Institute, Children’s Hospital of Michigan, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University, Detroit, MI 48201, USA
| | | | - Nabanita S. Datta
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Karin Przyklenk
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Clinical Research Institute, Children’s Hospital of Michigan, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University, Detroit, MI 48201, USA
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
3
|
Protein tyrosine phosphatases in skeletal development and diseases. Bone Res 2022; 10:10. [PMID: 35091552 PMCID: PMC8799702 DOI: 10.1038/s41413-021-00181-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Skeletal development and homeostasis in mammals are modulated by finely coordinated processes of migration, proliferation, differentiation, and death of skeletogenic cells originating from the mesoderm and neural crest. Numerous molecular mechanisms are involved in these regulatory processes, one of which is protein posttranslational modifications, particularly protein tyrosine phosphorylation (PYP). PYP occurs mainly through the action of protein tyrosine kinases (PTKs), modifying protein enzymatic activity, changing its cellular localization, and aiding in the assembly or disassembly of protein signaling complexes. Under physiological conditions, PYP is balanced by the coordinated action of PTKs and protein tyrosine phosphatases (PTPs). Dysregulation of PYP can cause genetic, metabolic, developmental, and oncogenic skeletal diseases. Although PYP is a reversible biochemical process, in contrast to PTKs, little is known about how this equilibrium is modulated by PTPs in the skeletal system. Whole-genome sequencing has revealed a large and diverse superfamily of PTP genes (over 100 members) in humans, which can be further divided into cysteine (Cys)-, aspartic acid (Asp)-, and histidine (His)-based PTPs. Here, we review current knowledge about the functions and regulatory mechanisms of 28 PTPs involved in skeletal development and diseases; 27 of them belong to class I and II Cys-based PTPs, and the other is an Asp-based PTP. Recent progress in analyzing animal models that harbor various mutations in these PTPs and future research directions are also discussed. Our literature review indicates that PTPs are as crucial as PTKs in supporting skeletal development and homeostasis.
Collapse
|
4
|
Xu F, Zhao LJ, Liao T, Li ZC, Wang LL, Lin PY, Jiang R, Wei QJ. Ononin ameliorates inflammation and cartilage degradation in rat chondrocytes with IL-1β-induced osteoarthritis by downregulating the MAPK and NF-κB pathways. BMC Complement Med Ther 2022; 22:25. [PMID: 35086536 PMCID: PMC8793192 DOI: 10.1186/s12906-022-03504-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) treatment aims to improve inflammation and delay cartilage degeneration. However, there is no effective strategy presently available. Ononin, a representative isoflavone glycoside component extracted from natural Chinese herbs, exerts anti-inflammatory and proliferative effects. However, the therapeutic effect of ononin on chondrocyte inflammation remains unclear. METHODS In this study, we explored the therapeutic effect and potential mechanism of ononin in OA by establishing an interleukin-1 beta (IL-1β)-induced chondrocyte inflammation model. RESULTS Our results verified that ononin alleviated the IL-1β-induced decrease in chondrocyte viability, attenuated the overexpression of the inflammatory factors tumour necrosis factor α (TNF-α) and interleukin 6 (IL-6), and simultaneously inhibited the expression of cartilage extracellular matrix (ECM)-degrading enzymes such as matrix metalloproteinase-13 (MMP-13). Furthermore, the decomposition of Collagen II protein could be alleviated in the OA model by ononin. Finally, ononin improved chondrocyte inflammation by downregulating the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signalling pathways. CONCLUSION Our findings suggested that ononin could inhibit the IL-1β-induced proinflammatory response and ECM degradation in chondrocytes by interfering with the abnormal activation of the MAPK and NF-κB pathways, indicating its protective effect against OA.
Collapse
Affiliation(s)
- Fang Xu
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road No. 6, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuangyong Road No. 22, Nanning, 530021, China
| | - Liang-Jun Zhao
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ting Liao
- Department of Endocrinology, Liuzhou Municipal Liutie Central Hospital, Feie Road No. 22, Liuzhou, 545007, China
| | - Zhao-Cong Li
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuangyong Road No. 22, Nanning, 530021, China
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuangyong Road No. 22, Nanning, 530021, Guangxi, China
| | - Lei-Lei Wang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuangyong Road No. 22, Nanning, 530021, China
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuangyong Road No. 22, Nanning, 530021, Guangxi, China
| | - Pan-Yu Lin
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road No. 6, Nanning, 530021, China
| | - Rui Jiang
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road No. 6, Nanning, 530021, China
| | - Qing-Jun Wei
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road No. 6, Nanning, 530021, China.
| |
Collapse
|
5
|
Wang D, Wu Z, Zhao C, Yang X, Wei H, Liu M, Zhao J, Qian M, Li Z, Xiao J. KP-10/Gpr54 attenuates rheumatic arthritis through inactivating NF-κB and MAPK signaling in macrophages. Pharmacol Res 2021; 171:105496. [PMID: 33609696 DOI: 10.1016/j.phrs.2021.105496] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/27/2021] [Accepted: 02/14/2021] [Indexed: 11/26/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease mainly characterized as chronic inflammation of joint. Both genetic and environmental factors play important roles in RA progression. G protein-coupled receptor 54 (GPR54) and Kisspeptins (KPs), the natural GRP54 ligands encoded by Kiss-1 gene are known to play important roles in immune regulation but the precise role of KP-10/GPR54 in RA remains elusive. Kiss1/Gpr54 expression was determined by immunohistochemistry on protein and real-time PCR on RNA from isolated RA-patient synovial tissue and PBMC. Collagen-induced arthritis (CIA) mouse models were used to investigate the effect of KP-10/Gpr54 on the rheumatic arthritis severity in the mice. The signaling pathway involved in KP-10/GPR54 was assessed by western blot and immunofluorescence.In the present study, we demonstrated that GPR54 upregulation in bone marrow-derived macrophages (BMDM) was associated with the severity of RA. In addition, Gpr54-/- increased the inflammatory cytokines induced by lipopolysaccharide (LPS) in BMDM and diseased severity of CIA (n = 10), while KP-10 reduced the LPS-induced inflammatory cytokines in vitro and ameliorated the CIA symptoms in vivo. Furthermore, we demonstrated that KP-10/GPR54 binds to PP2A-C to suppressed LPS induced NF-κB and MAPK signaling in BMDM. All these findings suggest that KP-10/GPR54 may be a novel therapeutic target for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Dongsheng Wang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, China
| | - Zhixiang Wu
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, China
| | - Chenglong Zhao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, China
| | - Xinghai Yang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, China
| | - Haifeng Wei
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, China
| | - Mingyao Liu
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Science and School of Life sciences, East China Normal University, 200241 Shanghai, China
| | - Jian Zhao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, China.
| | - Ming Qian
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, China.
| | - Zhenxi Li
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, China.
| | - Jianru Xiao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, China.
| |
Collapse
|
6
|
Dedobbeleer M, Willems E, Lambert J, Lombard A, Digregorio M, Lumapat PN, Di Valentin E, Freeman S, Goffart N, Scholtes F, Rogister B. MKP1 phosphatase is recruited by CXCL12 in glioblastoma cells and plays a role in DNA strand breaks repair. Carcinogenesis 2020; 41:417-429. [PMID: 31504251 DOI: 10.1093/carcin/bgz151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/10/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary tumor in the central nervous system. Previously, the secretion of CXCL12 in the brain subventricular zones has been shown to attract GBM cells and protect against irradiation. However, the exact molecular mechanism behind this radioprotection is still unknown. Here, we demonstrate that CXCL12 modulates the phosphorylation of MAP kinases and their regulator, the nuclear MAP kinase phosphatase 1 (MKP1). We further show that MKP1 is able to decrease GBM cell death and promote DNA repair after irradiation by regulating major apoptotic players, such as Jun-N-terminal kinase, and by stabilizing the DNA repair protein RAD51. Increases in MKP1 levels caused by different corticoid treatments should be reexamined for GBM patients, particularly during their radiotherapy sessions, in order to prevent or to delay the relapses of this tumor.
Collapse
Affiliation(s)
- Matthias Dedobbeleer
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Estelle Willems
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Jeremy Lambert
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Arnaud Lombard
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Marina Digregorio
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Paul Noel Lumapat
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | | | - Stephen Freeman
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Nicolas Goffart
- The T&P Bohnenn Laboratory for Neuro-Oncology, Department of Neurosurgery, UMC Utrecht, Utrecht, The Netherlands
| | - Felix Scholtes
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium.,Department of Neurology, CHU of Liège, Liège, Belgium
| |
Collapse
|
7
|
Integrative genomics analysis of eQTL and GWAS summary data identifies PPP1CB as a novel bone mineral density risk genes. Biosci Rep 2020; 40:222598. [PMID: 32266926 PMCID: PMC7178214 DOI: 10.1042/bsr20193185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/03/2020] [Accepted: 04/03/2020] [Indexed: 11/17/2022] Open
Abstract
In recent years, multiple genome-wide association studies (GWAS) have identified numerous susceptibility variants and risk genes that demonstrate significant associations with bone mineral density (BMD). However, exploring how these genetic variants contribute risk to BMD remains a major challenge. We systematically integrated two independent expression quantitative trait loci (eQTL) data (N = 1890) and GWAS summary statistical data of BMD (N = 142,487) using Sherlock integrative analysis to reveal whether expression-associated variants confer risk to BMD. By using Sherlock integrative analysis and MAGMA gene-based analysis, we found there existed 36 promising genes, for example, PPP1CB, XBP1, and FDFT1, whose expression alterations may contribute susceptibility to BMD. Through a protein-protein interaction (PPI) network analysis, we further prioritized the PPP1CB as a hub gene that has interactions with predicted genes and BMD-associated genes. Two eSNPs of rs9309664 (PeQTL = 1.42 × 10-17 and PGWAS = 1.40 × 10-11) and rs7475 (PeQTL = 2.10 × 10-6 and PGWAS = 1.70 × 10-7) in PPP1CB were identified to be significantly associated with BMD risk. Consistently, differential gene expression analysis found that the PPP1CB gene showed significantly higher expression in low BMD samples than that in high BMD samples based on two independent expression datasets (P = 0.0026 and P = 0.043, respectively). Together, we provide a convergent line of evidence to support that the PPP1CB gene involves in the etiology of osteoporosis.
Collapse
|
8
|
Zengini E, Hatzikotoulas K, Tachmazidou I, Steinberg J, Hartwig FP, Southam L, Hackinger S, Boer CG, Styrkarsdottir U, Gilly A, Suveges D, Killian B, Ingvarsson T, Jonsson H, Babis GC, McCaskie A, Uitterlinden AG, van Meurs JBJ, Thorsteinsdottir U, Stefansson K, Davey Smith G, Wilkinson JM, Zeggini E. Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis. Nat Genet 2018; 50:549-558. [PMID: 29559693 PMCID: PMC5896734 DOI: 10.1038/s41588-018-0079-y] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/29/2018] [Indexed: 12/19/2022]
Abstract
Osteoarthritis is a common complex disease imposing a large public-health burden. Here, we performed a genome-wide association study for osteoarthritis, using data across 16.5 million variants from the UK Biobank resource. After performing replication and meta-analysis in up to 30,727 cases and 297,191 controls, we identified nine new osteoarthritis loci, in all of which the most likely causal variant was noncoding. For three loci, we detected association with biologically relevant radiographic endophenotypes, and in five signals we identified genes that were differentially expressed in degraded compared with intact articular cartilage from patients with osteoarthritis. We established causal effects on osteoarthritis for higher body mass index but not for triglyceride levels or genetic predisposition to type 2 diabetes.
Collapse
Affiliation(s)
- Eleni Zengini
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- 5th Psychiatric Department, Dromokaiteio Psychiatric Hospital, Athens, Greece
| | | | - Ioanna Tachmazidou
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- GSK, R&D Target Sciences, Medicines Research Centre, Stevenage, UK
| | - Julia Steinberg
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Cancer Research Division, Cancer Council NSW, Sydney, New South Wales, Australia
| | - Fernando P Hartwig
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Lorraine Southam
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Cindy G Boer
- Departments of Internal Medicine and Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | | | - Arthur Gilly
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Daniel Suveges
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Britt Killian
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Thorvaldur Ingvarsson
- Department of Orthopaedic Surgery, Akureyri Hospital, Akureyri, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Institution of Health Science, University of Akureyri, Akureyri, Iceland
| | - Helgi Jonsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali, National University Hospital of Iceland, Reykjavik, Iceland
| | - George C Babis
- 2nd Department of Orthopaedic Surgery, Konstantopouleio General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Andrew McCaskie
- Division of Trauma & Orthopaedic Surgery, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Andre G Uitterlinden
- Departments of Internal Medicine and Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Joyce B J van Meurs
- Departments of Internal Medicine and Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
- National Institute for Health Research, Bristol Biomedical Research Centre, University Hospitals Bristol, NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Jeremy M Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
9
|
Dinesh P, Rasool M. Multifaceted role of IL‐21 in rheumatoid arthritis: Current understanding and future perspectives. J Cell Physiol 2017; 233:3918-3928. [DOI: 10.1002/jcp.26158] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Palani Dinesh
- Immunopathology LabSchool of Bio Sciences and TechnologyVIT UniversityVelloreTamil NaduIndia
| | | |
Collapse
|
10
|
Zhu B, Gong Y, Yan G, Wang D, Wang Q, Qiao Y, Hou J, Liu B, Tang C. Atorvastatin treatment modulates
p16
promoter methylation to regulate
p16
expression. FEBS J 2017; 284:1868-1881. [PMID: 28425161 DOI: 10.1111/febs.14087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/02/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Boqian Zhu
- Department of Cardiology Zhongda Hospital of Southeast University Medical School Nanjing China
| | - Yaoyao Gong
- Department of Gastroenterology The First Affiliated Hospital of Nanjing Medical University China
| | - Gaoliang Yan
- Department of Cardiology Zhongda Hospital of Southeast University Medical School Nanjing China
| | - Dong Wang
- Department of Cardiology Zhongda Hospital of Southeast University Medical School Nanjing China
| | - Qingjie Wang
- Department of Cardiology Zhongda Hospital of Southeast University Medical School Nanjing China
| | - Yong Qiao
- Department of Cardiology Zhongda Hospital of Southeast University Medical School Nanjing China
| | - Jiantong Hou
- Department of Cardiology Zhongda Hospital of Southeast University Medical School Nanjing China
| | - Bo Liu
- Department of Cardiology Zhongda Hospital of Southeast University Medical School Nanjing China
| | - Chengchun Tang
- Department of Cardiology Zhongda Hospital of Southeast University Medical School Nanjing China
| |
Collapse
|