1
|
Reinert CP, Liang C, Weissinger M, Vogel J, Forschner A, Nikolaou K, la Fougère C, Seith F. Whole-Body Magnetic Resonance Imaging (MRI) for Staging Melanoma Patients in Direct Comparison to Computed Tomography (CT): Results from a Prospective Positron Emission Tomography (PET)/CT and PET/MRI Study. Diagnostics (Basel) 2023; 13:diagnostics13111963. [PMID: 37296815 DOI: 10.3390/diagnostics13111963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
PURPOSE The consideration of radiation exposure is becoming more important in metastatic melanoma due to improved prognoses. The aim of this prospective study was to investigate the diagnostic performance of whole-body (WB) magnetic resonance imaging (MRI) in comparison to computed tomography (CT) with 18F-FDG positron emission tomography (PET)/CT and 18F-PET/MRI together with a follow-up as the reference standard. METHODS Between April 2014 and April 2018, a total of 57 patients (25 females, mean age of 64 ± 12 years) underwent WB-PET/CT and WB-PET/MRI on the same day. The CT and MRI scans were independently evaluated by two radiologists who were blinded to the patients' information. The reference standard was evaluated by two nuclear medicine specialists. The findings were categorized into different regions: lymph nodes/soft tissue (I), lungs (II), abdomen/pelvis (III), and bone (IV). A comparative analysis was conducted for all the documented findings. Inter-reader reliability was assessed using Bland-Altman procedures, and McNemar's test was utilized to determine the differences between the readers and the methods. RESULTS Out of the 57 patients, 50 were diagnosed with metastases in two or more regions, with the majority being found in region I. The accuracies of CT and MRI did not show significant differences, except in region II where CT detected more metastases compared to MRI (0.90 vs. 0.68, p = 0.008). On the other hand, MRI had a higher detection rate in region IV compared to CT (0.89 vs. 0.61, p > 0.05). The level of agreement between the readers varied depending on the number of metastases and the specific region, with the highest agreement observed in region III and the lowest observed in region I. CONCLUSIONS In patients with advanced melanoma, WB-MRI has the potential to serve as an alternative to CT with comparable diagnostic accuracy and confidence across most regions. The observed limited sensitivity for the detection of pulmonary lesions might be improved through dedicated lung imaging sequences.
Collapse
Affiliation(s)
- Christian Philipp Reinert
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Cecilia Liang
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Matthias Weissinger
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Jonas Vogel
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstrasse 25, 72076 Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Christian la Fougère
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Ferdinand Seith
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Kaleem A, Patel N, Chandra SR, Vijayaraghavan R. Imaging and Laboratory Workup for Melanoma. Oral Maxillofac Surg Clin North Am 2022; 34:235-250. [DOI: 10.1016/j.coms.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Whole-Body MRI for the Detection of Recurrence in Melanoma Patients at High Risk of Relapse. Cancers (Basel) 2021; 13:cancers13030442. [PMID: 33503861 PMCID: PMC7865287 DOI: 10.3390/cancers13030442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction: No standard protocol for surveillance for melanoma patients is established. Whole-body magnetic resonance imaging (whole-body MRI) is a safe and sensitive technique that avoids exposure to X-rays and contrast agents. This prospective study explores the use of whole-body MRI for the early detection of recurrences. Material and Methods: Patients with American Joint Committee on Cancer Staging Manual (seventh edition; AJCC-7) stages IIIb/c or -IV melanoma who were disease-free following resection of macrometastases (cohort A), or obtained a durable complete response (CR) or partial response (PR) following systemic therapy (cohort B), were included. All patients underwent whole-body MRI, including T1, Short Tau Inversion Recovery, and diffusion-weighted imaging, every 4 months the first 3 years of follow-up and every 6 months in the following 2 years. A total body skin examination was performed every 6 months. Results: From November 2014 to November 2019, 111 patients were included (four screen failures, cohort A: 68 patients; cohort B: 39 patients). The median follow-up was 32 months. Twenty-six patients were diagnosed with suspected lesions. Of these, 15 patients were diagnosed with a recurrence on MRI. Eleven suspected lesions were considered to be of non-neoplastic origin. In addition, nine patients detected a solitary subcutaneous metastasis during self-examination, and two patients presented in between MRIs with recurrences. The overall sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were, respectively, 58%, 98%, 58%, 98%, and 98%. Sensitivity and specificity for the detection of distant metastases was respectively 88% and 98%. No patient experienced a clinically meaningful (>grade 1) adverse event. Conclusions: Whole-body MRI for the surveillance of melanoma patients is a safe and sensitive technique sparing patients' cumulative exposure to X-rays and contrast media.
Collapse
|
4
|
Tunariu N, Blackledge M, Messiou C, Petralia G, Padhani A, Curcean S, Curcean A, Koh DM. What's New for Clinical Whole-body MRI (WB-MRI) in the 21st Century. Br J Radiol 2020; 93:20200562. [PMID: 32822545 PMCID: PMC8519652 DOI: 10.1259/bjr.20200562] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Whole-body MRI (WB-MRI) has evolved since its first introduction in the 1970s as an imaging technique to detect and survey disease across multiple sites and organ systems in the body. The development of diffusion-weighted MRI (DWI) has added a new dimension to the implementation of WB-MRI on modern scanners, offering excellent lesion-to-background contrast, while achieving acceptable spatial resolution to detect focal lesions 5 to 10 mm in size. MRI hardware and software advances have reduced acquisition times, with studies taking 40-50 min to complete.The rising awareness of medical radiation exposure coupled with the advantages of MRI has resulted in increased utilization of WB-MRI in oncology, paediatrics, rheumatological and musculoskeletal conditions and more recently in population screening. There is recognition that WB-MRI can be used to track disease evolution and monitor response heterogeneity in patients with cancer. There are also opportunities to combine WB-MRI with molecular imaging on PET-MRI systems to harness the strengths of hybrid imaging. The advent of artificial intelligence and machine learning will shorten image acquisition times and image analyses, making the technique more competitive against other imaging technologies.
Collapse
Affiliation(s)
| | - Matthew Blackledge
- Department of Radiotherapy, The Institute of Cancer Research, 15 Cotswold Road, Sutton, London, UK
| | - Christina Messiou
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, London, UK
| | - Giuseppe Petralia
- Department of Radiology, European Institute of Oncology, Via Ripamonti, 435 - 20141 Milan, Italy
| | - Anwar Padhani
- Mount Vernon Hospital, The Paul Strickland Scanner Centre, Rickmansworth Road, Northwood, Middlesex, UK
| | - Sebastian Curcean
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, London, UK
| | | | - Dow-Mu Koh
- Drug Development Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, London, UK
| |
Collapse
|
5
|
Abstract
Melanoma accounts for 7% of all cancers in adolescents ages 15-19 years but is an unexpected malignancy in younger children. The prevalence of malignant melanoma is very rare in children ages 1-4 years, but certain non-modifiable risk factors such as xeroderma pigmentosum, congenital melanocytic nevus syndrome and other inherited traits increase the risk for its development in these young children. Recent genomic studies have identified characteristics of pediatric melanoma that differ from conventional melanoma seen in adults. In this review the authors inform on the types of melanoma seen in children and adolescents, discuss similarities and differences in melanoma between children and adults, and discuss the role of imaging in the care of these children.
Collapse
Affiliation(s)
- Sue C Kaste
- Departments of Diagnostic Imaging and Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MSN 220, Memphis, TN, 38105-3678, USA.
- Department of Radiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
6
|
Dinnes J, Ferrante di Ruffano L, Takwoingi Y, Cheung ST, Nathan P, Matin RN, Chuchu N, Chan SA, Durack A, Bayliss SE, Gulati A, Patel L, Davenport C, Godfrey K, Subesinghe M, Traill Z, Deeks JJ, Williams HC, Cochrane Skin Cancer Diagnostic Test Accuracy Group, Cochrane Skin Group. Ultrasound, CT, MRI, or PET-CT for staging and re-staging of adults with cutaneous melanoma. Cochrane Database Syst Rev 2019; 7:CD012806. [PMID: 31260100 PMCID: PMC6601698 DOI: 10.1002/14651858.cd012806.pub2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Melanoma is one of the most aggressive forms of skin cancer, with the potential to metastasise to other parts of the body via the lymphatic system and the bloodstream. Melanoma accounts for a small percentage of skin cancer cases but is responsible for the majority of skin cancer deaths. Various imaging tests can be used with the aim of detecting metastatic spread of disease following a primary diagnosis of melanoma (primary staging) or on clinical suspicion of disease recurrence (re-staging). Accurate staging is crucial to ensuring that patients are directed to the most appropriate and effective treatment at different points on the clinical pathway. Establishing the comparative accuracy of ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET)-CT imaging for detection of nodal or distant metastases, or both, is critical to understanding if, how, and where on the pathway these tests might be used. OBJECTIVES Primary objectivesWe estimated accuracy separately according to the point in the clinical pathway at which imaging tests were used. Our objectives were:• to determine the diagnostic accuracy of ultrasound or PET-CT for detection of nodal metastases before sentinel lymph node biopsy in adults with confirmed cutaneous invasive melanoma; and• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for whole body imaging in adults with cutaneous invasive melanoma:○ for detection of any metastasis in adults with a primary diagnosis of melanoma (i.e. primary staging at presentation); and○ for detection of any metastasis in adults undergoing staging of recurrence of melanoma (i.e. re-staging prompted by findings on routine follow-up).We undertook separate analyses according to whether accuracy data were reported per patient or per lesion.Secondary objectivesWe sought to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for whole body imaging (detection of any metastasis) in mixed or not clearly described populations of adults with cutaneous invasive melanoma.For study participants undergoing primary staging or re-staging (for possible recurrence), and for mixed or unclear populations, our objectives were:• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for detection of nodal metastases;• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for detection of distant metastases; and• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for detection of distant metastases according to metastatic site. SEARCH METHODS We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists as well as published systematic review articles. SELECTION CRITERIA We included studies of any design that evaluated ultrasound (with or without the use of fine needle aspiration cytology (FNAC)), CT, MRI, or PET-CT for staging of cutaneous melanoma in adults, compared with a reference standard of histological confirmation or imaging with clinical follow-up of at least three months' duration. We excluded studies reporting multiple applications of the same test in more than 10% of study participants. DATA COLLECTION AND ANALYSIS Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2)). We estimated accuracy using the bivariate hierarchical method to produce summary sensitivities and specificities with 95% confidence and prediction regions. We undertook analysis of studies allowing direct and indirect comparison between tests. We examined heterogeneity between studies by visually inspecting the forest plots of sensitivity and specificity and summary receiver operating characteristic (ROC) plots. Numbers of identified studies were insufficient to allow formal investigation of potential sources of heterogeneity. MAIN RESULTS We included a total of 39 publications reporting on 5204 study participants; 34 studies reporting data per patient included 4980 study participants with 1265 cases of metastatic disease, and seven studies reporting data per lesion included 417 study participants with 1846 potentially metastatic lesions, 1061 of which were confirmed metastases. The risk of bias was low or unclear for all domains apart from participant flow. Concerns regarding applicability of the evidence were high or unclear for almost all domains. Participant selection from mixed or not clearly defined populations and poorly described application and interpretation of index tests were particularly problematic.The accuracy of imaging for detection of regional nodal metastases before sentinel lymph node biopsy (SLNB) was evaluated in 18 studies. In 11 studies (2614 participants; 542 cases), the summary sensitivity of ultrasound alone was 35.4% (95% confidence interval (CI) 17.0% to 59.4%) and specificity was 93.9% (95% CI 86.1% to 97.5%). Combining pre-SLNB ultrasound with FNAC revealed summary sensitivity of 18.0% (95% CI 3.58% to 56.5%) and specificity of 99.8% (95% CI 99.1% to 99.9%) (1164 participants; 259 cases). Four studies demonstrated lower sensitivity (10.2%, 95% CI 4.31% to 22.3%) and specificity (96.5%,95% CI 87.1% to 99.1%) for PET-CT before SLNB (170 participants, 49 cases). When these data are translated to a hypothetical cohort of 1000 people eligible for SLNB, 237 of whom have nodal metastases (median prevalence), the combination of ultrasound with FNAC potentially allows 43 people with nodal metastases to be triaged directly to adjuvant therapy rather than having SLNB first, at a cost of two people with false positive results (who are incorrectly managed). Those with a false negative ultrasound will be identified on subsequent SLNB.Limited test accuracy data were available for whole body imaging via PET-CT for primary staging or re-staging for disease recurrence, and none evaluated MRI. Twenty-four studies evaluated whole body imaging. Six of these studies explored primary staging following a confirmed diagnosis of melanoma (492 participants), three evaluated re-staging of disease following some clinical indication of recurrence (589 participants), and 15 included mixed or not clearly described population groups comprising participants at a number of different points on the clinical pathway and at varying stages of disease (1265 participants). Results for whole body imaging could not be translated to a hypothetical cohort of people due to paucity of data.Most of the studies (6/9) of primary disease or re-staging of disease considered PET-CT, two in comparison to CT alone, and three studies examined the use of ultrasound. No eligible evaluations of MRI in these groups were identified. All studies used histological reference standards combined with follow-up, and two included FNAC for some participants. Observed accuracy for detection of any metastases for PET-CT was higher for re-staging of disease (summary sensitivity from two studies: 92.6%, 95% CI 85.3% to 96.4%; specificity: 89.7%, 95% CI 78.8% to 95.3%; 153 participants; 95 cases) compared to primary staging (sensitivities from individual studies ranged from 30% to 47% and specificities from 73% to 88%), and was more sensitive than CT alone in both population groups, but participant numbers were very small.No conclusions can be drawn regarding routine imaging of the brain via MRI or CT. AUTHORS' CONCLUSIONS Review authors found a disappointing lack of evidence on the accuracy of imaging in people with a diagnosis of melanoma at different points on the clinical pathway. Studies were small and often reported data according to the number of lesions rather than the number of study participants. Imaging with ultrasound combined with FNAC before SLNB may identify around one-fifth of those with nodal disease, but confidence intervals are wide and further work is needed to establish cost-effectiveness. Much of the evidence for whole body imaging for primary staging or re-staging of disease is focused on PET-CT, and comparative data with CT or MRI are lacking. Future studies should go beyond diagnostic accuracy and consider the effects of different imaging tests on disease management. The increasing availability of adjuvant therapies for people with melanoma at high risk of disease spread at presentation will have a considerable impact on imaging services, yet evidence for the relative diagnostic accuracy of available tests is limited.
Collapse
Affiliation(s)
- Jacqueline Dinnes
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | | | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Seau Tak Cheung
- Dudley Hospitals Foundation Trust, Corbett HospitalDepartment of DermatologyWicarage RoadStourbridgeUKDY8 4JB
| | - Paul Nathan
- Mount Vernon HospitalMount Vernon Cancer CentreRickmansworth RoadNorthwoodUKHA6 2RN
| | - Rubeta N Matin
- Churchill HospitalDepartment of DermatologyOld RoadHeadingtonOxfordUKOX3 7LE
| | - Naomi Chuchu
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Sue Ann Chan
- City HospitalBirmingham Skin CentreDudley RdBirminghamUKB18 7QH
| | - Alana Durack
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation TrustDermatologyHills RoadCambridgeUKCB2 0QQ
| | - Susan E Bayliss
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Abha Gulati
- Barts Health NHS TrustDepartment of DermatologyWhitechapelLondonUKE11BB
| | - Lopa Patel
- Royal Stoke HospitalPlastic SurgeryStoke‐on‐TrentStaffordshireUKST4 6QG
| | - Clare Davenport
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Kathie Godfrey
- The University of Nottinghamc/o Cochrane Skin GroupNottinghamUK
| | - Manil Subesinghe
- King's College LondonCancer Imaging, School of Biomedical Engineering & Imaging SciencesLondonUK
| | - Zoe Traill
- Oxford University Hospitals NHS TrustChurchill Hospital Radiology DepartmentOxfordUK
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Hywel C Williams
- University of NottinghamCentre of Evidence Based DermatologyQueen's Medical CentreDerby RoadNottinghamUKNG7 2UH
| | | | | |
Collapse
|
7
|
Baranska D, Matera K, Podgorski M, Gorska-Chrzastek M, Krajewska K, Trelinska J, Grzelak P. Feasibility of diffusion-weighted imaging with DWIBS in staging Hodgkin lymphoma in pediatric patients: comparison with PET/CT. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 32:381-390. [PMID: 30498885 PMCID: PMC6525117 DOI: 10.1007/s10334-018-0726-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/17/2022]
Abstract
Objective The aim of the study was to evaluate feasibility of diffusion-weighted whole-body imaging with background body signal suppression (DWIBS) method in diagnosing Hodgkin lymphoma in pediatric patients and to compare it with 18F-FDG PET/CT as a gold standard. Materials and methods Eleven patients (median age 14) with newly diagnosed Hodgkin lymphoma were examined with 18F-FDG PET/CT and MRI including whole-body DWIBS sequence (b = 0, 800 s/mm2), before the oncologic treatment. About 26 locations of lymphatic tissues were evaluated visually and quantitatively using ADCmean (DWIBS) and SUVmax (18F-FDG PET/CT), respectively. Results All affected lymph node regions (n = 134) diagnosed in 18F-FDG PET/CT were found with DWIBS, presenting decreased diffusion. Significant correlation was found between ADC and SUV values (R2 = − 0.37; p = 0.0001). Nevertheless, additional 33 regions were recognized only by DWIBS. They were significantly smaller than regions diagnosed by both methods. Discussion Agreement between DWIBS and 18F-FDG PET/CT for detection and staging of malignant lymphoma is high. DWIBS can be used for the evaluation of pediatric Hodgkin lymphoma.
Collapse
Affiliation(s)
- Dobromila Baranska
- Department of Diagnostic Imaging, Polish Mother's Memorial Hospital-Research Institute in Lodz, Rzgowska 281/289, 93-338, Lodz, Poland
| | - Katarzyna Matera
- Department of Diagnostic Imaging, Polish Mother's Memorial Hospital-Research Institute in Lodz, Rzgowska 281/289, 93-338, Lodz, Poland.
| | - Michal Podgorski
- Department of Diagnostic Imaging, Polish Mother's Memorial Hospital-Research Institute in Lodz, Rzgowska 281/289, 93-338, Lodz, Poland
| | | | - Karolina Krajewska
- Department of Pediatrics, Oncology, Hematology and Diabetology Medical, University of Lodz, Pankiewicza 16, 91-738, Lodz, Poland
| | - Joanna Trelinska
- Department of Pediatrics, Oncology, Hematology and Diabetology Medical, University of Lodz, Pankiewicza 16, 91-738, Lodz, Poland
| | - Piotr Grzelak
- Department of Diagnostic Imaging, Polish Mother's Memorial Hospital-Research Institute in Lodz, Rzgowska 281/289, 93-338, Lodz, Poland
| |
Collapse
|
8
|
Petralia G, Padhani AR, Pricolo P, Zugni F, Martinetti M, Summers PE, Grazioli L, Colagrande S, Giovagnoni A, Bellomi M. Whole-body magnetic resonance imaging (WB-MRI) in oncology: recommendations and key uses. Radiol Med 2018; 124:218-233. [PMID: 30430385 DOI: 10.1007/s11547-018-0955-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
The past decade has witnessed a growing role and increasing use of whole-body magnetic resonance imaging (WB-MRI). Driving these successes are developments in both hardware and software that have reduced overall examination times and significantly improved MR imaging quality. In addition, radiologists and clinicians have continued to find promising new applications of this innovative imaging technique that brings together morphologic and functional characterization of tissues. In oncology, the role of WB-MRI has expanded to the point of being recommended in international guidelines for the assessment of several cancer histotypes (multiple myeloma, melanoma, prostate cancer) and cancer-prone syndromes (Li-Fraumeni and hereditary paraganglioma-pheochromocytoma syndromes). The literature shows growing use of WB-MRI for the staging and follow-up of other cancer histotypes and cancer-related syndromes (including breast cancer, lymphoma, neurofibromatosis, and von Hippel-Lindau syndromes). The main aim of this review is to examine the current scientific evidence for the use of WB-MRI in oncology.
Collapse
Affiliation(s)
- Giuseppe Petralia
- Department of Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hematology, University of Milan, Milan, Italy.,Advanced Screening Centers - ASC Italia, Castelli Calepio, Bergamo, Italy
| | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Hospital, Northwood, UK
| | - Paola Pricolo
- Department of Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Fabio Zugni
- Postgraduate School in Radiodiagnostics, University of Milan, Milan, Italy
| | - Marco Martinetti
- Advanced Screening Centers - ASC Italia, Castelli Calepio, Bergamo, Italy
| | - Paul E Summers
- Department of Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Luigi Grazioli
- First Department of Radiology, Civic and University Hospital of Brescia, Brescia, Italy
| | - Stefano Colagrande
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Andrea Giovagnoni
- Department of Radiology, Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - Massimo Bellomi
- Department of Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hematology, University of Milan, Milan, Italy.,Advanced Screening Centers - ASC Italia, Castelli Calepio, Bergamo, Italy
| | | |
Collapse
|
9
|
Whole-Body MR Imaging: The Novel, "Intrinsically Hybrid," Approach to Metastases, Myeloma, Lymphoma, in Bones and Beyond. PET Clin 2018; 13:505-522. [PMID: 30219185 DOI: 10.1016/j.cpet.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Whole-body MR imaging (WB-MR imaging) has become a modality of choice for detecting bone metastases in multiple cancers, and bone marrow involvement by multiple myeloma or lymphoma. Combination of anatomic and functional sequences imparts an inherently hybrid dimension to this nonirradiating tool and extends the screening of malignancies outside the skeleton. WB-MR imaging outperforms bone scintigraphy and CT and offers an alternative to PET in many tumors by time of lesion detection and assessment of treatment response. Much work has been done to standardize procedures, optimize sequences, validate indications, confirm preliminary research into new applications, rendering clinical application more user-friendly.
Collapse
|
10
|
Stecco A, Trisoglio A, Soligo E, Berardo S, Sukhovei L, Carriero A. Whole-Body MRI with Diffusion-Weighted Imaging in Bone Metastases: A Narrative Review. Diagnostics (Basel) 2018; 8:diagnostics8030045. [PMID: 29987207 PMCID: PMC6163267 DOI: 10.3390/diagnostics8030045] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/29/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022] Open
Abstract
Whole body magnetic resonance imaging (MRI) with diffusion-weighted imaging (WB-MRI-DWI) is currently emerging as a diagnostic technique in the evaluation of bone metastases from breast, prostate, lung, thyroid, and melanoma tumors. The most relevant articles regarding the detection of solid tumor bone metastases with MRI have been reviewed and cited. The imaging methods currently used in the detection of bone metastases are bone scintigraphy, computed tomography (CT), and positron emission tomography (PET/CT) with 2-deoxy-2-[fluorine-18] fluoro-d-glucose (18F-FDG PET/CT). WB-MRI-DWI allows qualitative and quantitative evaluation of focal lesions through signal intensity evaluation on DWI images and the reconstruction of the apparent diffusion coefficient (ADC) map. In prostate and breast cancer, WB-MRI-DWI is useful in assessing the response of bone lesions to therapy and to detecting early non-responders, while in lung cancer the method shows a similar sensitivity to 18F-FDG PET/CT in the detection of bone metastases. In bone metastases of thyroid tumors and melanoma, the WB-MRI-DWI shows a higher sensitivity when compared to 18F-FDG PET/CT. With a standardization of the WB-MRI-DWI protocol, this method seems to play an important role in the diagnosis of bone solid tumor metastases.
Collapse
Affiliation(s)
- Alessandro Stecco
- Ospedale Maggiore della Carità di Novara, Istituto di Radiodiagnostica ed Interventistica, Università del Piemonte Orientale, Amedeo Avogadro, Corso Giuseppe Mazzini 18, 28100 Novara, Italy.
| | - Alessandra Trisoglio
- Ospedale Maggiore della Carità di Novara, Istituto di Radiodiagnostica ed Interventistica, Università del Piemonte Orientale, Amedeo Avogadro, Corso Giuseppe Mazzini 18, 28100 Novara, Italy.
| | - Eleonora Soligo
- Ospedale Maggiore della Carità di Novara, Istituto di Radiodiagnostica ed Interventistica, Università del Piemonte Orientale, Amedeo Avogadro, Corso Giuseppe Mazzini 18, 28100 Novara, Italy.
| | - Sara Berardo
- Ospedale Maggiore della Carità di Novara, Istituto di Radiodiagnostica ed Interventistica, Università del Piemonte Orientale, Amedeo Avogadro, Corso Giuseppe Mazzini 18, 28100 Novara, Italy.
| | - Lidiia Sukhovei
- Ospedale Maggiore della Carità di Novara, Istituto di Radiodiagnostica ed Interventistica, Università del Piemonte Orientale, Amedeo Avogadro, Corso Giuseppe Mazzini 18, 28100 Novara, Italy.
| | - Alessandro Carriero
- Ospedale Maggiore della Carità di Novara, Istituto di Radiodiagnostica ed Interventistica, Università del Piemonte Orientale, Amedeo Avogadro, Corso Giuseppe Mazzini 18, 28100 Novara, Italy.
| |
Collapse
|
11
|
Dinnes J, Saleh D, Newton-Bishop J, Cheung ST, Nathan P, Matin RN, Chuchu N, Bayliss SE, Takwoingi Y, Davenport C, Godfrey K, O'Sullivan C, Deeks JJ, Williams HC. Tests to assist in the staging of cutaneous melanoma: a generic protocol. Hippokratia 2017. [DOI: 10.1002/14651858.cd012806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jacqueline Dinnes
- University of Birmingham; Institute of Applied Health Research; Birmingham UK B15 2TT
| | - Daniel Saleh
- Newcastle Hospitals NHS Trust, Royal Victoria Infirmary; Newcastle Hospitals; Newcastle UK
| | - Julia Newton-Bishop
- University of Leeds; Section of Epidemiology and Biostatistics; St James's Hospital Leeds UK LS9 7TF
| | - Seau Tak Cheung
- Dudley Hospitals Foundation Trust, Corbett Hospital; Department of Dermatology; Wicarage Road Stourbridge UK DY8 4JB
| | - Paul Nathan
- Mount Vernon Hospital; Mount Vernon Cancer Centre; Rickmansworth Road Northwood UK HA6 2RN
| | - Rubeta N Matin
- Churchill Hospital; Department of Dermatology; Old Road Headington Oxford UK OX3 7LJ
| | - Naomi Chuchu
- University of Birmingham; Institute of Applied Health Research; Birmingham UK B15 2TT
| | - Susan E Bayliss
- University of Birmingham; Institute of Applied Health Research; Birmingham UK B15 2TT
| | - Yemisi Takwoingi
- University of Birmingham; Institute of Applied Health Research; Birmingham UK B15 2TT
| | - Clare Davenport
- University of Birmingham; Institute of Applied Health Research; Birmingham UK B15 2TT
| | - Kathie Godfrey
- The University of Nottingham; c/o Cochrane Skin Group; Nottingham UK
| | | | - Jonathan J Deeks
- University of Birmingham; Institute of Applied Health Research; Birmingham UK B15 2TT
| | - Hywel C Williams
- The University of Nottingham; Centre of Evidence Based Dermatology; Queen's Medical Centre Derby Road Nottingham UK NG7 2UH
| |
Collapse
|
12
|
Abstract
With the introduction of hybrid imaging technologies such as PET/CT and recently PET/MRI, staging and therapy-response monitoring have evolved. PET/CT has been shown to be of value for routine staging of FDG-avid lymphomas before as well as at the end of treatment. For interim staging, trials are ongoing to evaluate the use of PET/CT. In melanoma, PET/CT can be recommended for stages III and IV diseases for initial staging and before surgery. Studies investigating the use of PET/CT for early therapy response are promising. The role of PET/MR in lymphoma and melanoma imaging has to be defined because no larger studies exist so far. There may be an application of PET/MR in research especially for tumor characterization and therapy response. Furthermore, the potential role of non-FDG tracers is elucidated regarding the assessment of treatment response in targeted drug regimens.
Collapse
Affiliation(s)
- Nina F Schwenzer
- Department of Radiology, Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Anna Christina Pfannenberg
- Department of Radiology, Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Bone marrow invasion in multiple myeloma and metastatic disease. RADIOLOGIA 2016; 58 Suppl 1:81-93. [PMID: 26767542 DOI: 10.1016/j.rx.2015.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 11/21/2022]
Abstract
Magnetic resonance imaging (MRI) of the spine is the imaging study of choice for the management of bone marrow disease. MRI sequences enable us to integrate structural and functional information for detecting, staging, and monitoring the response the treatment of multiple myeloma and bone metastases in the spine. Whole-body MRI has been incorporated into different guidelines as the technique of choice for managing multiple myeloma and metastatic bone disease. Normal physiological changes in the yellow and red bone marrow represent a challenge in analyses to differentiate clinically significant findings from those that are not clinically significant. This article describes the findings for normal bone marrow, variants, and invasive processes in multiple myeloma and bone metastases.
Collapse
|
14
|
Pfannenberg C, Schwenzer N. [Whole-body staging of malignant melanoma: advantages, limitations and current importance of PET-CT, whole-body MRI and PET-MRI]. Radiologe 2015; 55:120-6. [PMID: 25589421 DOI: 10.1007/s00117-014-2762-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cross-sectional imaging methods are currently the standard methods for staging of advanced melanoma. The former time-consuming and expensive multimodality approach is increasingly being replaced by novel whole-body (WB) staging methods, such as 18F-fluorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG-PET-CT) and whole-body magnetic resonance imaging (WBMRI) because they offer a complete head-to-toe coverage of the patient in a single examination with an accurate and sensitive detection of tumor spread. Several studies in patients with advanced melanoma revealed that PET-CT is more sensitive and specific than conventional modalities, such as CT alone resulting in a change of management in up to 30 % of cases. Due to the limited sensitivity of PET for lesions smaller than 1 cm, PET-CT is not useful for the initial work-up of patients with stage I and II melanoma but has proven to be superior for detection of distant metastases, which is essential prior to surgical metastasectomy. If PET-CT is not available WB-CT or WB-MRI can alternatively be used and WB-MRI including diffusion-weighted imaging (DWI) has become a real alternative for staging of melanoma patients. So far, however, only few reports suffering from small numbers of cases and heterogeneous design have compared the diagnostic performance of WB-MRI and PET-CT. The preliminary results indicate a high overall diagnostic accuracy of both methods; however, these methods differ in organ-based detection rates: PET-CT was more accurate in N-staging and detection of lung and soft tissue metastases whereas WB-MRI was superior in detecting liver, bone and brain metastases. The value of PET-MRI for staging of advanced melanoma is the subject of ongoing clinical studies.
Collapse
Affiliation(s)
- C Pfannenberg
- Abteilung Diagnostische und Interventionelle Radiologie, Eberhard-Karls-Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland,
| | | |
Collapse
|