1
|
Rezaeipandari H, Morowatisharifabad MA, Shaghaghi A. Religious and Spiritual Coping Elements in Dealing with Chronic Diseases: A Qualitative Exploration of the Perspectives of Older Iranian Zoroastrians. JOURNAL OF RELIGION AND HEALTH 2023; 62:3017-3041. [PMID: 36991287 DOI: 10.1007/s10943-023-01797-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Religiosity is a desirable alternative coping strategy for many people when facing negative life events including age-related infirmities and stressors. Religious coping mechanisms (RCMs) have been investigated meagerly with regard to religious minorities around the world and, to the best of current knowledge, no study has been conducted on Iranian Zorostrians to explore their religious coping mechanisms in dealing with age-related chronic diseases. This qualitative research, therefore, was aimed to canvas perceptions about RCMs that are utilized by Iranian Zoroastrian older adults to deal with chronic diseases in the city of Yazd, Iran. Semi-structured interviews were conducted with purposefully selected fourteen Zoroastrian older patients and four Zoroastrian priests in 2019. The main extracted themes included performing certain religious behaviors and having sincere religion-based beliefs as employed mechanisms for better coping with their chronic diseases. Prevalent dilemmas/barriers with mitigating impact on the coping capacities in dealing with a persistent illness was another predominant identified theme. Identification of RCMs that religious and ethnic minorities are using to better confront diverse life events, such as chronic diseases, could pave the path to expand new approaches in planing sustainable disease management and proactive quality of life improvement initiatives.
Collapse
Affiliation(s)
- Hassan Rezaeipandari
- Department of Aging Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Elderly Health Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ali Morowatisharifabad
- Department of Aging Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Elderly Health Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abdolreza Shaghaghi
- Health Education and Promotion Department, Faculty of Health, Tabriz University of Medical Sciences, Golgasht Ave., Tabriz, 5166614711, Iran.
| |
Collapse
|
2
|
Distinct genetic variation and heterogeneity of the Iranian population. PLoS Genet 2019; 15:e1008385. [PMID: 31550250 PMCID: PMC6759149 DOI: 10.1371/journal.pgen.1008385] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Iran, despite its size, geographic location and past cultural influence, has largely been a blind spot for human population genetic studies. With only sparse genetic information on the Iranian population available, we pursued its genome-wide and geographic characterization based on 1021 samples from eleven ethnic groups. We show that Iranians, while close to neighboring populations, present distinct genetic variation consistent with long-standing genetic continuity, harbor high heterogeneity and different levels of consanguinity, fall apart into a cluster of similar groups and several admixed ones and have experienced numerous language adoption events in the past. Our findings render Iran an important source for human genetic variation in Western and Central Asia, will guide adequate study sampling and assist the interpretation of putative disease-implicated genetic variation. Given Iran's internal genetic heterogeneity, future studies will have to consider ethnic affiliations and possible admixture.
Collapse
|
3
|
A glimpse at the intricate mosaic of ethnicities from Mesopotamia: Paternal lineages of the Northern Iraqi Arabs, Kurds, Syriacs, Turkmens and Yazidis. PLoS One 2017; 12:e0187408. [PMID: 29099847 PMCID: PMC5669434 DOI: 10.1371/journal.pone.0187408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/09/2017] [Indexed: 01/22/2023] Open
Abstract
Widely considered as one of the cradles of human civilization, Mesopotamia is largely situated in the Republic of Iraq, which is also the birthplace of the Sumerian, Akkadian, Assyrian and Babylonian civilizations. These lands were subsequently ruled by the Persians, Greeks, Romans, Arabs, Mongolians, Ottomans and finally British prior to the independence. As a direct consequence of this rich history, the contemporary Iraqi population comprises a true mosaic of different ethnicities, which includes Arabs, Kurds, Turkmens, Assyrians, and Yazidis among others. As such, the genetics of the contemporary Iraqi populations are of anthropological and forensic interest. In an effort to contribute to a better understanding of the genetic basis of this ethnic diversity, a total of 500 samples were collected from Northern Iraqi volunteers belonging to five major ethnic groups, namely: Arabs (n = 102), Kurds (n = 104), Turkmens (n = 102), Yazidis (n = 106) and Syriacs (n = 86). 17-loci Y-STR analyses were carried out using the AmpFlSTR Yfiler system, and subsequently in silico haplogroup assignments were made to gain insights from a molecular anthropology perspective. Systematic comparisons of the paternal lineages of these five Northern Iraqi ethnic groups, not only among themselves but also in the context of the larger genetic landscape of the Near East and beyond, were then made through the use of two different genetic distance metric measures and the associated data visualization methods. Taken together, results from the current study suggested the presence of intricate Y-chromosomal lineage patterns among the five ethic groups analyzed, wherein both interconnectivity and independent microvariation were observed in parallel, albeit in a differential manner. Notably, the novel Y-STR data on Turkmens, Syriacs and Yazidis from Northern Iraq constitute the first of its kind in the literature. Data presented herein is expected to contribute to further population and forensic investigations in Northern Iraq in particular and the Near East in general.
Collapse
|
4
|
Jones RJ, Tay GK, Mawart A, Alsafar H. Y-Chromosome haplotypes reveal relationships between populations of the Arabian Peninsula, North Africa and South Asia. Ann Hum Biol 2017; 44:738-746. [PMID: 28948851 DOI: 10.1080/03014460.2017.1384508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The United Arab Emirates (UAE) is positioned at the crossroads of human migration out of Africa and through to Asia and Europe. AIM To compare the degree of genetic diversity of the Arabian UAE population with populations in other countries from the Middle East, South Asia and North Africa. SUBJECTS AND METHODS Twenty-seven Y-STR were analysed in 217 individuals. Y-STR haplotypes from this study were compared to population data stored in YHRD, using MDS and AMOVA. RESULTS Two hundred and twelve haplotypes were observed in the 217 individuals studied. Although the reduction in Y-STR loci from 27 to 17 resulted in a decrease in discriminatory power, comparisons of populations were possible. The UAE population clustered closer with other populations of the Middle East. The South Asian and North African populations were separated by Middle Eastern populations in between both clusters. CONCLUSION This is the first study to report the diversity of a population of the Arabian Peninsula using 27 Y-STR. MDS plots show that Middle Eastern populations are positioned in the centre, with African, Asian and European populations around the Arab population cluster. The findings of this study are consistent with this region being at the epicentre of human migration between continents.
Collapse
Affiliation(s)
- Rebecca J Jones
- a School of Anatomy, Physiology and Human Biology , University of Western Australia , Crawley , WA , Australia
| | - Guan K Tay
- b School of Psychiatry and Clinical Neurosciences , University of Western Australia , Crawley , WA , Australia.,c School of Medical and Health Sciences , Edith Cowan University , Joondalup , WA , Australia.,d Center for Biotechnology , Khalifa University of Science, Technology and Research , Abu Dhabi , United Arab Emirates
| | - Aurélie Mawart
- d Center for Biotechnology , Khalifa University of Science, Technology and Research , Abu Dhabi , United Arab Emirates
| | - Habiba Alsafar
- d Center for Biotechnology , Khalifa University of Science, Technology and Research , Abu Dhabi , United Arab Emirates.,e Faculty of Biomedical Engineering , Khalifa University of Science, Technology and Research , Abu Dhabi , United Arab Emirates
| |
Collapse
|
5
|
López S, Thomas MG, van Dorp L, Ansari-Pour N, Stewart S, Jones AL, Jelinek E, Chikhi L, Parfitt T, Bradman N, Weale ME, Hellenthal G. The Genetic Legacy of Zoroastrianism in Iran and India: Insights into Population Structure, Gene Flow, and Selection. Am J Hum Genet 2017; 101:353-368. [PMID: 28844488 PMCID: PMC5590844 DOI: 10.1016/j.ajhg.2017.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/24/2017] [Indexed: 11/24/2022] Open
Abstract
Zoroastrianism is one of the oldest extant religions in the world, originating in Persia (present-day Iran) during the second millennium BCE. Historical records indicate that migrants from Persia brought Zoroastrianism to India, but there is debate over the timing of these migrations. Here we present genome-wide autosomal, Y chromosome, and mitochondrial DNA data from Iranian and Indian Zoroastrians and neighboring modern-day Indian and Iranian populations and conduct a comprehensive genome-wide genetic analysis in these groups. Using powerful haplotype-based techniques, we find that Zoroastrians in Iran and India have increased genetic homogeneity relative to other sampled groups in their respective countries, consistent with their current practices of endogamy. Despite this, we infer that Indian Zoroastrians (Parsis) intermixed with local groups sometime after their arrival in India, dating this mixture to 690–1390 CE and providing strong evidence that Iranian Zoroastrian ancestry was maintained primarily through the male line. By making use of the rich information in DNA from ancient human remains, we also highlight admixture in the ancestors of Iranian Zoroastrians dated to 570 BCE–746 CE, older than admixture seen in any other sampled Iranian group, consistent with a long-standing isolation of Zoroastrians from outside groups. Finally, we report results, and challenges, from a genome-wide scan to identify genomic regions showing signatures of positive selection in present-day Zoroastrians that might correlate to the prevalence of particular diseases among these communities.
Collapse
|
6
|
Balanovsky O, Zhabagin M, Agdzhoyan A, Chukhryaeva M, Zaporozhchenko V, Utevska O, Highnam G, Sabitov Z, Greenspan E, Dibirova K, Skhalyakho R, Kuznetsova M, Koshel S, Yusupov Y, Nymadawa P, Zhumadilov Z, Pocheshkhova E, Haber M, A. Zalloua P, Yepiskoposyan L, Dybo A, Tyler-Smith C, Balanovska E. Deep phylogenetic analysis of haplogroup G1 provides estimates of SNP and STR mutation rates on the human Y-chromosome and reveals migrations of Iranic speakers. PLoS One 2015; 10:e0122968. [PMID: 25849548 PMCID: PMC4388827 DOI: 10.1371/journal.pone.0122968] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/16/2015] [Indexed: 11/18/2022] Open
Abstract
Y-chromosomal haplogroup G1 is a minor component of the overall gene pool of South-West and Central Asia but reaches up to 80% frequency in some populations scattered within this area. We have genotyped the G1-defining marker M285 in 27 Eurasian populations (n= 5,346), analyzed 367 M285-positive samples using 17 Y-STRs, and sequenced ~11 Mb of the Y-chromosome in 20 of these samples to an average coverage of 67X. This allowed detailed phylogenetic reconstruction. We identified five branches, all with high geographical specificity: G1-L1323 in Kazakhs, the closely related G1-GG1 in Mongols, G1-GG265 in Armenians and its distant brother clade G1-GG162 in Bashkirs, and G1-GG362 in West Indians. The haplotype diversity, which decreased from West Iran to Central Asia, allows us to hypothesize that this rare haplogroup could have been carried by the expansion of Iranic speakers northwards to the Eurasian steppe and via founder effects became a predominant genetic component of some populations, including the Argyn tribe of the Kazakhs. The remarkable agreement between genetic and genealogical trees of Argyns allowed us to calibrate the molecular clock using a historical date (1405 AD) of the most recent common genealogical ancestor. The mutation rate for Y-chromosomal sequence data obtained was 0.78×10-9 per bp per year, falling within the range of published rates. The mutation rate for Y-chromosomal STRs was 0.0022 per locus per generation, very close to the so-called genealogical rate. The “clan-based” approach to estimating the mutation rate provides a third, middle way between direct farther-to-son comparisons and using archeologically known migrations, whose dates are subject to revision and of uncertain relationship to genetic events.
Collapse
Affiliation(s)
- Oleg Balanovsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Research Centre for Medical Genetics, Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| | - Maxat Zhabagin
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Center for Life Sciences, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Anastasiya Agdzhoyan
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Marina Chukhryaeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Research Centre for Medical Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Olga Utevska
- Department of Genetics and Citology, V. N. Karazin National University, Kharkiv, Ukraine
| | - Gareth Highnam
- Gene by Gene, Ltd., Houston, Texas, United States of America
| | - Zhaxylyk Sabitov
- Center for Life Sciences, Nazarbayev University, Astana, Republic of Kazakhstan
- Gumilov Eurasian National University, Astana, Republic of Kazakhstan
| | | | - Khadizhat Dibirova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Research Centre for Medical Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Roza Skhalyakho
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Research Centre for Medical Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Marina Kuznetsova
- Research Centre for Medical Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Koshel
- Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
| | - Yuldash Yusupov
- Institute of Humanitarian Research of the Republic of Bashkortostan, Ufa, Russia
| | | | - Zhaxybay Zhumadilov
- Center for Life Sciences, Nazarbayev University, Astana, Republic of Kazakhstan
| | | | - Marc Haber
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | | | - Levon Yepiskoposyan
- Institute Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Anna Dybo
- Institute of Linguistics, Russian Academy of Sciences, Moscow, Russia
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Elena Balanovska
- Research Centre for Medical Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Abstract
AIM The purpose of this study was to characterize Y-chromosome diversity in Tajiks from Tajikistan and in Persians and Kurds from Iran. METHOD Y-chromosome haplotypes were identified in 40 Tajiks, 77 Persians and 25 Kurds, using 12 short tandem repeats (STR) and 18 binary markers. RESULTS High genetic diversity was observed in the populations studied. Six of 12 haplogroups were common in Persians, Kurds and Tajiks, but only three haplogroups (G-M201, J-12f2 and L-M20) were the most frequent in all populations, comprising together ~60% of the Y-chromosomes in the pooled data set. Analysis of genetic distances between Y-STR haplotypes revealed that the Kurds showed a great distance to the Iranian-speaking populations of Iran, Afghanistan and Tajikistan. The presence of Indian-specific haplogroups L-M20, H1-M52 and R2a-M124 in both Tajik samples from Afghanistan and Tajikistan demonstrates an apparent genetic affinity between Tajiks from these two regions. CONCLUSIONS Despite the marked similarities between Y-chromosome gene pools of Iranian-speaking populations, there are differences between them, defined by many factors, including geographic and linguistic relationships.
Collapse
Affiliation(s)
- Boris Malyarchuk
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia
| | | | | | | |
Collapse
|
8
|
Grugni V, Battaglia V, Hooshiar Kashani B, Parolo S, Al-Zahery N, Achilli A, Olivieri A, Gandini F, Houshmand M, Sanati MH, Torroni A, Semino O. Ancient migratory events in the Middle East: new clues from the Y-chromosome variation of modern Iranians. PLoS One 2012; 7:e41252. [PMID: 22815981 PMCID: PMC3399854 DOI: 10.1371/journal.pone.0041252] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/19/2012] [Indexed: 11/18/2022] Open
Abstract
Knowledge of high resolution Y-chromosome haplogroup diversification within Iran provides important geographic context regarding the spread and compartmentalization of male lineages in the Middle East and southwestern Asia. At present, the Iranian population is characterized by an extraordinary mix of different ethnic groups speaking a variety of Indo-Iranian, Semitic and Turkic languages. Despite these features, only few studies have investigated the multiethnic components of the Iranian gene pool. In this survey 938 Iranian male DNAs belonging to 15 ethnic groups from 14 Iranian provinces were analyzed for 84 Y-chromosome biallelic markers and 10 STRs. The results show an autochthonous but non-homogeneous ancient background mainly composed by J2a sub-clades with different external contributions. The phylogeography of the main haplogroups allowed identifying post-glacial and Neolithic expansions toward western Eurasia but also recent movements towards the Iranian region from western Eurasia (R1b-L23), Central Asia (Q-M25), Asia Minor (J2a-M92) and southern Mesopotamia (J1-Page08). In spite of the presence of important geographic barriers (Zagros and Alborz mountain ranges, and the Dasht-e Kavir and Dash-e Lut deserts) which may have limited gene flow, AMOVA analysis revealed that language, in addition to geography, has played an important role in shaping the nowadays Iranian gene pool. Overall, this study provides a portrait of the Y-chromosomal variation in Iran, useful for depicting a more comprehensive history of the peoples of this area as well as for reconstructing ancient migration routes. In addition, our results evidence the important role of the Iranian plateau as source and recipient of gene flow between culturally and genetically distinct populations.
Collapse
Affiliation(s)
- Viola Grugni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Vincenza Battaglia
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | | | - Silvia Parolo
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Nadia Al-Zahery
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia Cellulare e Ambientale, Università di Perugia, Perugia, Italy
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Francesca Gandini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Hossein Sanati
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
- Centro Interdipartimentale “Studi di Genere”, Università di Pavia, Pavia, Italy
| |
Collapse
|
9
|
Andonian L, Rezaie S, Margaryan A, Farhud DD, Mohammad K, Naieni KH, Khorramizadeh MR, Sanati MH, Jamali M, Bayatian P, Yepiskoposyan L. Iranian Azeri's Y-Chromosomal Diversity in the Context of Turkish-Speaking Populations of the Middle East. IRANIAN JOURNAL OF PUBLIC HEALTH 2011; 40:119-23. [PMID: 23113065 PMCID: PMC3481719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 02/16/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND The main goal of this study was to conduct a comparative population genetic study of Turkish speaking Iranian Azeries as being the biggest ethno-linguistic community, based on the polymorph markers on Y chromosome. METHODS One hundred Turkish-speaking Azeri males from north-west Iran (Tabriz, 2008-2009) were selected based on living 3 generations paternally in the same region and not having any relationship with each other. Samples were collected by mouth swabs, DNA extracted and multiplex PCR done, then 12 Single Nucleotide Polymorphisms (SNPs) and 6 Microsatellites (MS) were sequenced. Obtained data were statistically analyzed by Arlequin software. RESULTS SNPs and Microsatellites typing were compared with neighboring Turkish-speaking populations (from Turkey and Azerbaijan) and Turkmens representing a possible source group who imposed the Turkish language during 11-15(th) centuries AD. Azeris demonstrated high level of gene diversity compatible with patterns registered in the neighboring Turkish-speaking populations, whereas the Turkmens displayed significantly lower level of genetic variation. This rate of genetic affiliation depends primarily on the geographic proximity. CONCLUSION The imposition of Turkish language to this region was realized predominantly by the process of elite dominance, i.e. by the limited number of invaders who left only weak patrilineal genetic trace in modern populations of the region.
Collapse
Affiliation(s)
- L Andonian
- Dept. of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran Iran,Corresponding author: E-mail:
| | - S Rezaie
- Division of Molecular Biology, Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - A Margaryan
- Human Genetics Group, Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - DD Farhud
- School of Public Health, Tehran University of Medical Sciences, Tehran Iran
| | - K Mohammad
- Dept. of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran Iran
| | - K Holakouie Naieni
- Dept. of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran Iran,Iranian Epidemiological Association
| | - MR Khorramizadeh
- Dept. of Medical Biotechnology, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran Iran
| | - M H Sanati
- National Institute for Genetic Engineering and Biotechnology, Pajoohesh Blvd., 17 Km Karaj HWY, Tehran, Iran
| | - M Jamali
- Academic Member of Ministry of Health and Education, Tehran Iran
| | - P Bayatian
- Dept. of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran Iran
| | - L Yepiskoposyan
- Human Genetics Group, Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| |
Collapse
|