1
|
Díaz-Matallana M, Briceño I, Benavides-Benítez E, Bernal JE, Martínez-Lozano JC. Molecular characterisation of sickle cell disease and classification of major haplotypes associated with the β-globin cluster (HBB gene) by means of SNP marker sequencing in a group of samples from Bolívar, Colombia. Ann Hum Biol 2024; 51:2308714. [PMID: 38378484 DOI: 10.1080/03014460.2024.2308714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Colombia has a mestizo population and the prevalence of haemoglobin variants varies according to each region, but heterozygous carriers can be found in all of them. AIM To characterise sickle cell disease (SCD) haematologically, biochemically, and molecularly, and detect classic haplotypes by DNA sequencing in a group of samples from Bolívar, Colombia. SUBJECTS AND METHODS Blood samples were collected after informed consent from volunteers from eight communities in the Bolívar department, plus samples from the Pacific region, Providencia Island, and Bogotá were included. Data were obtained from: (1) haematological analyses; (2) biochemical tests: dHPLC was used to determine haemoglobin (Hb); and (3) DNA sequencing data through five SNPs. RESULTS 101 samples were identified by rs334 through Sanger's Sequencing, structural haemoglobinopathies HbAS (34.65%), HbSS (2.97%) and HbAC (1.98%) were found. When contrasting the Hb identification results between SNP rs334 Vs. dHPLC/Isoelectric Focusing (IEF), a coincidence was found in 39/43 samples analysed, therefore, when comparing these techniques, a significant correlation was found (Pearson's correlation coefficient r = 0.998). 26 samples previously analysed by rs334 were classified into classical haplotypes CAR (50.0%), BEN (30.76%), CAM (7.69%), SEN (3.84%), and ATP-I (7.69%). CONCLUSIONS SCD characterisation and SNPs-based classification through Sanger's DNA sequencing have not been performed before in Colombia. The results of this work will make it possible to expand the data or records of carriers and those affected, which will benefit patients and their families.
Collapse
Affiliation(s)
- Marcela Díaz-Matallana
- Faculty of Medicine, Human Genetics Laboratory, Universidad de La Sabana, Chía, Colombia
| | - Ignacio Briceño
- Faculty of Medicine, Human Genetics Laboratory, Universidad de La Sabana, Chía, Colombia
| | | | - Jaime E Bernal
- Medicine Program, Universidad del Sinú Elías Bechara Zainúm, Cartagena, Colombia
| | | |
Collapse
|
2
|
Searching for the roots of the first free African American community. Sci Rep 2020; 10:20634. [PMID: 33244039 PMCID: PMC7691995 DOI: 10.1038/s41598-020-77608-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022] Open
Abstract
San Basilio de Palenque is an Afro-descendant community near Cartagena, Colombia, founded in the sixteenth century. The recognition of the historical and cultural importance of Palenque has promoted several studies, namely concerning the African roots of its first inhabitants. To deepen the knowledge of the origin and diversity of the Palenque parental lineages, we analysed a sample of 81 individuals for the entire mtDNA Control Region as well as 92 individuals for 27 Y-STRs and 95 for 51 Y-SNPs. The results confirmed the strong isolation of the Palenque, with some degree of influx of Native American maternal lineages, and a European admixture exclusively mediated by men. Due to the high genetic drift observed, a pairwise FST analysis with available data on African populations proved to be inadequate for determining population affinities. In contrast, when a phylogenetic approach was used, it was possible to infer the phylogeographic origin of some lineages in Palenque. Contradicting previous studies indicating a single African origin, our results evidence parental genetic contributions from widely different African regions.
Collapse
|
3
|
Mogollón Olivares F, Moncada Madero J, Casas-Vargas A, Zea Montoya S, Suárez Medellín D, Gusmão L, Usaquén W. Contrasting the ancestry patterns of three distinct population groups from the northernmost region of South America. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:437-447. [PMID: 32856314 DOI: 10.1002/ajpa.24130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 01/15/2023]
Abstract
Colombia, located in the north of the South American subcontinent is a country of great interest for population genetic studies given its high ethnic and cultural diversity represented by the admixed population, 102 indigenous peoples and African descent populations. In this study, an analysis of the genetic structure and ancestry was performed based on 46 ancestry informative INDEL markers (AIM-INDELs) and considering the genealogical and demographic variables of 451 unrelated individuals belonging to nine Native American, two African American, and four multiple ancestry populations. Measures of genetic diversity, ancestry components, and genetic substructure were analyzed to build a population model typical of the northernmost part of the South American continent. The model suggests three types of populations: Native American, African American, and multiple ancestry. The results support hypotheses posed by other authors about issues like the peopling of South America and the existence of two types of Native American ancestry. This last finding could be crucial for future research on the peopling of Colombia and South America in that a single origin of all indigenous communities should not be assumed. It then would be necessary to consider other events that could explain their genetic variability and complexity throughout the continent.
Collapse
Affiliation(s)
| | - Julie Moncada Madero
- Population Genetics and Identification Group, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Andrea Casas-Vargas
- Population Genetics and Identification Group, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sara Zea Montoya
- Population Genetics and Identification Group, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Dayana Suárez Medellín
- Population Genetics and Identification Group, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Leonor Gusmão
- DNA Diagnostic Laboratory, Universidade do Estado de Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - William Usaquén
- Population Genetics and Identification Group, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
4
|
Jannuzzi J, Ribeiro J, Alho C, de Oliveira Lázaro e Arão G, Cicarelli R, Simões Dutra Corrêa H, Ferreira S, Fridman C, Gomes V, Loiola S, da Mota MF, Ribeiro-dos-Santos Â, de Souza CA, de Sousa Azulay RS, Carvalho EF, Gusmão L. Male lineages in Brazilian populations and performance of haplogroup prediction tools. Forensic Sci Int Genet 2020; 44:102163. [DOI: 10.1016/j.fsigen.2019.102163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/25/2019] [Accepted: 09/19/2019] [Indexed: 11/26/2022]
|
5
|
Alonso Morales LA, Casas-Vargas A, Rojas Castro M, Resque R, Ribeiro-dos-Santos ÂK, Santos S, Gusmão L, Usaquén W. Paternal portrait of populations of the middle Magdalena River region (Tolima and Huila, Colombia): New insights on the peopling of Central America and northernmost South America. PLoS One 2018; 13:e0207130. [PMID: 30439976 PMCID: PMC6237345 DOI: 10.1371/journal.pone.0207130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/25/2018] [Indexed: 11/18/2022] Open
Abstract
The valley of the Magdalena River is one of the main population pathways in Colombia. The gene pool and spatial configuration of human groups in this territory have been outlined throughout three historical stages: the Native pre-Hispanic world, Spanish colonization, and XIX century migrations. This research was designed with the goal of characterizing the diversity and distribution pattern of Y-chromosome lineages that are currently present in the Tolima and Huila departments (middle Magdalena River region). Historic cartography was used to identify the main geographic sites where the paternal lineages belonging to this area have gathered. Twelve municipalities were chosen, and a survey that included genealogical information was administered. Samples collected from 83 male volunteers were analyzed for 48 Y-SNPs and 17 Y-STRs. The results showed a highly diverse region characterized by the presence of 16 sublineages within the major clades R, Q, J, G, T and E and revealed that 93% (n = 77) of haplotypes were different. Among these haplogroups, European-specific R1b-M269 lineages were the most representative (57.83%), with six different subhaplogroups and 43 unique haplotypes. Native American paternal ancestry was also detected based on the presence of the Q1a2-M3*(xM19, M194, M199) and Q1a2-M346*(xM3) lineages. Interestingly, all Q1a2-M346*(xM3) samples (n = 7, with five different haplotypes) carried allele six at the DYS391 locus. This allele has a worldwide frequency of 0.169% and was recently associated with a new Native subhaplogroup. An in-depth phylogenetic analysis of these samples suggests the Tolima and Huila region to be the principal area in all Central and South America where this particular Native lineage is found. This lineage has been present in the region for at least 1,809 (+/- 0,5345) years.
Collapse
Affiliation(s)
- Luz Angela Alonso Morales
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail: (LAAM); (WU)
| | - Andrea Casas-Vargas
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Madelyn Rojas Castro
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Rafael Resque
- Laboratório de Toxicologia e Química Farmacêutica, Departamento de Ciências da Saúde e Biológicas, Universidade Federal do Amapá, Macapá, Brazil
| | - Ândrea Kelly Ribeiro-dos-Santos
- Human and Medical Genetics Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, state of Pará (PA), Brazil
| | - Sidney Santos
- Human and Medical Genetics Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, state of Pará (PA), Brazil
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - William Usaquén
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail: (LAAM); (WU)
| |
Collapse
|
6
|
Effective resolution of the Y chromosome sublineages of the Iberian haplogroup R1b-DF27 with forensic purposes. Int J Legal Med 2018; 133:17-23. [PMID: 30229332 DOI: 10.1007/s00414-018-1936-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) found within the non-recombining region of the Y chromosome (NRY) represent a powerful tool in forensic genetics for inferring the paternal ancestry of a vestige and complement the determination of biogeographical origin in combination with other markers like AIMs. In the present study, we introduce a panel of 15 Y-SNPs for a fine-resolution subtyping of the haplogroup R1b-DF27, in a single minisequencing reaction. This is the first minisequencing panel that allows a fine subtyping of R1b-DF27, which displays high frequencies in Iberian and Iberian-influenced populations. This panel includes subhaplogroups of DF27 that display moderate geographical differentiation, of interest to link a sample with a specific location of the Iberian Peninsula or with Iberian ancestry. Conversely, part of the intricacy of a new minisequencing panel is to have all the included variants available to test the effectiveness of the analysis method. We have overcome the absence of the least common variants through site-directed mutagenesis. Overall, the results show that our panel is a robust and effective method for subtyping R1b-DF27 lineages from a minimal amount of DNA, and its high resolution enables to improve male lineage discrimination in Iberian and Southwest European descent individuals. The small length of the amplicons and its reproducibility makes this assay suitable for forensic and population genetics purposes.
Collapse
|
7
|
Criollo-Rayo AA, Bohórquez M, Prieto R, Howarth K, Culma C, Carracedo A, Tomlinson I, Echeverry de Polnaco MM, Carvajal Carmona LG. Native American gene continuity to the modern admixed population from the Colombian Andes: Implication for biomedical, population and forensic studies. Forensic Sci Int Genet 2018; 36:e1-e7. [PMID: 29909140 DOI: 10.1016/j.fsigen.2018.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022]
Abstract
Andean populations have variable degrees of Native American and European ancestry, representing an opportunity to study admixture dynamics in the populations from Latin America (also known as Hispanics). We characterized the genetic structure of two indigenous (Nasa and Pijao) and three admixed (Ibagué, Ortega and Planadas) groups from Tolima, in the Colombian Andes. DNA samples from 348 individuals were genotyped for six mitochondrial DNA (mtDNA), seven non-recombining Y-chromosome (NRY) region and 100 autosomal ancestry informative markers. Nasa and Pijao had a predominant Native American ancestry at the autosomal (92%), maternal (97%) and paternal (70%) level. The admixed groups had a predominant Native American mtDNA ancestry (90%), a substantial frequency of European NRY haplotypes (72%) and similar autosomal contributions from Europeans (51%) and Amerindians (45%). Pijao and nearby Ortega were indistinguishable at the mtDNA and autosomal level, suggesting a genetic continuity between them. Comparisons with multiple Native American populations throughout the Americas revealed that Pijao, had close similarities with Carib-speakers from distant parts of the continent, suggesting an ancient correlation between language and genes. In summary, our study aimed to understand Hispanic patterns of migration, settlement and admixture, supporting an extensive contribution of local Amerindian women to the gene pool of admixed groups and consistent with previous reports of European-male driven admixture in Colombia.
Collapse
Affiliation(s)
- Angel A Criollo-Rayo
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultad de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | - Mabel Bohórquez
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultad de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | - Rodrigo Prieto
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultad de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | - Kimberley Howarth
- Institute of Cancer and Genomics Sciences, University of Birmingham, UK
| | - Cesar Culma
- Comite Regional Indígena del Tolima, Ibagué, Tolima, Colombia
| | - Angel Carracedo
- Fundación Pública Galega de Medicina Xenómica (SERGAS)-CIBERER, Universidad de Santiago de Compostela, Santiago de Compostela, Spain; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ian Tomlinson
- Institute of Cancer and Genomics Sciences, University of Birmingham, UK
| | - Maria M Echeverry de Polnaco
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultad de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | - Luis G Carvajal Carmona
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultad de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia; Fundación de Genética y Genómica, Medellin, Colombia; Corporación Universitaria Remington, Medellin, Colombia; Genome Center and Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, GBSF, 451 Health Science Drive Davis, CA, 95616-8816, USA.
| |
Collapse
|
8
|
Mora-García G, Gómez-Camargo D, Alario Á, Gómez-Alegría C. A Common Variation in the Caveolin 1 Gene Is Associated with High Serum Triglycerides and Metabolic Syndrome in an Admixed Latin American Population. Metab Syndr Relat Disord 2018; 16:453-463. [PMID: 29762069 PMCID: PMC6211369 DOI: 10.1089/met.2018.0004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background: The caveolin 1 (CAV1) gene has been associated with metabolic traits in animal models and human cohorts. Recently, a prevalent variant in CAV1 has been found to be related to metabolic syndrome in Hispanics living in North America. Since Hispanics represent an admixed population at high risk for cardiovascular diseases, in this study a Latin American population with a similar genetic background was assessed. Objective: To analyze a genetic association between CAV1 and metabolic traits in an admixed Latin American population. Methods: A cross-sectional study was carried out with adults from the Colombian Caribbean Coast, selected in urban clusters and work places through a stratified sampling to include diverse ages and socioeconomic groups. Blood pressure and waist circumference were registered. Serum concentrations of glucose, triglycerides, and high-density lipoprotein cholesterol were measured from an 8-hr fasting whole-blood sample. Two previously analyzed CAV1 single nucleotide polymorphisms were genotyped (rs926198 and rs11773845). A logistic regression model was applied to estimate the associations. An admixture adjustment was performed through a Bayesian model. Results: A total of 605 subjects were included. rs11773845 was associated with hypertriglyceridemia [odds ratio (OR) = 1.33, p = 0.001] and the metabolic syndrome (OR = 1.53, p = 0.02). When admixture adjustment was performed these genetic associations preserved their statistical significance. There were no significant associations between rs926198 and metabolic traits. Conclusions: The CAV1 variation rs11773845 was found to be consistently associated with high serum triglycerides and the metabolic syndrome. This is the first report of a relationship between CAV1 variants and serum triglycerides in Latin America.
Collapse
Affiliation(s)
- Gustavo Mora-García
- 1 Grupo UNIMOL, Facultad de Medicina, Universidad de Cartagena , Cartagena de Indias, Colombia
| | - Doris Gómez-Camargo
- 1 Grupo UNIMOL, Facultad de Medicina, Universidad de Cartagena , Cartagena de Indias, Colombia
| | - Ángelo Alario
- 2 Departamento Médico, Facultad de Medicina, Universidad de Cartagena , Cartagena de Indias, Colombia
| | - Claudio Gómez-Alegría
- 3 Grupo de Investigación UNIMOL, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia , Bogotá, Colombia
| |
Collapse
|
9
|
Huang YZ, Pamjav H, Flegontov P, Stenzl V, Wen SQ, Tong XZ, Wang CC, Wang LX, Wei LH, Gao JY, Jin L, Li H. Dispersals of the Siberian Y-chromosome haplogroup Q in Eurasia. Mol Genet Genomics 2018; 293:107-117. [PMID: 28884289 PMCID: PMC5846874 DOI: 10.1007/s00438-017-1363-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/27/2017] [Indexed: 12/17/2022]
Abstract
The human Y-chromosome has proven to be a powerful tool for tracing the paternal history of human populations and genealogical ancestors. The human Y-chromosome haplogroup Q is the most frequent haplogroup in the Americas. Previous studies have traced the origin of haplogroup Q to the region around Central Asia and Southern Siberia. Although the diversity of haplogroup Q in the Americas has been studied in detail, investigations on the diffusion of haplogroup Q in Eurasia and Africa are still limited. In this study, we collected 39 samples from China and Russia, investigated 432 samples from previous studies of haplogroup Q, and analyzed the single nucleotide polymorphism (SNP) subclades Q1a1a1-M120, Q1a2a1-L54, Q1a1b-M25, Q1a2-M346, Q1a2a1a2-L804, Q1a2b2-F1161, Q1b1a-M378, and Q1b1a1-L245. Through NETWORK and BATWING analyses, we found that the subclades of haplogroup Q continued to disperse from Central Asia and Southern Siberia during the past 10,000 years. Apart from its migration through the Beringia to the Americas, haplogroup Q also moved from Asia to the south and to the west during the Neolithic period, and subsequently to the whole of Eurasia and part of Africa.
Collapse
Affiliation(s)
- Yun-Zhi Huang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Horolma Pamjav
- National Center of Forensic Experts and Research, Budapest, 1087, Hungary
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000, Ostrava, Czech Republic
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russian Federation
| | - Vlastimil Stenzl
- Institute of Criminalistics, Police of the Czech Republic, 17089, Prague, Czech Republic
| | - Shao-Qing Wen
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xin-Zhu Tong
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Xiamen University, Xiamen, 361005, China
| | - Ling-Xiang Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lan-Hai Wei
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institut National des Langues et Civilisations Orientales, 75013, Paris, France
| | - Jing-Yi Gao
- Faculty of Arts and Humanities, University of Tartu, 50090, Tartu, Estonia
- Faculty of Central European Studies, Beijing International Studies University, Beijing, 100024, China
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hui Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
10
|
Mora-Garcia GJ, Ruiz-Diaz MS, Gomez-Camargo DE, Gomez-Alegria CJ. Frequency of common polymorphisms in Caveolin 1 ( CAV1 ) gene in adults with high serum triglycerides from Colombian Caribbean Coast. COLOMBIA MEDICA (CALI, COLOMBIA) 2017; 48:167-173. [PMID: 29662258 PMCID: PMC5896723 DOI: 10.25100/cm.v48i4.2625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Caveolin 1 gene (CAV1) has been associated with insulin resistance, metabolic syndrome and hypertension in humans. Also, it has been related to high serum triglycerides in rodents, however there is little evidence of this relation in humans. Aim To describe frequencies of common variations in CAV1 in adults with high serum triglycerides. Methods A case-control study was carried out with adults from Colombian Caribbean Coast. A whole blood sample was employed to measure serum concentrations of triglycerides, glucose, total cholesterol and HDLc. Six common Single Nucleotide Polymorphism (SNP) in CAV1 were genotyped (rs926198, rs3779512, rs10270569, rs11773845, rs7804372 and rs1049337). Allelic and genotypic frequencies were determined by direct count and Hardy-Weinberg Equilibrium (HWE) was assessed. Case and control groups were compared with null-hypothesis tests. Results A total of 220 cases and 220 controls were included. For rs3779512 an excess in homozygotes frequency was found within case group (40.4% (GG), 41.3% (GT) and 18.1% (TT); Fis=0.13, p=0.03). Another homozygotes excess among case group was found in rs7804372 (59.5% (TT), 32.3% (TA) and 8.2% (AA); Fis= 0.12, p= 0.04). In rs1049337, cases also showed an excess in homozygotes frequency (52.7% (CC), 35.0% (CT) and 12.3% (TT); Fis= 0.16, p= 0.01). Finally, for rs1049337 there were differences in genotype distribution between case and control groups (p <0.05). Conclusion An increased frequency of homozygote genotypes was found in subjects with high serum triglycerides. These findings suggest that minor alleles for SNPs rs3779512, rs7804372 and rs1049337 might be associated to higher risk of hypertriglyceridemia.
Collapse
Affiliation(s)
- Gustavo Jose Mora-Garcia
- Doctorado en Medicina Tropical, Facultad de Medicina, Universidad de Cartagena,Cartagena de Indias, Colombia
| | - Maria Stephany Ruiz-Diaz
- Doctorado en Medicina Tropical, Facultad de Medicina, Universidad de Cartagena,Cartagena de Indias, Colombia
| | - Doris Esther Gomez-Camargo
- Doctorado en Medicina Tropical, Facultad de Medicina, Universidad de Cartagena,Cartagena de Indias, Colombia
| | - Claudio Jaime Gomez-Alegria
- Grupo de Investigación UNIMOL . Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia. Bogotá, Colombia
| |
Collapse
|
11
|
Martinez B, Builes J, Aguirre D, Mendoza L, Hernandez L, Marrugo J. Autosomic STR database for an afrodescendant population sample of San Basilio de Palenque, Colombia. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2017. [DOI: 10.1016/j.fsigss.2017.09.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Mora-García G, Ruiz-Díaz MS, Espitia-Almeida F, Gómez-Camargo D. Variations in ADIPOR1 But Not ADIPOR2 are Associated With Hypertriglyceridemia and Diabetes in an Admixed Latin American Population. Rev Diabet Stud 2017; 14:311-328. [PMID: 29145541 PMCID: PMC6115010 DOI: 10.1900/rds.2017.14.311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Adiponectin is a hormone secreted by adipose tissue. It regulates glycolysis and lipolysis and is involved in the pathophysiology of diabetes and related disorders. Its activity is mainly mediated by the transmembrane receptors AdipoR1 and AdipoR2, which are encoded by ADIPOR1 (1q32.1) and ADIPOR2 (12p13.33) genes, respectively. In genetic association studies, single nucleotide polymorphisms (SNPs) in or near these genes have been associated with metabolic alterations. However, these relationships are still controversial. AIM The aim of this work was to analyze possible associations between ADIPOR1/2 and diabetes and other metabolic disorders. METHODS A genetic association study was carried out in an admixed Latin American population. A sample of 200 adults was analyzed. Clinical and serum-biochemical characteristics were measured to diagnose obesity, abdominal obesity, hypertension, hyperglycemia, hypertriglyceridemia, low HDLc, insulin resistance (HOMA-IR), and diabetes. Three SNPs were genotyped in ADIPOR1 (rs10494839, rs12733285, and rs2275737) and ADIPOR2 (rs11061937, rs11612383, and rs2286383). For the association analysis, an additive model was assessed through logistic regression. An admixture adjustment was performed using a Monte-Carlo-Markov-Chain method, assuming a three-hybrid substructure (k = 3). RESULTS Two SNPs in ADIPOR1 were associated with diabetes: rs10494839 (OR = 3.88, adjusted p < 0.03) and rs12733285 (OR = 4.72, adjusted p < 0.03). Additionally, rs10494839 was associated with hypertriglyceridemia (OR = 2.16, adjusted p < 0.01). None of the SNPs in ADIPOR2 were associated with metabolic disorders. CONCLUSIONS ADIPOR1 was consistently associated with diabetes and hypertriglyceridemia. This association was maintained even after adjusting for genetic stratification. There were no significant associations involving ADIPOR2.
Collapse
Affiliation(s)
- Gustavo Mora-García
- Doctorate in Tropical Medicine, Faculty of Medicine, Universidad de Cartagena. Cartagena de Indias, Colombia
| | - María S. Ruiz-Díaz
- Doctorate in Tropical Medicine, Faculty of Medicine, Universidad de Cartagena. Cartagena de Indias, Colombia
| | - Fabian Espitia-Almeida
- Biochemistry Master Program, Faculty of Medicine, Universidad de Cartagena. Cartagena de Indias, Colombia
| | - Doris Gómez-Camargo
- Doctorate in Tropical Medicine, Faculty of Medicine, Universidad de Cartagena. Cartagena de Indias, Colombia
| |
Collapse
|
13
|
Characterization of the Iberian Y chromosome haplogroup R-DF27 in Northern Spain. Forensic Sci Int Genet 2017; 27:142-148. [DOI: 10.1016/j.fsigen.2016.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 12/22/2016] [Accepted: 12/29/2016] [Indexed: 11/20/2022]
|
14
|
Ansari-Pour N, Moñino Y, Duque C, Gallego N, Bedoya G, Thomas MG, Bradman N. Palenque de San Basilio in Colombia: genetic data support an oral history of a paternal ancestry in Congo. Proc Biol Sci 2016; 283:20152980. [PMID: 27030413 DOI: 10.1098/rspb.2015.2980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/29/2016] [Indexed: 11/12/2022] Open
Abstract
The Palenque, a black community in rural Colombia, have an oral history of fugitive African slaves founding a free village near Cartagena in the seventeenth century. Recently, linguists have identified some 200 words in regular use that originate in a Kikongo language, with Yombe, mainly spoken in the Congo region, being the most likely source. The non-recombining portion of the Y chromosome (NRY) and mitochondrial DNA were analysed to establish whether there was greater similarity between present-day members of the Palenque and Yombe than between the Palenque and 42 other African groups (for all individuals,n= 2799) from which forced slaves might have been taken. NRY data are consistent with the linguistic evidence that Yombe is the most likely group from which the original male settlers of Palenque came. Mitochondrial DNA data suggested substantial maternal sub-Saharan African ancestry and a strong founder effect but did not associate Palenque with any particular African group. In addition, based on cultural data including inhabitants' claims of linguistic differences, it has been hypothesized that the two districts of the village (Abajo and Arriba) have different origins, with Arriba founded by men originating in Congo and Abajo by those born in Colombia. Although significant genetic structuring distinguished the two from each other, no supporting evidence for this hypothesis was found.
Collapse
Affiliation(s)
- Naser Ansari-Pour
- Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | | | | | - Natalia Gallego
- School of Health Sciences, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Gabriel Bedoya
- Universidad de Antioquia UdeA, Calle 70 No 52-21 Medellín, Colombia
| | - Mark G Thomas
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Neil Bradman
- Henry Stewart Group, 29/30 Little Russell Street, London, UK
| |
Collapse
|
15
|
Ossa H, Aquino J, Pereira R, Ibarra A, Ossa RH, Pérez LA, Granda JD, Lattig MC, Groot H, Fagundes de Carvalho E, Gusmão L. Outlining the Ancestry Landscape of Colombian Admixed Populations. PLoS One 2016; 11:e0164414. [PMID: 27736937 PMCID: PMC5063461 DOI: 10.1371/journal.pone.0164414] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022] Open
Abstract
The ancestry of the Colombian population comprises a large number of well differentiated Native communities belonging to diverse linguistic groups. In the late fifteenth century, a process of admixture was initiated with the arrival of the Europeans, and several years later, Africans also became part of the Colombian population. Therefore, the genepool of the current Colombian population results from the admixture of Native Americans, Europeans and Africans. This admixture occurred differently in each region of the country, producing a clearly stratified population. Considering the importance of population substructure in both clinical and forensic genetics, we sought to investigate and compare patterns of genetic ancestry in Colombia by studying samples from Native and non-Native populations living in its 5 continental regions: the Andes, Caribe, Amazonia, Orinoquía, and Pacific regions. For this purpose, 46 AIM-Indels were genotyped in 761 non-related individuals from current populations. Previously published genotype data from 214 Colombian Natives from five communities were used for population comparisons. Significant differences were observed between Native and non-Native populations, among non-Native populations from different regions and among Native populations from different ethnic groups. The Pacific was the region with the highest African ancestry, Amazonia harboured the highest Native ancestry and the Andean and Orinoquían regions showed the highest proportion of European ancestry. The Andean region was further sub-divided into 6 sub-regions: North East, Central West, Central East, West, South West and South East. Among these regions, the South West region showed a significantly lower European admixture than the other regions. Hardy-Weinberg equilibrium and variance values of ancestry among individuals within populations showed a potential stratification of the Pacific population.
Collapse
Affiliation(s)
- Humberto Ossa
- Pontificia Universidad Javeriana, Facultad de Ciencias, Bogotá, Colombia
- Laboratório de Genética y Biología Molecular, Bogotá, Colombia
| | - Juliana Aquino
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Rui Pereira
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, Porto, Portugal
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Porto, Portugal
| | - Adriana Ibarra
- IdentiGEN - Genetic Identification Laboratory and Research Group of Genetic Identification, Institute of Biology, School of Natural and Exact Sciences (FCEN), University of Antioquia, Medellin, Antioquia, Colombia
| | - Rafael H Ossa
- Laboratório de Genética y Biología Molecular, Bogotá, Colombia
- Universidad El Bosque, Facultad de Medicina, Bogotá, Colombia
| | - Luz Adriana Pérez
- Laboratorio de genética humana, Universidad de los Andes, Bogotá, Colombia
| | - Juan David Granda
- IdentiGEN - Genetic Identification Laboratory and Research Group of Genetic Identification, Institute of Biology, School of Natural and Exact Sciences (FCEN), University of Antioquia, Medellin, Antioquia, Colombia
| | | | - Helena Groot
- Laboratorio de genética humana, Universidad de los Andes, Bogotá, Colombia
| | | | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Porto, Portugal
- * E-mail:
| |
Collapse
|
16
|
Resque R, Gusmão L, Geppert M, Roewer L, Palha T, Alvarez L, Ribeiro-dos-Santos Â, Santos S. Male Lineages in Brazil: Intercontinental Admixture and Stratification of the European Background. PLoS One 2016; 11:e0152573. [PMID: 27046235 PMCID: PMC4821637 DOI: 10.1371/journal.pone.0152573] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 03/16/2016] [Indexed: 12/27/2022] Open
Abstract
The non-recombining nature of the Y chromosome and the well-established phylogeny of Y-specific Single Nucleotide Polymorphisms (Y-SNPs) make them useful for defining haplogroups with high geographical specificity; therefore, they are more apt than the Y-STRs to detect population stratification in admixed populations from diverse continental origins. Different Y-SNP typing strategies have been described to address issues of population history and movements within geographic territories of interest. In this study, we investigated a set of 41 Y-SNPs in 1217 unrelated males from the five Brazilian geopolitical regions, aiming to disclose the genetic structure of male lineages in the country. A population comparison based on pairwise FST genetic distances did not reveal statistically significant differences in haplogroup frequency distributions among populations from the different regions. The genetic differences observed among regions were, however, consistent with the colonization history of the country. The sample from the Northern region presented the highest Native American ancestry (8.4%), whereas the more pronounced African contribution could be observed in the Northeastern population (15.1%). The Central-Western and Southern samples showed the higher European contributions (95.7% and 93.6%, respectively). The Southeastern region presented significant European (86.1%) and African (12.0%) contributions. The subtyping of the most frequent European lineage in Brazil (R1b1a-M269) allowed differences in the genetic European background of the five Brazilian regions to be investigated for the first time.
Collapse
Affiliation(s)
- Rafael Resque
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Toxicologia e Química Farmacêutica, Departamento de Ciências da Saúde e Biológicas, Universidade Federal do Amapá, Macapá, Brazil
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.,IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria Geppert
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lutz Roewer
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Teresinha Palha
- Laboratório de Genética Forense, Instituto de Criminalística, Centro de Perícias Científicas Renato Chaves, Belém, Pará, Brasil
| | - Luis Alvarez
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| | - Sidney Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
17
|
Martínez B, Builes J, Aguirre D, Mendoza L, Afanador C, Meza C, Marrugo J. Ancestry background of a population sample from Bolivar Department, Colombia. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2015. [DOI: 10.1016/j.fsigss.2015.09.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Xavier C, Builes JJ, Gomes V, Ospino JM, Aquino J, Parson W, Amorim A, Gusmão L, Goios A. Admixture and genetic diversity distribution patterns of non-recombining lineages of Native American ancestry in Colombian populations. PLoS One 2015; 10:e0120155. [PMID: 25775361 PMCID: PMC4361580 DOI: 10.1371/journal.pone.0120155] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/20/2015] [Indexed: 11/19/2022] Open
Abstract
Genetic diversity of present American populations results from very complex demographic events involving different types and degrees of admixture. Through the analysis of lineage markers such as mtDNA and Y chromosome it is possible to recover the original Native American haplotypes, which remained identical since the admixture events due to the absence of recombination. However, the decrease in the effective population sizes and the consequent genetic drift effects suffered by these populations during the European colonization resulted in the loss or under-representation of a substantial fraction of the Native American lineages. In this study, we aim to clarify how the diversity and distribution of uniparental lineages vary with the different demographic characteristics (size, degree of isolation) and the different levels of admixture of extant Native groups in Colombia. We present new data resulting from the analyses of mtDNA whole control region, Y chromosome SNP haplogroups and STR haplotypes, and autosomal ancestry informative insertion-deletion polymorphisms in Colombian individuals from different ethnic and linguistic groups. The results demonstrate that populations presenting a high proportion of non-Native American ancestry have preserved nevertheless a substantial diversity of Native American lineages, for both mtDNA and Y chromosome. We suggest that, by maintaining the effective population sizes high, admixture allowed for a decrease in the effects of genetic drift due to Native population size reduction and thus resulting in an effective preservation of the Native American non-recombining lineages.
Collapse
Affiliation(s)
- Catarina Xavier
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Juan José Builes
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
- Laboratorio Genes Ltda, Medellín, Colombia
| | - Verónica Gomes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | | | - Juliana Aquino
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Walther Parson
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
- Eberly College of Science, Penn State University, University Park, PA, United States of America
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Leonor Gusmão
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Ana Goios
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- * E-mail:
| |
Collapse
|
19
|
Vullo C, Gomes V, Romanini C, Oliveira AM, Rocabado O, Aquino J, Amorim A, Gusmão L. Association between Y haplogroups and autosomal AIMs reveals intra-population substructure in Bolivian populations. Int J Legal Med 2014; 129:673-80. [PMID: 24878616 DOI: 10.1007/s00414-014-1025-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 05/15/2014] [Indexed: 12/24/2022]
Abstract
For the correct evaluation of the weight of genetic evidence in a forensic context, databases must reflect the structure of the population, with all possible groups being represented. Countries with a recent history of admixture between strongly differentiated populations are usually highly heterogeneous and sub-structured. Bolivia is one of these countries, with a high diversity of ethnic groups and different levels of admixture (among Native Americans, Europeans and Africans) across the territory. For a better characterization of the male lineages in Bolivia, 17 Y-STR and 42 Y-SNP loci were genotyped in samples from La Paz and Chuquisaca. Only European and Native American Y-haplogroups were detected, and no sub-Saharan African chromosomes were found. Significant differences were observed between the two samples, with a higher frequency of European lineages in Chuquisaca than in La Paz. A sample belonging to haplogroup Q1a3a1a1-M19 was detected in La Paz, in a haplotype background different from those previously found in Argentina. This result supports an old M19 North-south dispersion in South America, possibly via two routes. When comparing the ancestry of each individual assessed through his Y chromosome with the one estimated using autosomal AIMs, (a) increased European ancestry in individuals with European Y chromosomes and (b) higher Native American ancestry in the carriers of Native American Y-haplogroups were observed, revealing an association between autosomal and Y-chromosomal markers. The results of this study demonstrate that a sub-structure does exist in Bolivia at both inter- and intrapopulation levels, a fact which must be taken into account in the evaluation of forensic genetic evidence.
Collapse
Affiliation(s)
- Carlos Vullo
- DNA Forensic Laboratory, Argentinean Forensic Anthropology Team (EAAF), Córdoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ibarra A, Restrepo T, Rojas W, Castillo A, Amorim A, Martínez B, Burgos G, Ostos H, Álvarez K, Camacho M, Suarez Z, Pereira R, Gusmão L. Evaluating the X chromosome-specific diversity of Colombian populations using insertion/deletion polymorphisms. PLoS One 2014; 9:e87202. [PMID: 24498042 PMCID: PMC3909073 DOI: 10.1371/journal.pone.0087202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/23/2013] [Indexed: 12/20/2022] Open
Abstract
The European and African contribution to the pre-existing Native American background has influenced the complex genetic pool of Colombia. Because colonisation was not homogeneous in this country, current populations are, therefore, expected to have different proportions of Native American, European and African ancestral contributions. The aim of this work was to examine 11 urban admixed populations and a Native American group, called Pastos, for 32 X chromosome indel markers to expand the current knowledge concerning the genetic background of Colombia. The results revealed a highly diverse genetic background comprising all admixed populations, harbouring important X chromosome contributions from all continental source populations. In addition, Colombia is genetically sub-structured, with different proportions of European and African influxes depending on the regions. The samples from the North Pacific and Caribbean coasts have a high African ancestry, showing the highest levels of diversity. The sample from the South Andean region showed the lowest diversity and significantly higher proportion of Native American ancestry than the other samples from the North Pacific and Caribbean coasts, Central-West and Central-East Andean regions, and the Orinoquian region. The results of admixture analysis using X-chromosomal markers suggest that the high proportion of African ancestry in the North Pacific coast was primarily male driven. These men have joined to females with higher Native American and European ancestry (likely resulting from a classic colonial asymmetric mating type: European male x Amerindian female). This high proportion of male-mediated African contributions is atypical of colonial settings, suggesting that the admixture occurred during a period when African people were no longer enslaved. In the remaining regions, the African contribution was primarily female-mediated, whereas the European counterpart was primarily male driven and the Native American ancestry contribution was not gender biased.
Collapse
Affiliation(s)
- Adriana Ibarra
- IdentiGEN - Genetic Identification Laboratory and Research Group of Genetic Identification, Institute of Biology, School of Natural and Exact Sciences (FCEN), University of Antioquia, Medellin, Antioquia, Colombia
- * E-mail:
| | - Tomás Restrepo
- IdentiGEN - Genetic Identification Laboratory and Research Group of Genetic Identification, Institute of Biology, School of Natural and Exact Sciences (FCEN), University of Antioquia, Medellin, Antioquia, Colombia
| | - Winston Rojas
- Laboratory of Molecular Genetics, Institute of Biology, University of Antioquia, Medellin, Antioquia, Colombia
| | - Adriana Castillo
- Laboratorio de Genética, Universidad Industrial de Santander (UIS), Bucaramanga, Santander, Colombia
| | - António Amorim
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- FCUP - Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Beatriz Martínez
- Molecular Genetics Laboratory, Institute for Immunological Research, University of Cartagena, Cartagena, Bolivar, Colombia
| | - German Burgos
- Molecular Genetics Laboratory, Cruz Vital, Ecuadorian Red Cross, Quito, Ecuador
| | - Henry Ostos
- Genomic Medicine Laboratory, Health Faculty, Surcolombiana University, Neiva, Huila, Colombia
| | - Karen Álvarez
- IdentiGEN - Genetic Identification Laboratory and Research Group of Genetic Identification, Institute of Biology, School of Natural and Exact Sciences (FCEN), University of Antioquia, Medellin, Antioquia, Colombia
| | - Mauricio Camacho
- Institute of Legal Medicine and Forensic Sciences, Northeast Regional, Arauca, Colombia
| | - Zuleyma Suarez
- Clinical Laboratory Olga Zuleima Suárez Molina, Cucuta, Norte de Santander, Colombia
| | - Rui Pereira
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Leonor Gusmão
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|