1
|
Tanaka H, Nishimaki-Mogami T, Tamehiro N, Shibata N, Mandai H, Ito S, Wakamatsu K. Pterostilbene, a Dimethyl Derivative of Resveratrol, Exerts Cytotoxic Effects on Melanin-Producing Cells through Metabolic Activation by Tyrosinase. Int J Mol Sci 2024; 25:9990. [PMID: 39337478 PMCID: PMC11432345 DOI: 10.3390/ijms25189990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Pterostilbene (PTS), which is abundant in blueberries, is a dimethyl derivative of the natural polyphenol resveratrol (RES). Several plant species, including peanuts and grapes, also produce PTS. Although RES has a wide range of health benefits, including anti-cancer properties, PTS has a robust pharmacological profile that includes a better intestinal absorption and an increased hepatic stability compared to RES. Indeed, PTS has a higher bioavailability and a lower toxicity compared to other stilbenes, making it an attractive drug candidate for the treatment of various diseases, including diabetes, cancer, cardiovascular disease, neurodegenerative disorders, and aging. We previously reported that RES serves as a substrate for tyrosinase, producing an o-quinone metabolite that is highly cytotoxic to melanocytes. The present study investigated whether PTS may also be metabolized by tyrosinase, similarly to RES. PTS was oxidized as a substrate by tyrosinase to form an o-quinone, which reacted with thiols, such as N-acetyl-L-cysteine, to form di- and tri-adducts. We also confirmed that PTS was taken up and metabolized by human tyrosinase-expressing 293T cells in amounts several times greater than RES. In addition, PTS showed a tyrosinase-dependent cytotoxicity against B16BL6 melanoma cells that was stronger than RES and also inhibited the formation of melanin in B16BL6 melanoma cells and in the culture medium. These results suggest that the two methyl groups of PTS, which are lipophilic, increase its membrane permeability, making it easier to bind to intracellular proteins, and may therefore be more cytotoxic to melanin-producing cells.
Collapse
Affiliation(s)
- Hitomi Tanaka
- Department of Medical Technology, School of Health Sciences, Gifu University of Medical Science, 795-1 Nagamine, Ichihiraga, Seki 501-3892, Japan
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Tomoko Nishimaki-Mogami
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Norimasa Tamehiro
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Norihito Shibata
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Hiroki Mandai
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani 509-0293, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| |
Collapse
|
2
|
Kempf K, Capello Y, Melhem R, Lescoat C, Kempf O, Cornu A, Fremaux I, Chaignepain S, Groppi A, Nikolski M, Deffieux D, Génot E, Quideau S. Systemic Convergent Multitarget Interactions of Plant Polyphenols Revealed by Affinity-Based Protein Profiling of Bone Cells Using C-Glucosidic Vescal(ag)in-Bearing Chemoproteomic Probes. ACS Chem Biol 2023; 18:2495-2505. [PMID: 37948120 DOI: 10.1021/acschembio.3c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The ellagitannins vescalagin and vescalin, known as actin-dependent inhibitors of osteoclastic bone resorption, were mounted onto chemical probes to explore their interactions with bone cell proteins by means of affinity-based chemoproteomics and bioinformatics. The chemical reactivity of the pyrogallol units of these polyphenols toward oxidation into electrophilic ortho-quinones was exploited using NaIO4 to promote the covalent capture of target proteins, notably those expressed at lower abundance and those interacting with polyphenols at low-to-moderate levels of affinity. Different assays revealed the multitarget nature of both ellagitannins, with 100-370 statistically significant proteins captured by their corresponding probes. A much higher number of proteins were captured from osteoclasts than from osteoblasts. Bioinformatic analyses unveiled a preference for the capture of proteins having phosphorylated ligands and GTPase regulators and enabled the identification of 33 potential target proteins with systemic relevance to osteoclast differentiation and activity, as well as to the regulation of actin dynamics.
Collapse
Affiliation(s)
- Karl Kempf
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 Cours de la Libération, 33405 Talence, Cedex, France
- Department of Safety and Quality of Meat, Max Rubner-Institut (MRI), E.-C.-Baumann-Straße 20, 95326 Kulmbach, Germany
| | - Yoan Capello
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 Cours de la Libération, 33405 Talence, Cedex, France
| | - Rana Melhem
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), 2 Rue Robert Escarpit, 33607 Pessac, Cedex, France
| | - Claire Lescoat
- Univ. Bordeaux, IBGC (CNRS-UMR 5095), Centre de Bioinformatique de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, Cedex, France
| | - Oxana Kempf
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 Cours de la Libération, 33405 Talence, Cedex, France
| | - Anaëlle Cornu
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 Cours de la Libération, 33405 Talence, Cedex, France
| | - Isabelle Fremaux
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), 2 Rue Robert Escarpit, 33607 Pessac, Cedex, France
| | - Stéphane Chaignepain
- Univ. Bordeaux, CBMN (CNRS-UMR 5248), Centre de Génomique Fonctionnelle de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, Cedex, France
| | - Alexis Groppi
- Univ. Bordeaux, IBGC (CNRS-UMR 5095), Centre de Bioinformatique de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, Cedex, France
| | - Macha Nikolski
- Univ. Bordeaux, IBGC (CNRS-UMR 5095), Centre de Bioinformatique de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, Cedex, France
| | - Denis Deffieux
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 Cours de la Libération, 33405 Talence, Cedex, France
| | - Elisabeth Génot
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), 2 Rue Robert Escarpit, 33607 Pessac, Cedex, France
| | - Stéphane Quideau
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 Cours de la Libération, 33405 Talence, Cedex, France
- Institut Universitaire de France, 1 Rue Descartes, 75231 Paris, Cedex 05, France
| |
Collapse
|
3
|
de Lacalle JL, Gallastegui A, Olmedo-Martínez JL, Moya M, Lopez-Larrea N, Picchio ML, Mecerreyes D. Multifunctional Ionic Polymers from Deep Eutectic Monomers Based on Polyphenols. ACS Macro Lett 2023; 12:125-132. [PMID: 36633542 PMCID: PMC9948532 DOI: 10.1021/acsmacrolett.2c00657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Herein we report a novel family of deep eutectic monomers and the corresponding polymers, made of (meth)acrylic ammonium salts and a series of biobased polyphenols bearing catechol or pyrogallol motifs. Phenolic chemistry allows modulating molecular interactions by tuning the ionic polymer properties from soft adhesive to tough materials. For instance, pyrogallol and hydrocaffeic acid-derived ionic polymers showed outstanding adhesiveness (>1 MPa), while tannic acid/gallic acid polymers with dense hydrogen bond distribution afforded ultratough elastomers (stretchability ≈1000% and strength ≈3 MPa). Additionally, phenolic polymeric deep eutectic solvents (polyDES) featured metal complexation ability, antibacterial properties, and fast processability by digital light 3D printing.
Collapse
Affiliation(s)
- Jon López de Lacalle
- POLYMAT
University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Antonela Gallastegui
- POLYMAT
University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Jorge L. Olmedo-Martínez
- POLYMAT
University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Melissa Moya
- Laboratorio
de Investigación, Universidad de
Ciencias Médicas, 10108 San José, Costa
Rica,Facultad
de Microbiología, Universidad de
Ciencias Médicas, 10108 San José, Costa
Rica
| | - Naroa Lopez-Larrea
- POLYMAT
University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Matías L. Picchio
- POLYMAT
University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain,Instituto
de Desarrollo Tecnológico para la Industria Química
(INTEC), CONICET, Güemes
3450, Santa Fe 3000, Argentina,E-mail:
| | - David Mecerreyes
- POLYMAT
University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain,IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain,E-mail:
| |
Collapse
|
4
|
Brito J, Hlushko H, Abbott A, Aliakseyeu A, Hlushko R, Sukhishvili SA. Integrating Antioxidant Functionality into Polymer Materials: Fundamentals, Strategies, and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41372-41395. [PMID: 34448558 DOI: 10.1021/acsami.1c08061] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While antioxidants are widely known as natural components of healthy food and drinks or as additives to commercial polymer materials to prevent their degradation, recent years have seen increasing interest in enhancing the antioxidant functionality of newly developed polymer materials and coatings. This paper provides a critical overview and comparative analysis of multiple ways of integrating antioxidants within diverse polymer materials, including bulk films, electrospun fibers, and self-assembled coatings. Polyphenolic antioxidant moieties with varied molecular architecture are in the focus of this Review, because of their abundance, nontoxic nature, and potent antioxidant activity. Polymer materials with integrated polyphenolic functionality offer opportunities and challenges that span from the fundamentals to their applications. In addition to the traditional blending of antioxidants with polymer materials, developments in surface grafting and assembly via noncovalent interaction for controlling localization versus migration of antioxidant molecules are discussed. The versatile chemistry of polyphenolic antioxidants offers numerous possibilities for programmed inclusion of these molecules in polymer materials using not only van der Waals interactions or covalent tethering to polymers, but also via their hydrogen-bonding assembly with neutral molecules. An understanding and rational use of interactions of polyphenol moieties with surrounding molecules can enable precise control of concentration and retention versus delivery rate of antioxidants in polymer materials that are critical in food packaging, biomedical, and environmental applications.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hanna Hlushko
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ashleigh Abbott
- Department of Materials Science & Engineering, Missouri University of Science & Technology, Rolla, Missouri 65409, United States
| | - Aliaksei Aliakseyeu
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Raman Hlushko
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Guo H, Liu C, Tang Q, Li D, Wan Y, Li JH, Gao XH, Seeram NP, Ma H, Chen HD. Pomegranate (Punica granatum) extract and its polyphenols reduce the formation of methylglyoxal-DNA adducts and protect human keratinocytes against methylglyoxal-induced oxidative stress. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
6
|
Delannoy López DM, Tran DT, Viault G, Dairi S, Peixoto PA, Capello Y, Minder L, Pouységu L, Génot E, Di Primo C, Deffieux D, Quideau S. Real-Time Analysis of Polyphenol-Protein Interactions by Surface Plasmon Resonance Using Surface-Bound Polyphenols. Chemistry 2021; 27:5498-5508. [PMID: 33443311 DOI: 10.1002/chem.202005187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 11/11/2022]
Abstract
A selection of bioactive polyphenols of different structural classes, such as the ellagitannins vescalagin and vescalin, the flavanoids catechin, epicatechin, epigallocatechin gallate (EGCG), and procyanidin B2, and the stilbenoids resveratrol and piceatannol, were chemically modified to bear a biotin unit for enabling their immobilization on streptavidin-coated sensor chips. These sensor chips were used to evaluate in real time by surface plasmon resonance (SPR) the interactions of three different surface-bound polyphenolic ligands per sensor chip with various protein analytes, including human DNA topoisomerase IIα, flavonoid leucoanthocyanidin dioxygenase, B-cell lymphoma 2 apoptosis regulator protein, and bovine serum albumin. The types and levels of SPR responses unveiled major differences in the association, or lack thereof, and dissociation between a given protein analyte and different polyphenolic ligands. Thus, this multi-analysis SPR technique is a valuable methodology to rapidly screen and qualitatively compare various polyphenol-protein interactions.
Collapse
Affiliation(s)
| | - Dong Tien Tran
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Guillaume Viault
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Sofiane Dairi
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | | | - Yoan Capello
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Laëtitia Minder
- INSERM, CNRS, IECB (US001, UMS 3033), Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Laurent Pouységu
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Elisabeth Génot
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Carmelo Di Primo
- INSERM, CNRS (U1212, UMR 5320), IECB, Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Denis Deffieux
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Stéphane Quideau
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France.,Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 05, France
| |
Collapse
|
7
|
Lee SO, Kim SJ, Kim JS, Ji H, Lee EO, Lee HJ. Comparison of the main components and bioactivity of Rhus verniciflua Stokes extracts by different detoxification processing methods. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:242. [PMID: 30165848 PMCID: PMC6118002 DOI: 10.1186/s12906-018-2310-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/22/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Rhus verniciflua Stokes is an Asian tree species that is used as a food supplement and traditional medicine in Korea. However, its use is restricted by its potential to cause allergy. Thus, allergen-free R. verniciflua extracts are currently being marketed as a functional health food in Korea. In the present study, three different allergen-free R. verniciflua extracts (DRVE, FRVE, and FFRVE) were produced by detoxification of R. verniciflua, and their properties and constituents were compared. METHODS The main components and properties (antibacterial, antioxidant, anticancer, and hepatic lipogenesis inhibitory effects) of the three allergen-free extracts were compared. Moreover, the major phenolic constituents of R. verniciflua, including gallic acid, fustin, fisetin, and quercetin, were analyzed in the three extracts. RESULTS DRVE was superior to the two other extracts with regard to antioxidant activity, while FRVE was superior with regard to antimicrobial activity and suppression of hepatic lipogenesis. FRVE exhibited lipid-lowering effects by lowering sterol regulatory element-binding protein 1 and triglyceride levels, and promoting the activation of peroxisome proliferator-activated receptor and AMP-activated protein kinase in an in vitro model of non-alcoholic fatty liver. CONCLUSIONS Overall, our findings demonstrate various differences among the three extracts. This suggests that functional and bioactive compounds present in R. verniciflua could be altered by the detoxification process, and this property could be considered in the development of functional health foods in the future.
Collapse
|
8
|
Barrios M, Orozco LC, Stashenko EE. Cocoa ingestion protects plasma lipids in healthy males against ex vivo oxidative conditions: A randomized clinical trial. Clin Nutr ESPEN 2018; 26:1-7. [DOI: 10.1016/j.clnesp.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
|
9
|
Competitive Biological Activities of Chitosan and Its Derivatives: Antimicrobial, Antioxidant, Anticancer, and Anti-Inflammatory Activities. INT J POLYM SCI 2018. [DOI: 10.1155/2018/1708172] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chitosan is obtained from alkaline deacetylation of chitin, and acetamide groups are transformed into primary amino groups during the deacetylation. The diverse biological activities of chitosan and its derivatives are extensively studied that allows to widening the application fields in various sectors especially in biomedical science. The biological properties of chitosan are strongly depending on the solubility in water and other solvents. Deacetylation degree (DDA) and molecular weight (MW) are the most decisive parameters on the bioactivities since the primary amino groups are the key functional groups of chitosan where permits to interact with other molecules. Higher DDA and lower MW of chitosan and chitosan derivatives demonstrated higher antimicrobial, antioxidant, and anticancer capacities. Therefore, the chitosan oligosaccharides (COS) with a low polymerization degree are receiving a great attention in medical and pharmaceutical applications as they have higher water solubility and lower viscosity than chitosan. In this review articles, the antimicrobial, antioxidant, anticancer, anti-inflammatory activities of chitosan and its derivatives are highlighted. The influences of physicochemical parameters of chitosan like DDA and MW on bioactivities are also described.
Collapse
|
10
|
Li YR, Li S, Lin CC. Effect of resveratrol and pterostilbene on aging and longevity. Biofactors 2018; 44:69-82. [PMID: 29210129 DOI: 10.1002/biof.1400] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022]
Abstract
Over the past years, several studies have found that foods rich in polyphenols protect against age-related disease, such as atherosclerosis, cardiovascular disease, cancer, arthritis, cataracts, osteoporosis, type 2 diabetes (T2D), hypertension and Alzheimer's disease. Resveratrol and pterostilbene, the polyphenol found in grape and blueberries, have beneficial effects as anti-aging compounds through modulating the hallmarks of aging, including oxidative damage, inflammation, telomere attrition and cell senescence. In this review, we discuss the relationship between resveratrol and pterostilbene and possible aging biomarker, including oxidative stress, inflammation, and high-calorie diets. Moreover, we also discuss the positive effect of resveratrol and pterostilbene on lifespan, aged-related disease, and health maintenance. Furthermore, we summarize a variety of important mechanisms modulated by resveratrol and pterostilbene possibly involved in attenuating age-associated disorders. Overall, we describe resveratrol and pterostilbene potential for prevention or treatment of several age-related diseases by modulating age-related mechanisms. © 2017 BioFactors, 44(1):69-82, 2018.
Collapse
Affiliation(s)
- Yi-Rong Li
- Changhua Christian Hospital, Thoracic Medicine Research center, Changhua 50006, Taiwan, Republic of China
- Institute of Biomedical Science, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Shiming Li
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, Hubei, China
| | - Chi-Chien Lin
- Institute of Biomedical Science, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
- Department of Health and Nutrition, Asia University, Taichung 41354, Taiwan, Republic of China
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan, Republic of China
| |
Collapse
|
11
|
Euba B, López-López N, Rodríguez-Arce I, Fernández-Calvet A, Barberán M, Caturla N, Martí S, Díez-Martínez R, Garmendia J. Resveratrol therapeutics combines both antimicrobial and immunomodulatory properties against respiratory infection by nontypeable Haemophilus influenzae. Sci Rep 2017; 7:12860. [PMID: 29038519 PMCID: PMC5643544 DOI: 10.1038/s41598-017-13034-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
The respiratory pathogen nontypeable Haemophilus influenzae (NTHi) is an important cause of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) that requires efficient treatments. A previous screening for host genes differentially expressed upon NTHi infection identified sirtuin-1, which encodes a NAD-dependent deacetylase protective against emphysema and is activated by resveratrol. This polyphenol concomitantly reduces NTHi viability, therefore highlighting its therapeutic potential against NTHi infection at the COPD airway. In this study, resveratrol antimicrobial effect on NTHi was shown to be bacteriostatic and did not induce resistance development in vitro. Analysis of modulatory properties on the NTHi-host airway epithelial interplay showed that resveratrol modulates bacterial invasion but not subcellular location, reduces inflammation without targeting phosphodiesterase 4B gene expression, and dampens β defensin-2 gene expression in infected cells. Moreover, resveratrol therapeutics against NTHi was evaluated in vivo on mouse respiratory and zebrafish septicemia infection model systems, showing to decrease NTHi viability in a dose-dependent manner and reduce airway inflammation upon infection, and to have a significant bacterial clearing effect without signs of host toxicity, respectively. This study presents resveratrol as a therapeutic of particular translational significance due to the attractiveness of targeting both infection and overactive inflammation at the COPD airway.
Collapse
Affiliation(s)
- Begoña Euba
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain
| | - Nahikari López-López
- Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain
| | - Irene Rodríguez-Arce
- Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain
| | - Ariadna Fernández-Calvet
- Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain
| | | | - Nuria Caturla
- Monteloeder, Elche Parque Empresarial, Elche, Alicante, Spain
| | - Sara Martí
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Departamento Microbiología, Hospital Universitari Bellvitge, University of Barcelona, IDIBELL, Barcelona, Spain
| | - Roberto Díez-Martínez
- Ikan Biotech SL, The Zebrafish Lab, Centro Europeo de Empresas e Innovación de Navarra (CEIN), Noáin, Spain
| | - Junkal Garmendia
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain. .,Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain.
| |
Collapse
|
12
|
Liu X, Li J, Peng X, Lv B, Wang P, Zhao X, Yu B. Geraniin Inhibits LPS-Induced THP-1 Macrophages Switching to M1 Phenotype via SOCS1/NF-κB Pathway. Inflammation 2017; 39:1421-33. [PMID: 27290719 DOI: 10.1007/s10753-016-0374-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
M1 macrophage polarization is proved to promote inflammation in atherosclerosis process. In this study, we evaluated the inhibitory effect of geraniin, a bioactive polyphenolic compound, on the LPS-induced switch of THP-1 macrophages to M1 phenotype, and we propose a molecular basis for its action. Flow cytometry analysis indicated that geraniin significantly inhibited LPS-induced M1 macrophage polarization. Geraniin downregulated the protein and the mRNA level of typical cytokines of M1 macrophage, including tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), indicating that geraniin can suppress typical mediators of M1 macrophage at the transcriptional level. Moreover, geraniin inhibited LPS-induced reactive oxygen species (ROS) and nitric oxide (NO) production, as well as inducible nitric oxide synthase (iNOS) activity, in THP-1 macrophages. Furthermore, western blot analysis indicated that geraniin decreased both LPS-induced phosphorylation of NF-κB-p65 and NF-κB-p65 expression without affecting the level of IκB-α. This suggested that geraniin inhibited NF-κB, a transcription factor pivotal in the LPS-induced expression of pro-inflammatory genes and an important player in M1 macrophage polarization. Moreover, an electrophoretic mobility shift assay (EMSA) demonstrated that geraniin blocked the LPS-induced translocation of NF-κB to the nucleus. Moreover, we found that geraniin up-regulated the expression of SOCS1, an upstream regulator of NF-κB activation that can directly bind to NF-κB-p65 and downregulate it, thus inhibiting NF-κB activation. In conclusion, geraniin inhibits LPS-induced THP-1 macrophages switching to M1 phenotype through SOCS1/NF-κB pathway.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Ji Li
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Xiaohong Peng
- Heilongjiang Province Lumber Industry General Hospital, Harbin, 150040, China
| | - Bo Lv
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Peng Wang
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Xiaoming Zhao
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, 37232, USA.
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
13
|
Sitarek P, Skała E, Toma M, Wielanek M, Szemraj J, Skorski T, Białas AJ, Sakowicz T, Kowalczyk T, Radek M, Wysokińska H, Śliwiński T. Transformed Root Extract of Leonurus sibiricus Induces Apoptosis through Intrinsic and Extrinsic Pathways in Various Grades of Human Glioma Cells. Pathol Oncol Res 2016; 23:679-687. [PMID: 28032310 DOI: 10.1007/s12253-016-0170-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022]
Abstract
This study determines the influence of transformed root (TR) extract of Leonurus sibiricus L. on various grades (I-III) of human glioma cells derived from patients. This plant occurs in southern Asia and Siberia and is widely used as a medicinal plant with various biological activities. Chromatographic profile of TR extract have revealed the presence of various polyphenolic compounds (4-hydroxybenzoic acid, gentisic acid, vanilic acid, 1,3-dicaffeoylquinic acid, α-resorcylic acid). We found TR root extract to have antiproliferative activity on glioma cells after 24 h of treatment. TR root extract induces apoptosis on various grades (I-III) of human glioma cells by the generation of reactive oxygen species (ROS) along with concurrent loss of mitochondrial membrane potential, enhanced S and G2/M phases of the cell cycle, and altered mRNA levels of Bax, Bcl-2, p53, Cas-3, Cas-8 and Cas-9 factors involved in apoptosis. This work for the first time demonstrate that TR extract from L. sibiricus root has the potential to activate apoptosis in grade I-III human glioma cells through the intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego Street 1, 90-151, Łódź, Poland.
| | - Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego Street 1, 90-151, Łódź, Poland
| | - Monika Toma
- Department of Molecular Genetics, University of Lodz, Łódź, Poland
| | - Marzena Wielanek
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Łódź, Poland
| | - Tomasz Skorski
- Department of Microbiology and Immunology, and Fels Institute for Cancer Research, School of Medicine, Temple University, Philadelphia, PA, USA
| | - Adam J Białas
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
| | - Tomasz Sakowicz
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Łódź, Poland
| | - Tomasz Kowalczyk
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Łódź, Poland
| | - Maciej Radek
- Department of Neurosurgery, Surgery of Spine and Peripheral Nerves, Medical University of Łódź, University Hospital WAM-CSW, Łódź, Poland
| | - Halina Wysokińska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego Street 1, 90-151, Łódź, Poland
| | - Tomasz Śliwiński
- Department of Molecular Genetics, University of Lodz, Łódź, Poland
| |
Collapse
|
14
|
Shaikh SAM, Barik A, Singh BG, Modukuri RV, Balaji NV, Subbaraju GV, Naik DB, Priyadarsini KI. Free radical reactions of isoxazole and pyrazole derivatives of hispolon: kinetics correlated with molecular descriptors. Free Radic Res 2016; 50:1361-1373. [DOI: 10.1080/10715762.2016.1247955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shaukat Ali M. Shaikh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Atanu Barik
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Beena G. Singh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | | | | | | - Devidas B. Naik
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - K. Indira Priyadarsini
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
15
|
Ganesan R, Doss HM, Rasool M. Majoon ushba, a polyherbal compound, suppresses pro-inflammatory mediators and RANKL expression via modulating NFкB and MAPKs signaling pathways in fibroblast-like synoviocytes from adjuvant-induced arthritic rats. Immunol Res 2016; 64:1071-86. [DOI: 10.1007/s12026-016-8794-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Mencia G, del Olmo NS, Muñoz-Moreno L, Maroto-Diaz M, Gomez R, Ortega P, José Carmena M, Javier de la Mata F. Polyphenolic carbosilane dendrimers as anticancer agents against prostate cancer. NEW J CHEM 2016. [DOI: 10.1039/c6nj02545e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyphenolic carbosilane dendrimers improved the antioxidant and anticancer properties of free vanillin.
Collapse
Affiliation(s)
- Gabriel Mencia
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá
- Campus Universitario
- Edificio de Farmacia
- E-28871 Alcalá de Henares
- Spain
| | - Natalia Sanz del Olmo
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá
- Campus Universitario
- Edificio de Farmacia
- E-28871 Alcalá de Henares
- Spain
| | - Laura Muñoz-Moreno
- Departamento de Biología de Sistemas, Universidad de Alcalá
- Campus Universitario
- E-28871 Alcalá de Henares
- Spain
| | - Marta Maroto-Diaz
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá
- Campus Universitario
- Edificio de Farmacia
- E-28871 Alcalá de Henares
- Spain
| | - Rafael Gomez
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá
- Campus Universitario
- Edificio de Farmacia
- E-28871 Alcalá de Henares
- Spain
| | - Paula Ortega
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá
- Campus Universitario
- Edificio de Farmacia
- E-28871 Alcalá de Henares
- Spain
| | - Ma José Carmena
- Departamento de Biología de Sistemas, Universidad de Alcalá
- Campus Universitario
- E-28871 Alcalá de Henares
- Spain
| | - F. Javier de la Mata
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá
- Campus Universitario
- Edificio de Farmacia
- E-28871 Alcalá de Henares
- Spain
| |
Collapse
|