1
|
He R, Jia B, Peng D, Chen W. Caged Polyprenylated Xanthones in Garcinia hanburyi and the Biological Activities of Them. Drug Des Devel Ther 2023; 17:3625-3660. [PMID: 38076632 PMCID: PMC10710250 DOI: 10.2147/dddt.s426685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
The previous phytochemical analyses of Garcinia hanburyi revealed that the main structural characteristic associated with its biological activity is the caged polyprenylated xanthones with a unique 4-oxatricyclo [4.3.1.03,7] dec-2-one scaffold, which contains a highly substituted tetrahydrofuran ring with three quaternary carbons. Based on the progress in research of the chemical constituents, pharmacological effects and modification methods of the caged polyprenylated xanthones, this paper presents a preliminary predictive analysis of their drug-like properties based on the absorption, distribution, metabolism, excretion and toxicity (ADME/T) properties. It was found out that these compounds have very similar pharmacokinetic properties because they possess the same caged xanthone structure, the 9,10-double bond in a,b-unsaturated ketones are critical for the antitumor activity. The author believes that there is an urgent need to seek new breakthroughs in the study of these caged polyprenylated xanthones. Thus, the research on the route of administration, therapeutic effect, structural modification and development of such active ingredients is of great interest. It is hoped that this paper will provide ideas for researchers to develop and utilize the active ingredients derived from natural products.
Collapse
Affiliation(s)
- Ruixi He
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Buyun Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
2
|
Li Z, Liu Y, Wang J, Feng X, Nwafor EO, Zhang Y, Liu R, Dang W, Zhang Q, Yu C, Pi J, Liu Z. Baicalin-berberine complex nanocrystals orally promote the co-absorption of two components. Drug Deliv Transl Res 2022; 12:3017-3028. [PMID: 35476182 DOI: 10.1007/s13346-022-01167-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 12/16/2022]
Abstract
Baicalin (BA)-berberine (BBR) have been proposed as the couple in the prevention and treatment of numerous diseases due to their multiple functional attributes. However, with regard to certain factors involving unsatisfactory aqueous solubility and low bioavailability associated with its clinical application, there is need for continuous researches by scientist. In this study, after successfully preparing BA-BBR complex, BA-BBR complex nanocrystals were obtained through high-pressure homogenization and evaluated (in vitro and in vivo). The particle size, distribution, morphology, and crystalline properties for the optimal BA-BBR complex nanocrystals were characterized by the use of scanning electron microscope, dynamic light scattering, powder X-ray diffraction, and differential scanning calorimetry. The particle size and poly-dispersity index of BA-BBR complex nanocrystals were 318.40 ± 3.32 nm and 0.26 ± 0.03, respectively. In addition, evaluation of the in vitro dissolution extent indicated that BA and BBR in BA-BBR complex nanocrystals were 3.30- and 2.35-fold than BA-BBR complex. Subsequently, single-pass intestinal perfusion combined with microdialysis test and oral pharmacokinetics in SD rats was employed to evaluate the in vivo absorption improvement of BA-BBR complex nanocrystals. The pharmacokinetics results exhibited that the area under curve of BA and BBR in the BA-BBR complex nanocrystals group were 622.65 ± 456.95 h·ng/ml and 167.28 ± 78.87 h·ng/ml, respectively, which were separately 7.49- and 2.64-fold than the complex coarse suspension. In conclusion, the above results indicate that the developed and optimized BA-BBR complex nanocrystals could improve the dissolution rate and extent and oral bioavailability, as well as facilitate the co-absorption of the drug prescriptions BA and BBR.
Collapse
Affiliation(s)
- Ziwei Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Yiting Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Jilin Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Xiaojiao Feng
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Ebuka-Olisaemeka Nwafor
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Ying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Rui Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Wenli Dang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Qingqing Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Changxiang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Jiaxin Pi
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China. .,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China.
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China. .,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China.
| |
Collapse
|
3
|
Ke Z, Shi J, Cheng Z, Cheng X, Wang H, Wang M, Wu J, Sun Y, Li C. Design and characterization of gambogic acid-loaded mixed micelles system for enhanced oral bioavailability. Pharm Dev Technol 2022; 27:695-701. [PMID: 35899462 DOI: 10.1080/10837450.2022.2107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The aim of this study was to develop a gambogic acid-loaded mixed micelles (GA-M) system, using Kolliphor HS15 and lecithin, for enhancement of oral bioavailability. GA-M was prepared using the thin film hydration method, and particle size and zeta potential indexes were used to determine the optimized formulation was optimized with taking particle size, zeta potential as indexes. The optimal GA-M system had a mean particle size in the nanometer range (87.22 ± 0.68 nm) and zeta potential greater than 20 mV in magnitude (-21.63 ± 1.69 mV) at a 1:1 proportion of HS15: lecithin. Additionally, the carriers had a high entrapment efficiency (98.32 ± 3.52%) and drug loading (4.68 ± 0.17%). Furthermore, the in vitro GA release characteristics followed first-order kinetics, suggesting that release of the molecule was achieved both by medium diffusion and structural erosion. Transport elucidation in Caco-2 cells demonstrated that the efflux ratio of encapsulated GA was dramatically decreased from 1.42 to 0.76, and pharmacokinetic studies showed that the oral bioavailability of GA-M was 2.3 times higher than that of free GA, indicating that HS15/lecithin mixed micelles could promote absorption in the gastrointestinal tract. Overall, these results present a micelle system suitable for oral delivery, with increased solubility and oral bioavailability of GA.
Collapse
Affiliation(s)
- Zhongcheng Ke
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041.,College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jianjun Shi
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| | - Ziyang Cheng
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| | - Xiaoling Cheng
- Health Supervision Institute, Tunxi District Health Bureau, Huangshan, Anhui, 245000, China
| | - Huan Wang
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| | - Meng Wang
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| | - Jingjing Wu
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| | - Yinyu Sun
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| | - Changjiang Li
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| |
Collapse
|
4
|
Preparation, Characterization, and In Vitro Performance of Gambogic Acid-Layered Double Hydroxide/Liposome Nanocomposites. J CHEM-NY 2022. [DOI: 10.1155/2022/7753864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gambogic acid (GA) refers to a xanthonoid that exhibits significant antitumor activity due to its poor solubility and low bioavailability. For this reason, its shortcoming should be overcome using novel approaches to improve its practical effectiveness. In this study, with the use of ion exchange method, GA was encapsulated in layered double hydroxide (LDH). In the GA-LDH nanohybrid, GA was distributed and stabilized in the interlamellar region of LDH through intermolecular interactions. GA-LDH was further modified by liposome (LS) through ethanol injection method. The drug encapsulation efficiency of GA-LDH/LS was obtained as 56.28%. The chemical structures and physicochemical properties exhibited by GA-LDH/LS were characterized and confirmed using different instruments, and drug release showed that GA-LDH/LS had significantly sustained release due to the combined effect of the matrix LDH and the phospholipid bilayer. Furthermore, GA-LDH/LS displayed lower hemolysis percentage than GA-LDH during the hemolysis test. This study suggested that GA-LDH/LS nanocomposite could be a promising antitumor drug delivery system due to its outstanding performance in biomedical research.
Collapse
|
5
|
Drug-induced hierarchical self-assembly of poly(amino acid) for efficient intracellular drug delivery. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Liu Y, Chen Y, Lin L, Li H. Gambogic Acid as a Candidate for Cancer Therapy: A Review. Int J Nanomedicine 2020; 15:10385-10399. [PMID: 33376327 PMCID: PMC7764553 DOI: 10.2147/ijn.s277645] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Gambogic acid (GA), a kind of dry resin secreted by the Garcinia hanburyi tree, is a natural active ingredient with various biological activities, such as anti-cancer, anti-inflammatory, antioxidant, anti-bacterial effects, etc. An increasing amount of evidence indicates that GA has obvious anti-cancer effects via various molecular mechanisms, including the induction of apoptosis, autophagy, cell cycle arrest and the inhibition of invasion, metastasis, angiogenesis. In order to improve the efficacy in cancer treatment, nanometer drug delivery systems have been employed to load GA and form micelles, nanoparticles, nanofibers, and so on. In this review, we aim to offer a summary of chemical structure and properties, anti-cancer activities, drug delivery systems and combination therapy of GA, which might provide a reference to promote the development and clinical application of GA.
Collapse
Affiliation(s)
- Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yingchong Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, People’s Republic of China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Hatami E, Jaggi M, Chauhan SC, Yallapu MM. Gambogic acid: A shining natural compound to nanomedicine for cancer therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1874:188381. [PMID: 32492470 DOI: 10.1016/j.bbcan.2020.188381] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
The United States Food and Drug Administration has permitted number of therapeutic agents for cancer treatment. Most of them are expensive and have some degree of systemic toxicity which makes overbearing in clinical settings. Although advanced research continuously applied in cancer therapeutics, but drug resistance, metastasis, and recurrence remain unanswerable. These accounts to an urgent clinical need to discover natural compounds with precisely safe and highly efficient for the cancer prevention and cancer therapy. Gambogic acid (GA) is the principle bioactive and caged xanthone component, a brownish gamboge resin secreted from the of Garcinia hanburyi tree. This molecule showed a spectrum of biological and clinical benefits against various cancers. In this review, we document distinct biological characteristics of GA as a novel anti-cancer agent. This review also delineates specific molecular mechanism(s) of GA that are involved in anti-cancer, anti-metastasis, anti-angiogenesis, and chemo-/radiation sensitizer activities. Furthermore, recent evidence, development, and implementation of various nanoformulations of gambogic acid (nanomedicine) have been described.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
8
|
Wang K, Qi Z, Pan S, Zheng S, Wang H, Chang Y, Li H, Xue P, Yang X, Fu C. Preparation, characterization and evaluation of a new film based on chitosan, arginine and gold nanoparticle derivatives for wound-healing efficacy. RSC Adv 2020; 10:20886-20899. [PMID: 35517756 PMCID: PMC9054353 DOI: 10.1039/d0ra03704d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023] Open
Abstract
It is well-known that the combination of polymers and nanoparticles (NPs) provides optimised wound dressing and accelerates wound healing. The knowledge about the structure and properties of these materials is of critical importance in biological processes related to wound healing. In this study, we prepared a chitosan (CS) film modified with arginine (Arg) and gold NPs (AuNPs) and investigated its effectiveness as a dressing material for wound healing. Fourier-transform infrared spectroscopy (FTIR) confirmed that Arg was successfully grafted on CS. The resultant CS-Arg/AuNP film was then characterised by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The modification of Arg and AuNPs improved the hydrophilicity, mechanical strength and antibacterial properties of the film, which in turn provided an enhanced ideal environment for cell adhesion and proliferation. Cell Counting Kit-8 (CCK-8) was used to demonstrate the survival rate. Furthermore, the proteins involved in wound healing were evaluated qualitatively and quantitatively by immunofluorescence and western blotting, respectively. The skin defect models used for the in vivo studies revealed that the CS-Arg/AuNP dressing accelerated wound closure, re-epithelialization and collagen deposition. Our cumulative findings support the feasibility of using the proposed film as a promising candidate for tissue engineering of the skin in the near future. It is well-known that the combination of polymers and nanoparticles (NPs) provides optimised wound dressing and accelerates wound healing.![]()
Collapse
Affiliation(s)
- Kai Wang
- The Second Hospital of Jilin University
- Changchun
- China
| | - Zhiping Qi
- The Second Hospital of Jilin University
- Changchun
- China
| | - Su Pan
- The Second Hospital of Jilin University
- Changchun
- China
| | - Shuang Zheng
- The Second Hospital of Jilin University
- Changchun
- China
| | - Haosheng Wang
- The Second Hospital of Jilin University
- Changchun
- China
| | - YuXin Chang
- The Second Hospital of Jilin University
- Changchun
- China
| | - Hongru Li
- The Second Hospital of Jilin University
- Changchun
- China
| | - Pan Xue
- The Second Hospital of Jilin University
- Changchun
- China
| | - Xiaoyu Yang
- The Second Hospital of Jilin University
- Changchun
- China
| | - Chuan Fu
- The Second Hospital of Jilin University
- Changchun
- China
| |
Collapse
|
9
|
Xia X, Tan Z, Fan Y, Hu Y, Deng J. Preparation and evaluation of a novel solid dispersion using leucine as carrier. J Pharm Pharmacol 2019; 72:175-184. [PMID: 31846087 DOI: 10.1111/jphp.13200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The aim of this study was to develop a novel formulation of oleanolic acid (OA) solid dispersion (SD), using leucine (Leu) as the carrier to improve OA oral bioavailability. METHODS The OA-Leu SD was prepared by solvent evaporation and was evaluated in vitro using differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, flowability, hygroscopicity and dissolution test. The stability of the SD was evaluated using accelerated testing. In vivo pharmacokinetic tests were performed in male Sprague Dawley rats using a liquid chromatography tandem-mass spectrometry bioanalytical method. KEY FINDINGS OA-Leu SD was successfully prepared, and OA was mostly in an amorphous state. More than 80% of OA could dissolve in OA-Leu SD in 20 min, while only 13.4% of free OA dissolved. The powder flow of OA-Leu SD was clearly improved compared with free OA and its moisture absorption was 3.4%. The accelerated testing further demonstrated that SD could maintain OA in an amorphous state at 40 °C for 6 months. OA-Leu SD showed higher relative oral bioavailability (189.7%) than free OA in rats. CONCLUSIONS Using Leu as a carrier produced a SD with good flowability, low hygroscopicity and high bioavailability.
Collapse
Affiliation(s)
- Xiaojing Xia
- Department of Pharmaceutics, Zhejiang Pharmaceutical College, Ningbo, Zhejiang, China
| | - Zeng Tan
- Department of Pharmaceutics, Zhejiang Pharmaceutical College, Ningbo, Zhejiang, China
| | - Yaru Fan
- Department of Pharmaceutics, Zhejiang Pharmaceutical College, Ningbo, Zhejiang, China
| | - Ying Hu
- Department of Pharmaceutics, Zhejiang Pharmaceutical College, Ningbo, Zhejiang, China
| | - Jin Deng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Song K, Wang Z, Liu X, Zhang G, Wang X, Ouyang D, Guo M, Chen L. A novel dual sensitive polymer-gambogic acid conjugate: synthesis, characterization, and in vitro evaluation. NANOTECHNOLOGY 2019; 30:505701. [PMID: 31480032 DOI: 10.1088/1361-6528/ab40ee] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Currently, bio-simulate drug delivery systems are highly considered for efficient targeting of tumors. Nevertheless, there are some potential problems such as intelligent release efficiency, subsequently, influence cell toxicity and blood circulation stability. A novel type of stimuli-responsive nanoparticle was developed in accordance with the specific tumor microenvironment to deliver gambogic acid (GA). Herein, we successfully connected GA with mPEG via two different sensitive linkages, valine-citrulline (VC) and cystamine. The structure was characterized by ESI-MS, 1H NMR, FT-IR or MALDI-TOF-MS. The mPEG-VC-SS-GA-NPs (PVSG-NPs) were rapidly prepared. The properties of nanoparticles, including solubility, particle size, morphology, and sensitive drug release performance, were investigated. Compared to single sensitive conjugate (mPEG-SS-GA-NPs, PSG-NPs), PVSG-NPs demonstrated greater solubility and higher sensitive release profile. Cytotoxicity test indicated that PVSG-NPs had apparent cytotoxicity on HepG2 cells and reduced cytotoxicity on normal cells. Additionally, PVSG-NPs mainly kill HepG2 cells by inducing early and late apoptosis and restraining the G0/G1 phase proliferation. Albumin adsorption test revealed that the PVSG-NPs had little albumin combination, consequently, enhancing their circulation constancy. In summary, our findings suggested the novel PVSG-NPs capable of being used for tumor targeting and further practical applications.
Collapse
Affiliation(s)
- Ke Song
- School of Pharmaceutical Science, Liaoning University, Shenyang, 110036, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ding P, Chen Y, Cao G, Shen H, Ju J, Li W. Solutol ®HS15+pluronicF127 and Solutol ®HS15+pluronicL61 mixed micelle systems for oral delivery of genistein. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1947-1956. [PMID: 31239645 PMCID: PMC6559771 DOI: 10.2147/dddt.s201453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
Abstract
Purpose: We aimed to prepare two oral drug delivery systems consisting of polyoxyl 15 hydroxystearate (HS15) with pluronicF127 (F127) and HS15 with pluronicL61 (L61) to overcome the challenges of genistein’s poor oral bioavailability. This provides a good strategy for enhancing the potential value of genistein. Methods: We designed two binary mixed micelle systems employing the organic solvent evaporation method using surfactants (HS15, L61, and F127). Formulations (GEN-F and GEN-L) were characterized by transmission electron microscopy. Drug content analysis, including entrapment efficiency (EE%), drug loading (DL%), and the cumulative amount of genistein released from the micelles, was performed using HPLC. The permeability of optimum formulation was measured in Caco-2 cell monolayers, and the oral bioavailability was evaluated in SD rats. Results: The solutions of GEN-F and GEN-L were observed to be transparent and colorless. GEN-F had a lower EE% of 80.79±0.55% and a DL% of 1.69±0.24% compared to GEN-L, which had an EE% 83.40±1.36% and a DL% 2.26±0.18%. TEM results showed that the morphology of GEN-F and GEN-L was homogeneous and resembled a spherical shape. The dilution and storage conditions had no significant effect on particle size and EE%. Genistein demonstrated a sustained release behavior when encapsulated in micelles. Pharmacokinetics study showed that the relative oral bioavailability of GEN-F and GEN-L increased by 2.23 and 3.46 fold while also enhancing the permeability of genistein across a Caco-2 cell monolayer compared to that of raw genistein. Conclusion: GEN-F and GEN-L as a drug delivery system provide an effective strategy for enhancing and further realizing the potential value of GEN.
Collapse
Affiliation(s)
- Pinggang Ding
- Department of Pharmaceutical Analysis and Metabolomics, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Yuxuan Chen
- School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Guangshang Cao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Hongxue Shen
- Department of Pharmaceutical Analysis and Metabolomics, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Jianming Ju
- Department of Pharmaceutical Analysis and Metabolomics, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Weiguang Li
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
12
|
Huang R, Li J, Kebebe D, Wu Y, Zhang B, Liu Z. Cell penetrating peptides functionalized gambogic acid-nanostructured lipid carrier for cancer treatment. Drug Deliv 2018; 25:757-765. [PMID: 29528244 PMCID: PMC6058566 DOI: 10.1080/10717544.2018.1446474] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Tumor-targeted delivery is considered a crucial component of current anticancer drug development and is the best approach to increase the efficacy and reduce the toxicity. Nanomedicine, particularly ligand-based nanoparticles have shown a great potential for active targeting of tumor. Cell penetrating peptide is one of the promising ligands in a targeted cancer therapy. In this study, the gambogic acid-loaded nanostructured lipid carrier (GA-NLC) was modified with two kinds of cell penetrating peptides (cRGD and RGERPPR). The GA-NLC was prepared by emulsification and solvent evaporation method and coupled with cRGD, RGERPPR, and combination cRGD and RGERPPR to form GA-NLC-cRGD, GA-NLC-RGE, and GA-NLC-cRGD/RGE, respectively. The formulations were characterized by their particle size and morphology, zeta potential, encapsulation efficiency, and differential scanning calorimetry. In vitro cytotoxicity and cellular uptake study of the formulations were performed against breast cancer cell (MDA-MB-231). Furthermore, in vivo biodistribution and antitumor activity of the formulations were determined by in vivo imaging and in tumor-bearing nude mice, respectively. The result of in vitro cytotoxicity study showed that GA-NLC-RGE exhibited a significantly higher cytotoxicity on MDA-MB-231 as compared with GA-NLC and GA-Sol. Similarly, RGE-Cou-6-NLC showed remarkably higher uptake by the cells than other NLCs over the incubation period. The in vivo imaging study has demonstrated that among the formulations, the RGE-decorated DiR-NLC were more accumulated in the tumor site. The in vivo antitumor activity revealed that RGE-GA-NLC inhibits the tumor growth more efficiently than other formulations. In conclusion, RGERPPR has a potential as an effective carrier in targeting drug delivery of anticancer agents.
Collapse
MESH Headings
- Absorption, Physiological
- Animals
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/pharmacokinetics
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell-Penetrating Peptides/adverse effects
- Cell-Penetrating Peptides/chemistry
- Drug Carriers/administration & dosage
- Drug Carriers/pharmacokinetics
- Drug Carriers/pharmacology
- Drug Carriers/therapeutic use
- Drug Compounding
- Female
- Humans
- Mice, Inbred BALB C
- Mice, Nude
- Microscopy, Electron, Transmission
- Nanostructures/adverse effects
- Nanostructures/chemistry
- Nanostructures/ultrastructure
- Particle Size
- Random Allocation
- Surface Properties
- Tissue Distribution
- Tumor Burden/drug effects
- Xanthones/administration & dosage
- Xanthones/pharmacokinetics
- Xanthones/pharmacology
- Xanthones/therapeutic use
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Rui Huang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Jiawei Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Dereje Kebebe
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Yumei Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Bing Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| |
Collapse
|
13
|
Shen H, He D, Wang S, Ding P, Wang J, Ju J. Preparation, characterization, and pharmacokinetics study of a novel genistein-loaded mixed micelles system. Drug Dev Ind Pharm 2018; 44:1536-1542. [PMID: 29848136 DOI: 10.1080/03639045.2018.1483384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hongxue Shen
- Anhui University of Chinese Medicine, Hefei, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Dandan He
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shuxia Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Pinggang Ding
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jianan Wang
- School of Pharmaceutical Sciences, Jining Medical University, Rizhao, China
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Yang Y, Cai H, Yuan X, Xu H, Hu Y, Rui X, Wu J, Chen J, Li J, Gao X, Yin D. Efficient Targeting Drug Delivery System for Lewis Lung Carcinoma, Leading to Histomorphological Abnormalities Restoration, Physiological and Psychological Statuses Improvement, and Metastasis Inhibition. Mol Pharm 2018; 15:2007-2016. [DOI: 10.1021/acs.molpharmaceut.8b00161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, P. R. China
- Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei 230012, P. R. China
| | - Hanxu Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Xiuyan Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Huihui Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Yingying Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Xue Rui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Jingjing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Jing Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Jing Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, P. R. China
- Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei 230012, P. R. China
| |
Collapse
|
15
|
Yu F, Jiang F, Tang X, Wang B. N-octyl-N-arginine-chitosan micelles for gambogic acid intravenous delivery: characterization, cell uptake, pharmacokinetics, and biodistribution. Drug Dev Ind Pharm 2017; 44:615-623. [PMID: 29188736 DOI: 10.1080/03639045.2017.1405973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The deeper research of N-octyl-N-arginine chitosan (OACS) as intravenous delivery was characterized, cell uptake study, pharmacokinetics, and biodistribution of OACS micelles (GA-OACS) were investigated. SIGNIFICANCE Gambogic acid (GA) can inhibit the growth of various cancer cells. However, the short elimination half-life time and treatment without targeting limits its application. OACS was synthesized as delivery carrier for GA by us, but the deeper characterization of OACS, such as molecular modeling, pharmacokinetics, and biodistribution were not investigated. METHODS Gambogic acid loaded OACS micelles (GA-OACS) were evaluated by the molecular modeling, characterized by TEM, DLS, IR, 1HNMR, XRD. Confocal laser scanning microscope and flow cytometry were analyzed for cell uptake study. Imaging analysis was used to show the distribution of OACS in vivo directly, pharmacokinetics and biodistribution were also investigated. RESULTS The molecular modeling result showed that GA could encapsulated stably in the core of OACS micelles. TEM, IR, 1HNMR, and XRD also suggested that GA was encapsulated in amorphous form in the core of OACS micelles. AUC and elimination half-life of GA-OACS were all increased by 1.5-fold and 2.0-fold compared with GA-ARG in rat, respectively. Biodistribution study indicated that GA-OACS was distributed mainly in the liver. GA amount in the kidney and heart was greatly reduced in the GA-OACS group. From the imaging analysis, OACS distribution in the liver was the most. CONCLUSIONS OACS was an excellent carrier for GA intravenous delivery to prolong half-life. Moreover, OACS targeted on liver.
Collapse
Affiliation(s)
- Fan Yu
- a Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources , Yancheng Teachers University , Yancheng, Jiangsu Province , PR China.,b Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education , Chongqing , PR China.,c School of Pharmacy , , Yancheng Teachers University , Yancheng , Jiangsu Province , PR China.,d Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland , Yancheng Institute of Technology , Yancheng , Jiangsu Province , PR China
| | - Fuguang Jiang
- b Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education , Chongqing , PR China
| | - Xinhui Tang
- c School of Pharmacy , , Yancheng Teachers University , Yancheng , Jiangsu Province , PR China
| | - Bochu Wang
- b Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education , Chongqing , PR China.,c School of Pharmacy , , Yancheng Teachers University , Yancheng , Jiangsu Province , PR China
| |
Collapse
|
16
|
Zhang Y, He L, Yue S, Huang Q, Zhang Y, Yang J. Characterization and evaluation of a self-microemulsifying drug delivery system containing tectorigenin, an isoflavone with low aqueous solubility and poor permeability. Drug Deliv 2017; 24:632-640. [PMID: 28283000 PMCID: PMC8241163 DOI: 10.1080/10717544.2017.1284946] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 01/27/2023] Open
Abstract
The purpose of this study was to characterize and evaluate tectorigenin-loaded self-microemulsifying drug delivery system (TG-SMEDDS), a previously studied preparation, and further confirm the improvement of TG in solubility and bioavailability. The appearance of TG-SMEDDS was clear and transparent, with good mobility. The microemulsion formed by TG-SMEDDS was globular, edge smooth, clear-cut, and distribution homogeneous under transmission electron microscope. The stability studies revealed that TG-SMEDDS remained stable at room temperature for at least 3 months. TG-SMEDDS showed excellent dissolution behavior that more than 90% of TG was released in only 5 min. The in situ intestinal perfusion studies indicated enhancement of absorption in four tested intestinal segments, and the main absorption site of TG was changed to duodenum. In addition, TG-SMEDDS showed significantly higher Cmax and AUC values (11-fold and 5-fold higher values, respectively; P < 0.05) than TG, and the absolute oral bioavailability of TG-SMEDDS was 56.33% (5-fold higher than that of crude TG). What's more, the AUC0-t of crude TG and TG-SMEDDS in bile duct non-ligation rats were 6.05 and 2.80 times, respectively, than that in bile duct ligation rats, indicating the existence of enterohepatic circulation and the secretion of bile could significantly affect the absorption of TG. Further studies showed that even the bile duct was ligation, TG-SMEDDS can still keep a better oral bioavailability (179.67%, compared with crude TG in the bile duct non-ligation rats). Therefore, our study implies that SMEDDS containing TG could be an effective strategy for the oral administration of TG.
Collapse
Affiliation(s)
- Yunrong Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li He
- Chengdu Women and Children’s Central Hospital, Chengdu, China, and
| | - Shanlan Yue
- Chengdu Women and Children’s Central Hospital, Chengdu, China, and
| | - Qingting Huang
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yuhong Zhang
- Medical College of China Three Gorges University, Yichang, China
| | - Junyi Yang
- West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Alai MS, Lin WJ, Pingale SS. Application of polymeric nanoparticles and micelles in insulin oral delivery. J Food Drug Anal 2015; 23:351-358. [PMID: 28911691 PMCID: PMC9351800 DOI: 10.1016/j.jfda.2015.01.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/29/2022] Open
Abstract
Diabetes mellitus is an endocrine disease in which the pancreas does not produce sufficient insulin or the body cannot effectively use the insulin it produces. Insulin therapy has been the best choice for the clinical management of diabetes mellitus. The current insulin therapy is via subcutaneous injection, which often fails to mimic the glucose homeostasis that occurs in normal individuals. This provokes numerous attempts to develop a safe and effective noninvasive route for insulin delivery. Oral delivery is the most convenient administration route. However, insulin cannot be well absorbed orally because of its rapid enzymatic degradation in the gastrointestinal tract. Therefore, nanoparticulate carriers such as polymeric nanoparticles and micelles are employed for the oral delivery of insulin. These nanocarriers protect insulin from degradation and facilitate insulin uptake via a transcellular and/or paracellular pathway. This review article focuses on the application of nanoparticles and micelles in insulin oral delivery. The recent advances in this topic are also reviewed.
Collapse
Affiliation(s)
- Milind Sadashiv Alai
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Wen Jen Lin
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, National Taiwan University, Taipei, Taiwan; Drug Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | |
Collapse
|
18
|
Jia B, Li S, Hu X, Zhu G, Chen W. Recent research on bioactive xanthones from natural medicine: Garcinia hanburyi. AAPS PharmSciTech 2015; 16:742-58. [PMID: 26152816 PMCID: PMC4508296 DOI: 10.1208/s12249-015-0339-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/18/2015] [Indexed: 12/24/2022] Open
Abstract
Garcinia hanburyi, a tropical plant found in south Asia, has a special long history in the development of both medicine and art. This review mainly focuses on the pharmacy research of the bioactive compounds from the plant in recent years. Preparative and analysis separation methods were introduced. Moreover, the chemical structure of the isolated compounds was included. The studies of biological activities of the caged xanthones from the plant, including antitumor, anti-HIV-1, antibacterial, and neurotrophic activities, were reviewed in detail. Furthermore, the mechanisms of its antitumor activity were also reviewed. As mentioned above, some of the xanthones from G. hanburyi can be promising drug candidates, which is worth studying. However, we still need much evidence to prove their efficacy and safety. So, further research is critical for the future application of xanthones from G. hanburyi.
Collapse
Affiliation(s)
- Buyun Jia
- />School of Pharmacy, Anhui University of Chinese Medicine, 001 Qianjiang Road, Hefei, 230012 Anhui China
| | - Shanshan Li
- />School of Pharmacy, Anhui University of Chinese Medicine, 001 Qianjiang Road, Hefei, 230012 Anhui China
| | - Xuerui Hu
- />School of Pharmacy, Anhui University of Chinese Medicine, 001 Qianjiang Road, Hefei, 230012 Anhui China
| | - Guangyu Zhu
- />School of Pharmacy, Anhui University of Chinese Medicine, 001 Qianjiang Road, Hefei, 230012 Anhui China
- />Ma’anshan Central Hospital, 027 Hudong Road, Ma’anshan, 243000 Anhui China
| | - Weidong Chen
- />School of Pharmacy, Anhui University of Chinese Medicine, 001 Qianjiang Road, Hefei, 230012 Anhui China
| |
Collapse
|
19
|
Deng J, Zhang Z, Liu C, Yin L, Zhou J, Lv H. The studies of N-Octyl-N-Arginine-Chitosan coated liposome as an oral delivery system of Cyclosporine A. J Pharm Pharmacol 2015; 67:1363-70. [DOI: 10.1111/jphp.12448] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/10/2015] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
An amphiphilic polymer N-Octyl-N-Arginine-Chitosan (OACS) was synthesized to coat the Cyclosporine A (CsA) liposomes (CL) to decrease the destruction of liposomes in gastrointestinal tract (GI) tract and improve its oral absorption.
Methods
CL and OACS-CsA liposomes (OACS-CL) were prepared by rotary-film evaporation method, and characterized by dynamic light scattering, transmission electron microscopy, atomic force microscope and releasing properties. In-situ single pass perfusion experiment and in-vivo studies in rats were carried out to verify its absorption enhancement.
Key findings
The characterization results showed that its particle size, zeta potential and morphology changed before and after polymer coating. Release experiment indicated that OACS could slow down drug release and protect its degradation in the stomach. In-situ single pass perfusion proved that the absorption of OACS-CL at the jejunum was enhanced about 3 and 22 times compared with commercial preparation of microemulsions (Tianke) and CsA suspensions, respectively. In vivo, AUC0→∞ of three different OACS-CL groups (93.48 ± 2.54, 100.98 ± 13.08 and 99.01 ± 19.02 h·μg/ml, respectively) were higher than those of Tianke (69.34 ± 7.93 h·μg/ml), CL group (54.31 ± 6.70 h·μg/ml) and suspensions (31.14 ± 1.30 h·μg/ml).
Conclusions
Therefore, OACS coated liposomes can be an effective strategy to promote drug's absorption and further reduce the anaphylactic reaction of abundant surfactants in commercial preparations.
Collapse
Affiliation(s)
- Jin Deng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Zhenhai Zhang
- Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Chunyan Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Lifang Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Huixia Lv
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
20
|
Yin D, Yang Y, Cai H, Wang F, Peng D, He L. Gambogic Acid-Loaded Electrosprayed Particles for Site-Specific Treatment of Hepatocellular Carcinoma. Mol Pharm 2014; 11:4107-17. [DOI: 10.1021/mp500214a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Dengke Yin
- School
of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, P. R. China
- Key
Laboratory of Xin’an Medicine, Ministry of Education, Hefei 230031, P. R. China
- Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei 230031, P. R. China
| | - Ye Yang
- School
of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, P. R. China
- Key
Laboratory of Xin’an Medicine, Ministry of Education, Hefei 230031, P. R. China
- Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei 230031, P. R. China
| | - Hanxu Cai
- School
of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, P. R. China
| | - Fei Wang
- School
of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, P. R. China
| | - Daiyin Peng
- School
of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, P. R. China
- Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei 230031, P. R. China
| | - Liqing He
- School
of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, P. R. China
| |
Collapse
|
21
|
Saeed LM, Mahmood M, Pyrek SJ, Fahmi T, Xu Y, Mustafa T, Nima ZA, Bratton SM, Casciano D, Dervishi E, Radominska-Pandya A, Biris AS. Single-walled carbon nanotube and graphene nanodelivery of gambogic acid increases its cytotoxicity in breast and pancreatic cancer cells. J Appl Toxicol 2014; 34:1188-99. [PMID: 25220893 DOI: 10.1002/jat.3018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/03/2014] [Accepted: 03/20/2014] [Indexed: 12/20/2022]
Abstract
Graphene and single-walled carbon nanotubes were used to deliver the natural low-toxicity drug gambogic acid (GA) to breast and pancreatic cancer cells in vitro, and the effectiveness of this complex in suppressing cellular integrity was assessed. Cytotoxicity was assessed by measuring lactate dehydrogenase release, mitochondria dehydrogenase activity, mitochondrial membrane depolarization, DNA fragmentation, intracellular lipid content, and membrane permeability/caspase activity. The nanomaterials showed no toxicity at the concentrations used, and the antiproliferative effects of GA were significantly enhanced by nanodelivery. The results suggest that these complexes inhibit human breast and pancreatic cancer cells grown in vitro. This analysis represents a first step toward assessing their effectiveness in more complex, targeted, nanodelivery systems.
Collapse
Affiliation(s)
- Lamya M Saeed
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, AR, 72204, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yu F, Yang J, Tang X, Hu Y. The Feasibility of Novel Liposome Consisted of Sphingomyelin and β-sitosterol for Gypenosides Delivery. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2014. [DOI: 10.3136/fstr.20.509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|