1
|
Promoter of Vegetable Soybean GmTIP1;6 Responds to Diverse Abiotic Stresses and Hormone Signals in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms232012684. [PMID: 36293538 PMCID: PMC9604487 DOI: 10.3390/ijms232012684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Tonoplast intrinsic proteins (TIPs), a sub-family of aquaporins (AQPs), are known to play important roles in plant abiotic stress responses. However, evidence for the promoters of TIPs involvement in abiotic stress processes remains scarce. In this study, the promoter of the vegetable soybean GmTIP1;6 gene, which had the highest similarity to TIP1-type AQPs from other plants, was cloned. Expression pattern analyses indicated that the GmTIP1;6 gene was dramatically induced by drought, salt, abscisic acid (ABA), and methyl jasmonate (MeJA) stimuli. Promoter analyses revealed that the GmTIP1;6 promoter contained drought, ABA, and MeJA cis-acting elements. Histochemical staining of the GmTIP1;6 promoter in transgenic Arabidopsis corroborated that it was strongly expressed in the vascular bundles of leaves, stems, and roots. Beta-glucuronidase (GUS) activity assays showed that the activities of the GmTIP1;6 promoter were enhanced by different concentrations of polyethylene glycol 6000 (PEG 6000), NaCl, ABA, and MEJA treatments. Integrating these results revealed that the GmTIP1;6 promoter could be applied for improving the tolerance to abiotic stresses of the transgenic plants by promoting the expression of vegetable soybean AQPs.
Collapse
|
2
|
Yi X, Sun X, Tian R, Li K, Ni M, Ying J, Xu L, Liu L, Wang Y. Genome-Wide Characterization of the Aquaporin Gene Family in Radish and Functional Analysis of RsPIP2-6 Involved in Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:860742. [PMID: 35909741 PMCID: PMC9337223 DOI: 10.3389/fpls.2022.860742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Aquaporins (AQPs) constitute a highly diverse family of channel proteins that transport water and neutral solutes. AQPs play crucial roles in plant development and stress responses. However, the characterization and biological functions of RsAQPs in radish (Raphanus sativus L.) remain elusive. In this study, 61 non-redundant members of AQP-encoding genes were identified from the radish genome database and located on nine chromosomes. Radish AQPs (RsAQPs) were divided into four subfamilies, including 21 plasma membrane intrinsic proteins (PIPs), 19 tonoplast intrinsic proteins (TIPs), 16 NOD-like intrinsic proteins (NIPs), and 5 small basic intrinsic proteins (SIPs), through phylogenetic analysis. All RsAQPs contained highly conserved motifs (motifs 1 and 4) and transmembrane regions, indicating the potential transmembrane transport function of RsAQPs. Tissue- and stage-specific expression patterns of AQP gene analysis based on RNA-seq data revealed that the expression levels of PIPs were generally higher than TIPs, NIPs, and SIPs in radish. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) revealed that seven selected RsPIPs, according to our previous transcriptome data (e.g., RsPIP1-3, 1-6, 2-1, 2-6, 2-10, 2-13, and 2-14), exhibited significant upregulation in roots of salt-tolerant radish genotype. In particular, the transcriptional levels of RsPIP2-6 dramatically increased after 6 h of 150 mM NaCl treatment during the taproot thickening stage. Additionally, overexpression of RsPIP2-6 could enhance salt tolerance by Agrobacterium rhizogenes-mediated transgenic radish hairy roots, which exhibited the mitigatory effects of plant growth reduction, leaf relative water content (RWC) reduction and alleviation of O2- in cells, as shown by nitro blue tetrazolium (NBT) staining, under salt stress. These findings are helpful for deeply dissecting the biological function of RsAQPs on the salt stress response, facilitating practical application and genetic improvement of abiotic stress resistance in radish.
Collapse
Affiliation(s)
- Xiaofang Yi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaochuan Sun
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Rong Tian
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kexin Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Meng Ni
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Jiang YT, Yang LH, Ferjani A, Lin WH. Multiple functions of the vacuole in plant growth and fruit quality. MOLECULAR HORTICULTURE 2021; 1:4. [PMID: 37789408 PMCID: PMC10509827 DOI: 10.1186/s43897-021-00008-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/09/2021] [Indexed: 10/05/2023]
Abstract
Vacuoles are organelles in plant cells that play pivotal roles in growth and developmental regulation. The main functions of vacuoles include maintaining cell acidity and turgor pressure, regulating the storage and transport of substances, controlling the transport and localization of key proteins through the endocytic and lysosomal-vacuolar transport pathways, and responding to biotic and abiotic stresses. Further, proteins localized either in the tonoplast (vacuolar membrane) or inside the vacuole lumen are critical for fruit quality. In this review, we summarize and discuss some of the emerging functions and regulatory mechanisms associated with plant vacuoles, including vacuole biogenesis, vacuole functions in plant growth and development, fruit quality, and plant-microbe interaction, as well as some innovative research technology that has driven advances in the field. Together, the functions of plant vacuoles are important for plant growth and fruit quality. The investigation of vacuole functions in plants is of great scientific significance and has potential applications in agriculture.
Collapse
Affiliation(s)
- Yu-Tong Jiang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu-Han Yang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei-shi, 184-8501, Japan
| | - Wen-Hui Lin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Singh N, Gaddam SR, Singh D, Trivedi PK. Regulation of arsenic stress response by ethylene biosynthesis and signaling in Arabidopsis thaliana. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2021; 185:104408. [PMID: 0 DOI: 10.1016/j.envexpbot.2021.104408] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
5
|
Đurić MJ, Subotić AR, Prokić LT, Trifunović-Momčilov MM, Cingel AD, Dragićević MB, Simonović AD, Milošević SM. Molecular Characterization and Expression of Four Aquaporin Genes in Impatiens walleriana During Drought Stress and Recovery. PLANTS (BASEL, SWITZERLAND) 2021; 10:154. [PMID: 33466920 PMCID: PMC7829780 DOI: 10.3390/plants10010154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
Aquaporins comprise a large group of transmembrane proteins responsible for water transport, which is crucial for plant survival under stress conditions. Despite the vital role of aquaporins, nothing is known about this protein family in Impatiens walleriana, a commercially important horticultural plant, which is sensitive to drought stress. In the present study, attention is given to the molecular characterization of aquaporins in I. walleriana and their expression during drought stress and recovery. We identified four I. walleriana aquaporins: IwPIP1;4, IwPIP2;2, IwPIP2;7 and IwTIP4;1. All of them had conserved NPA motifs (Asparagine-Proline-Alanine), transmembrane helices (TMh), pore characteristics, stereochemical properties and tetrameric structure of holoprotein. Drought stress and recovery treatment affected the aquaporins expression in I. walleriana leaves, which was up- or downregulated depending on stress intensity. Expression of IwPIP2;7 was the most affected of all analyzed I. walleriana aquaporins. At 15% and 5% soil moisture and recovery from 15% and 5% soil moisture, IwPIP2;7 expression significantly decreased and increased, respectively. Aquaporins IwPIP1;4 and IwTIP4;1 had lower expression in comparison to IwPIP2;7, with moderate expression changes in response to drought and recovery, while IwPIP2;2 expression was of significance only in recovered plants. Insight into the molecular structure of I. walleriana aquaporins expanded knowledge about plant aquaporins, while its expression during drought and recovery contributed to I. walleriana drought tolerance mechanisms and re-acclimation.
Collapse
Affiliation(s)
- Marija J. Đurić
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| | - Angelina R. Subotić
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| | - Ljiljana T. Prokić
- Department for Agrochemistry and Plant Physiology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Milana M. Trifunović-Momčilov
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| | - Aleksandar D. Cingel
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| | - Milan B. Dragićević
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| | - Ana D. Simonović
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| | - Snežana M. Milošević
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| |
Collapse
|
6
|
Ectopic Expression of CrPIP2;3, a Plasma Membrane Intrinsic Protein Gene from the Halophyte Canavalia rosea, Enhances Drought and Salt-Alkali Stress Tolerance in Arabidopsis. Int J Mol Sci 2021; 22:ijms22020565. [PMID: 33429984 PMCID: PMC7827864 DOI: 10.3390/ijms22020565] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/31/2022] Open
Abstract
Aquaporins are channel proteins that facilitate the transmembrane transport of water and other small neutral molecules, thereby playing vital roles in maintaining water and nutrition homeostasis in the life activities of all organisms. Canavalia rosea, a seashore and mangrove-accompanied halophyte with strong adaptability to adversity in tropical and subtropical regions, is a good model for studying the molecular mechanisms underlying extreme saline-alkaline and drought stress tolerance in leguminous plants. In this study, a PIP2 gene (CrPIP2;3) was cloned from C. rosea, and its expression patterns and physiological roles in yeast and Arabidopsis thaliana heterologous expression systems under high salt-alkali and high osmotic stress conditions were examined. The expression of CrPIP2;3 at the transcriptional level in C. rosea was affected by high salinity and alkali, high osmotic stress, and abscisic acid treatment. In yeast, the expression of CrPIP2;3 enhanced salt/osmotic and oxidative sensitivity under high salt/osmotic and H2O2 stress. The overexpression of CrPIP2;3 in A. thaliana could enhance the survival and recovery of transgenic plants under drought stress, and the seed germination and seedling growth of the CrPIP2;3 OX (over-expression) lines showed slightly stronger tolerance to high salt/alkali than the wild-type. The transgenic plants also showed a higher response level to high-salinity and dehydration than the wild-type, mostly based on the up-regulated expression of salt/dehydration marker genes in A. thaliana plants. The reactive oxygen species (ROS) staining results indicated that the transgenic lines did not possess stronger ROS scavenging ability and stress tolerance than the wild-type under multiple stresses. The results confirmed that CrPIP2;3 is involved in the response of C. rosea to salt and drought, and primarily acts by mediating water homeostasis rather than by acting as an ROS transporter, thereby influencing physiological processes under various abiotic stresses in plants.
Collapse
|
7
|
Li G, Chen T, Zhang Z, Li B, Tian S. Roles of Aquaporins in Plant-Pathogen Interaction. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1134. [PMID: 32882951 PMCID: PMC7569825 DOI: 10.3390/plants9091134] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022]
Abstract
Aquaporins (AQPs) are a class of small, membrane channel proteins present in a wide range of organisms. In addition to water, AQPs can facilitate the efficient and selective flux of various small solutes involved in numerous essential processes across membranes. A growing body of evidence now shows that AQPs are important regulators of plant-pathogen interaction, which ultimately lead to either plant immunity or pathogen pathogenicity. In plants, AQPs can mediate H2O2 transport across plasma membranes (PMs) and contribute to the activation of plant defenses by inducing pathogen-associated molecular pattern (PAMP)-triggered immunity and systemic acquired resistance (SAR), followed by downstream defense reactions. This involves the activation of conserved mitogen-activated protein kinase (MAPK) signaling cascades, the production of callose, the activation of NPR1 and PR genes, as well as the opening and closing of stomata. On the other hand, pathogens utilize aquaporins to mediate reactive oxygen species (ROS) signaling and regulate their normal growth, development, secondary or specialized metabolite production and pathogenicity. This review focuses on the roles of AQPs in plant immunity, pathogenicity, and communications during plant-pathogen interaction.
Collapse
Affiliation(s)
- Guangjin Li
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Wang R, Wang M, Chen K, Wang S, Mur LAJ, Guo S. Exploring the Roles of Aquaporins in Plant⁻Microbe Interactions. Cells 2018; 7:E267. [PMID: 30545006 PMCID: PMC6316839 DOI: 10.3390/cells7120267] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 12/06/2018] [Indexed: 11/16/2022] Open
Abstract
Aquaporins (AQPs) are membrane channel proteins regulating the flux of water and other various small solutes across membranes. Significant progress has been made in understanding the roles of AQPs in plants' physiological processes, and now their activities in various plant⁻microbe interactions are receiving more attention. This review summarizes the various roles of different AQPs during interactions with microbes which have positive and negative consequences on the host plants. In positive plant⁻microbe interactions involving rhizobia, arbuscular mycorrhizae (AM), and plant growth-promoting rhizobacteria (PGPR), AQPs play important roles in nitrogen fixation, nutrient transport, improving water status, and increasing abiotic stress tolerance. For negative interactions resulting in pathogenesis, AQPs help plants resist infections by preventing pathogen ingress by influencing stomata opening and influencing defensive signaling pathways, especially through regulating systemic acquired resistance. Interactions with bacterial or viral pathogens can be directly perturbed through direct interaction of AQPs with harpins or replicase. However, whilst these observations indicate the importance of AQPs, further work is needed to develop a fuller mechanistic understanding of their functions.
Collapse
Affiliation(s)
- Ruirui Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Kehao Chen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Shiyu Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK.
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
9
|
Zhang Y, Lv Y, Jahan N, Chen G, Ren D, Guo L. Sensing of Abiotic Stress and Ionic Stress Responses in Plants. Int J Mol Sci 2018; 19:E3298. [PMID: 30352959 PMCID: PMC6275032 DOI: 10.3390/ijms19113298] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 01/30/2023] Open
Abstract
Plants need to cope with complex environments throughout their life cycle. Abiotic stresses, including drought, cold, salt and heat, can cause a reduction in plant growth and loss of crop yield. Plants sensing stress signals and adapting to adverse environments are fundamental biological problems. We review the stress sensors in stress sensing and the responses, and then discuss ionic stress signaling and the responses. During ionic stress, the calcineurin B-like proteins (CBL) and CBL-interacting protein kinases (CBL-CIPK) complex is identified as a primary element of the calcium sensor for perceiving environmental signals. The CBL-CIPK system shows specificity and variety in its response to different stresses. Obtaining a deeper understanding of stress signaling and the responses will mitigate or solve crop yield crises in extreme environments with fast-growing populations.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Yang Lv
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Noushin Jahan
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Guang Chen
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Deyong Ren
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Longbiao Guo
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
10
|
Madrid-Espinoza J, Brunel-Saldias N, Guerra FP, Gutiérrez A, Del Pozo A. Genome-Wide Identification and Transcriptional Regulation of Aquaporin Genes in Bread Wheat ( Triticum aestivum L.) under Water Stress. Genes (Basel) 2018; 9:genes9100497. [PMID: 30326657 PMCID: PMC6210132 DOI: 10.3390/genes9100497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 01/04/2023] Open
Abstract
Aquaporins (AQPs) are transmembrane proteins essential for controlling the flow of water and other molecules required for development and stress tolerance in plants, including important crop species such as wheat (Triticum aestivum). In this study, we utilized a genomic approach for analyzing the information about AQPs available in public databases to characterize their structure and function. Furthermore, we validated the expression of a suite of AQP genes, at the transcriptional level, including accessions with contrasting responses to drought, different organs and water stress levels. We found 65 new AQP genes, from which 60% are copies expanded by polyploidization. Sequence analysis of the AQP genes showed that the purifying selection pressure acted on duplicate genes, which was related to a high conservation of the functions. This situation contrasted with the expression patterns observed for different organs, developmental stages or genotypes under water deficit conditions, which indicated functional divergence at transcription. Expression analyses on contrasting genotypes showed high gene transcription from Tonoplast Intrinsic Protein 1 (TIP1) and 2 (TIP2), and Plasma Membrane Intrinsic Protein 1 (PIP1) and 2 (PIP2) subfamilies in roots and from TIP1 and PIP1 subfamilies in leaves. Interestingly, during severe drought stress, 4 TIP genes analyzed in leaves of the tolerant accession reached up to 15-fold the level observed at the susceptible genotype, suggesting a positive relationship with drought tolerance. The obtained results extend our understanding of the structure and function of AQPs, particularly under water stress conditions.
Collapse
Affiliation(s)
- José Madrid-Espinoza
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile.
| | - Nidia Brunel-Saldias
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile.
- PIEI Adaptación de la Agricultura al Cambio Climático (A2C2), Universidad de Talca, Talca 3460000, Chile.
| | - Fernando P Guerra
- Laboratorio de Genética y Biotecnología Forestal, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile.
| | - Adelina Gutiérrez
- Laboratorio de Genética y Biotecnología Forestal, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile.
| | - Alejandro Del Pozo
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile.
- PIEI Adaptación de la Agricultura al Cambio Climático (A2C2), Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
11
|
Jemo M, Sulieman S, Bekkaoui F, Olomide OAK, Hashem A, Abd_Allah EF, Alqarawi AA, Tran LSP. Comparative Analysis of the Combined Effects of Different Water and Phosphate Levels on Growth and Biological Nitrogen Fixation of Nine Cowpea Varieties. FRONTIERS IN PLANT SCIENCE 2017; 8:2111. [PMID: 29312379 PMCID: PMC5742256 DOI: 10.3389/fpls.2017.02111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/27/2017] [Indexed: 05/23/2023]
Abstract
Water deficit and phosphate (Pi) deficiency adversely affect growth and biological nitrogen fixation (BNF) of legume crops. In this study, we examined the impact of interaction between soil water conditions and available soil-Pi levels on growth, nodule development and BNF potential of nine cowpea varieties grown on dry savanna soils. In our experimental design, soils with different available soil-Pi levels, i.e., low, moderate, and high soil-Pi levels, collected from various farming fields were used to grow nine cowpea varieties under well-watered and water-deficit conditions. Significant and severe water deficit-damaging effects on BNF, nodulation, growth, levels of plant-nitrogen (N) and -phosphorus (P), as well as shoot relative water content and chlorophyll content of cowpea plants were observed. Under well-watered and high available soil-Pi conditions, cowpea varieties IT07K-304-9 and Dan'Ila exhibited significantly higher BNF potential and dry biomass, as well as plant-N and -P contents compared with other tested ones. Significant genotypic variations among the cowpeas were recorded under low available soil-Pi and water-deficit conditions in terms of the BNF potential. Principal component (PC) analysis revealed that varieties IT04K-339-1, IT07K-188-49, IT07K-304-9, and IT04K-405-5 were associated with PC1, which was better explained by performance for nodulation, plant biomass, plant-N, plant-P, and BNF potential under the combined stress of water deficit and Pi deficiency, thereby offering prospects for development of varieties with high growth and BNF traits that are adaptive to such stress conditions in the region. On another hand, variety Dan'Ila was significantly related to PC2 that was highly explained by the plant shoot/root ratio and chlorophyll content, suggesting the existence of physiological and morphological adjustments to cope with water deficit and Pi deficiency for this particular variety. Additionally, increases in soil-Pi availability led to significant reductions of water-deficit damage on dry biomass, plant-N and -P contents, and BNF potential of cowpea varieties. This finding suggests that integrated nutrient management strategies that allow farmers to access to Pi-based fertilizers may help reduce the damage of adverse water deficit and Pi deficiency caused to cowpea crop in the regions, where soils are predominantly Pi-deficient and drought-prone.
Collapse
Affiliation(s)
- Martin Jemo
- AgroBiosciences Division, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- Office Chérifien des Phosphates (OCP)-Africa, Casablanca, Morocco
| | - Saad Sulieman
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, Shambat, Sudan
| | - Faouzi Bekkaoui
- AgroBiosciences Division, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz A. Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Signalling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
12
|
Paudel I, Cohen S, Shlizerman L, Jaiswal AK, Shaviv A, Sadka A. Reductions in root hydraulic conductivity in response to clay soil and treated waste water are related to PIPs down-regulation in Citrus. Sci Rep 2017; 7:15429. [PMID: 29133958 PMCID: PMC5684345 DOI: 10.1038/s41598-017-15762-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/02/2017] [Indexed: 11/09/2022] Open
Abstract
Citrus hydraulic physiology and PIP transcript levels were characterized in heavy (clay) and light (sandy loam) soils with and without treated waste water (TWW) irrigation after a summer irrigation season and at the end of a winter rainy season recovery period. Consistent reductions in clay soils compared to sandy loam were found for fresh water (FW) and TWW irrigation, respectively, in root water uptake, as well as in hydraulic conductivity of whole plant (Ks plant), stem (Ks stem) and root (Ks root). Transcript levels of most PIPs down-regulated following TWW irrigation in both soils, but relative gene expression of three PIPs was significantly higher in summer for sandy soil and FW than for clay soil and TWW; their mRNA levels was significantly correlated to Ks root. A pot experiment, which compared short term influences of saline and TWW found that both treatments, compared to FW, reduced root water uptake and PIPs mRNA levels by 2-fold after 20 days, and the decreases continued with time until the end of the experiment. These latter data indicated that salinity had an important influence. Our results suggest that plant hydraulic adjustment to soil texture and water quality occurs rapidly, i.e. within days, and is modulated by PIPs expression.
Collapse
Affiliation(s)
- Indira Paudel
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan, 5025001, Israel
- Department of Soil and Water, The Robert H. Smith Faculty of Food Agriculture and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shabtai Cohen
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan, 5025001, Israel
| | - Lyudmila Shlizerman
- Department of Fruit Trees Sciences, ARO Volcani Center, Bet Dagan, 5025001, Israel
| | - Amit K Jaiswal
- Department of Soil and Water, The Robert H. Smith Faculty of Food Agriculture and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Plant Protection, ARO Volcani Center, Bet Dagan, 5025001, Israel
| | - Avi Shaviv
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Avi Sadka
- Department of Fruit Trees Sciences, ARO Volcani Center, Bet Dagan, 5025001, Israel.
| |
Collapse
|
13
|
An J, Hu Z, Che B, Chen H, Yu B, Cai W. Heterologous Expression of Panax ginseng PgTIP1 Confers Enhanced Salt Tolerance of Soybean Cotyledon Hairy Roots, Composite, and Whole Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1232. [PMID: 28769947 PMCID: PMC5512343 DOI: 10.3389/fpls.2017.01232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/29/2017] [Indexed: 05/03/2023]
Abstract
The Panax ginseng TIP gene PgTIP1 was previously demonstrated to have high water channel activity by its heterologous expression in Xenopus laevis oocytes and in yeast; it also plays a significant role in growth of PgTIP1-transgenic Arabidopsis plants under favorable conditions and has enhanced tolerance toward salt and drought treatment. In this work, we first investigated the physiological effects of heterologous PgTIP1 expression in soybean cotyledon hairy roots or composite plants mediated by Agrobacterium rhizogenes toward enhanced salt tolerance. The PgTIP1-transgenic soybean plants mediated by the pollen tube pathway, represented by the lines N and J11, were analyzed at the physiological and molecular levels for enhanced salt tolerance. The results showed that in terms of root-specific heterologous expression, the PgTIP1-transformed soybean cotyledon hairy roots or composite plants displayed superior salt tolerance compared to the empty vector-transformed ones according to the mitigatory effects of hairy root growth reduction, drop in leaf RWC, and rise in REL under salt stress. Additionally, declines in K+ content, increases in Na+ content and Na+/K+ ratios in the hairy roots, stems, or leaves were effectively alleviated by PgTIP1-transformation, particularly the stems and leaves of composite soybean plants. At the whole plant level, PgTIP1-trasgenic soybean lines were found to possess stronger root vigor, reduced root and leaf cell membrane damage, increased SOD, POD, CAT, and APX activities, steadily increased leaf Tr, RWC, and Pn values, and smaller declines in chlorophyll and carotenoid content when exposed to salt stress compared to wild type. Moreover, the distribution patterns of Na+, K+, and Cl- in the roots, stems, and leaves of salt-stressed transgenic plants were readjusted, in that the absorbed Na+ and Cl- were mainly restricted to the roots to reduce their transport to the shoots, and the transport of root-absorbed K+ to the shoots was simultaneously promoted. PgTIP1 transformation into soybean plants enhanced the expression of some stress-related genes (GmPOD, GmAPX1, GmSOS1, and GmCLC1) in the roots and leaves under salt treatment. This indicates that the causes of enhanced salt tolerance of heterologous PgTIP1-transformed soybean are associated with the positive regulation on water relations, ion homeostasis, and ROS scavenging under salt stress both at root-specific and whole plant levels.
Collapse
Affiliation(s)
- Jing An
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Zhenmin Hu
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Benning Che
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Haiying Chen
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghai, China
| | - Bingjun Yu
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Weiming Cai
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghai, China
| |
Collapse
|
14
|
Zhang Y, Storey KB. Regulation of gene expression by NFAT transcription factors in hibernating ground squirrels is dependent on the cellular environment. Cell Stress Chaperones 2016; 21:883-94. [PMID: 27344571 PMCID: PMC5003805 DOI: 10.1007/s12192-016-0713-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/30/2016] [Accepted: 06/13/2016] [Indexed: 12/22/2022] Open
Abstract
Calcineurin is a calmodulin-stimulated phosphatase that regulates the nuclear translocation of nuclear factor of activated T cell (NFAT) c1-4 through dephosphorylation. We believe that this mechanism plays various roles in the remodeling and maintenance of Ictidomys tridecemlineatus skeletal muscle. During hibernation, bouts of torpor and arousal take place, and squirrels do not lose muscle mass despite being inactive. Protein expression of Ca(2+) signaling proteins were studied using immunoblotting. A DNA-protein interaction ELISA technique was created to test the binding of NFATs in the nucleus to DNA probes containing the NFAT response element under environmental conditions reflective of those during hibernation. Calcineurin protein levels increased by 3.08-fold during torpor (compared to euthermic control), whereas calpain1 levels also rose by 3.66-fold during torpor. Calmodulin levels were elevated upon entering torpor. NFATc4 binding to DNA showed a 1.4-fold increase during torpor, and we found that this binding was further enhanced when 600 nM of Ca(2+) was supplemented. We also found that decreasing the temperature of ELISAs resulted in progressive decreases in the binding of NFATs c1, c3, and c4 to DNA. In summary, calmodulin and calpain1 appear to activate calcineurin and NFATc4 during torpor. NFAT binding to target promoters is affected by intranuclear [Ca(2+)] and environmental temperatures. Therefore, Ca(2+) signaling and temperature changes play key roles in regulation of the NFAT-calcineurin pathway in skeletal muscle of hibernating 13-lined ground squirrels over the torpor-arousal cycle, and they may contribute to the avoidance of disuse-induced muscle atrophy that occurs naturally in these animals.
Collapse
Affiliation(s)
- Yichi Zhang
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
15
|
Fercha A, Capriotti AL, Caruso G, Cavaliere C, Stampachiacchiere S, Zenezini Chiozzi R, Laganà A. Shotgun proteomic analysis of soybean embryonic axes during germination under salt stress. Proteomics 2016; 16:1537-46. [PMID: 26969838 DOI: 10.1002/pmic.201500283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/19/2016] [Accepted: 03/08/2016] [Indexed: 12/21/2022]
Abstract
Seed imbibition and radicle emergence are generally less affected by salinity in soybean than in other crop plants. In order to unveil the mechanisms underlying this remarkable salt tolerance of soybean at seed germination, a comparative label-free shotgun proteomic analysis of embryonic axes exposed to salinity during germination sensu stricto (GSS) was conducted. The results revealed that the application of 100 and 200 mmol/L NaCl stress was accompanied by significant changes (>2-fold, P<0.05) of 97 and 75 proteins, respectively. Most of these salt-responsive proteins (70%) were classified into three major functional categories: disease/defense response, protein destination and storage and primary metabolism. The involvement of these proteins in salt tolerance of soybean was discussed, and some of them were suggested to be potential salt-tolerant proteins. Furthermore, our results suggest that the cross-protection against aldehydes, oxidative as well as osmotic stress, is the major adaptive response to salinity in soybean.
Collapse
Affiliation(s)
- Azzedine Fercha
- Department of Biology, University of Abbès Laghrour Khenchela, Khenchela, Algeria
| | | | - Giuseppe Caruso
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| | | | | | - Aldo Laganà
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
16
|
Plouznikoff K, Declerck S, Calonne-Salmon M. Mitigating Abiotic Stresses in Crop Plants by Arbuscular Mycorrhizal Fungi. BELOWGROUND DEFENCE STRATEGIES IN PLANTS 2016. [DOI: 10.1007/978-3-319-42319-7_15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Deshmukh RK, Sonah H, Bélanger RR. Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools. FRONTIERS IN PLANT SCIENCE 2016; 7:1896. [PMID: 28066459 PMCID: PMC5167727 DOI: 10.3389/fpls.2016.01896] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/30/2016] [Indexed: 05/02/2023]
Abstract
Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is offered as a resource for AQP research.
Collapse
|
18
|
Thao NP, Khan MIR, Thu NBA, Hoang XLT, Asgher M, Khan NA, Tran LSP. Role of Ethylene and Its Cross Talk with Other Signaling Molecules in Plant Responses to Heavy Metal Stress. PLANT PHYSIOLOGY 2015; 169:73-84. [PMID: 26246451 PMCID: PMC4577409 DOI: 10.1104/pp.15.00663] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/05/2015] [Indexed: 05/18/2023]
Abstract
Excessive heavy metals (HMs) in agricultural lands cause toxicities to plants, resulting in declines in crop productivity. Recent advances in ethylene biology research have established that ethylene is not only responsible for many important physiological activities in plants but also plays a pivotal role in HM stress tolerance. The manipulation of ethylene in plants to cope with HM stress through various approaches targeting either ethylene biosynthesis or the ethylene signaling pathway has brought promising outcomes. This review covers ethylene production and signal transduction in plant responses to HM stress, cross talk between ethylene and other signaling molecules under adverse HM stress conditions, and approaches to modify ethylene action to improve HM tolerance. From our current understanding about ethylene and its regulatory activities, it is believed that the optimization of endogenous ethylene levels in plants under HM stress would pave the way for developing transgenic crops with improved HM tolerance.
Collapse
Affiliation(s)
- Nguyen Phuong Thao
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| | - M Iqbal R Khan
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| | - Nguyen Binh Anh Thu
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| | - Xuan Lan Thi Hoang
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| | - Mohd Asgher
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| | - Nafees A Khan
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| | - Lam-Son Phan Tran
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| |
Collapse
|
19
|
Adnane B, Mainassara ZA, Mohamed F, Mohamed L, Jean-Jacques D, Rim MT, Georg C. Physiological and Molecular Aspects of Tolerance to Environmental Constraints in Grain and Forage Legumes. Int J Mol Sci 2015; 16:18976-9008. [PMID: 26287163 PMCID: PMC4581282 DOI: 10.3390/ijms160818976] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/09/2015] [Accepted: 08/05/2015] [Indexed: 12/04/2022] Open
Abstract
Despite the agronomical and environmental advantages of the cultivation of legumes, their production is limited by various environmental constraints such as water or nutrient limitation, frost or heat stress and soil salinity, which may be the result of pedoclimatic conditions, intensive use of agricultural lands, decline in soil fertility and environmental degradation. The development of more sustainable agroecosystems that are resilient to environmental constraints will therefore require better understanding of the key mechanisms underlying plant tolerance to abiotic constraints. This review provides highlights of legume tolerance to abiotic constraints with a focus on soil nutrient deficiencies, drought, and salinity. More specifically, recent advances in the physiological and molecular levels of the adaptation of grain and forage legumes to abiotic constraints are discussed. Such adaptation involves complex multigene controlled-traits which also involve multiple sub-traits that are likely regulated under the control of a number of candidate genes. This multi-genetic control of tolerance traits might also be multifunctional, with extended action in response to a number of abiotic constraints. Thus, concrete efforts are required to breed for multifunctional candidate genes in order to boost plant stability under various abiotic constraints.
Collapse
Affiliation(s)
- Bargaz Adnane
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 103, SE-23053 Alnarp, Sweden.
| | - Zaman-Allah Mainassara
- International Maize and Wheat Improvement Center (CIMMYT), Southern Africa Regional Office, MP163 Harare, Zimbabwe.
| | - Farissi Mohamed
- Polyvalent Laboratory for Research & Development, Polydisciplinary Faculty, Sultan Moulay Sliman University, 23000 Beni-Mellal, Morocco.
| | - Lazali Mohamed
- Faculté des Sciences de la Nature et de la Vie & des Sciences de la Terre, Université de Khemis Miliana, 44225 Ain Defla, Algeria.
| | - Drevon Jean-Jacques
- Unité mixte de recherche, Écologie Fonctionnelle & Biogéochimie des Sols et Agroécosystèmes, Institut National de la Recherche Agronomique, 34060 Montpellier, France.
| | - Maougal T Rim
- Laboratoire de génétique Biochimie et biotechnologies végétales Faculté des Sciences de la Nature et de la Vie, Université des frères Mentouri, 25017 Constantine, Algeria.
| | - Carlsson Georg
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 103, SE-23053 Alnarp, Sweden.
| |
Collapse
|
20
|
Aspergillus glaucus Aquaglyceroporin Gene glpF Confers High Osmosis Tolerance in Heterologous Organisms. Appl Environ Microbiol 2015. [PMID: 26209670 DOI: 10.1128/aem.02127-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aquaglyceroporins (GlpFs) that transport glycerol along with water and other uncharged solutes are involved in osmoregulation in myriad species. Fungal species form a large group of eukaryotic organisms, and their GlpFs may be diverse, exhibiting various activities. However, few filamentous fungal GlpFs have been biologically investigated. Here, a glpF gene from the halophilic fungus Aspergillus glaucus (AgglpF) was verified to be a channel of water or glycerol in Xenopus laevis oocytes and was further functionally analyzed in three heterologous systems. In Saccharomyces cerevisiae, cells overexpressing AgglpF possessed significant tolerance of drought, salt, and certain metal ions. AgglpF was then characterized in the filamentous fungus of Neurospora crassa. Based on the N. crassa aquaporin gene (NcAQP) disruption mutant (the Δaqp mutant), a series of complementary strains carrying NcAQP and AgglpF and three asparagine-proline-alanine-gene (NPA)-deleted AgglpF fragments were created. As revealed by salt resistance analysis, the AgglpF complementary strain possessed the highest salt resistance among the tested strains. In addition, the intracellular glycerol content in the AgglpF complementary strain was markedly higher than that in the other strains. The AgGlpF-green fluorescent protein (GFP) fusion protein was subcellularly localized in the plasma membrane of onion epidermal cells, suggesting that AgglpF functions in plants. Indeed, when AgglpF was expressed in Arabidopsis thaliana, transgenic lines survived under conditions of high osmotic stress and under conditions of drought stress in particular. Overall, our results revealed that AgGlpF as a water/glycerol transporter is required for survival of both fungi and plants under conditions of high osmotic stress and may have value in applications in genetic engineering for generating high salt and drought resistance.
Collapse
|
21
|
Ha CV, Watanabe Y, Tran UT, Le DT, Tanaka M, Nguyen KH, Seki M, Nguyen DV, Tran LSP. Comparative analysis of root transcriptomes from two contrasting drought-responsive Williams 82 and DT2008 soybean cultivars under normal and dehydration conditions. FRONTIERS IN PLANT SCIENCE 2015; 6:551. [PMID: 26300889 PMCID: PMC4528160 DOI: 10.3389/fpls.2015.00551] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/06/2015] [Indexed: 05/04/2023]
Abstract
The economically important DT2008 and the model Williams 82 (W82) soybean cultivars were reported to have differential drought-tolerant degree to dehydration and drought, which was associated with root trait. Here, we used 66K Affymetrix Soybean Array GeneChip to compare the root transcriptomes of DT2008 and W82 seedlings under normal, as well as mild (2 h treatment) and severe (10 h treatment) dehydration conditions. Out of the 38172 soybean genes annotated with high confidence, 822 (2.15%) and 632 (1.66%) genes showed altered expression by dehydration in W82 and DT2008 roots, respectively, suggesting that a larger machinery is required to be activated in the drought-sensitive W82 cultivar to cope with the stress. We also observed that long-term dehydration period induced expression change of more genes in soybean roots than the short-term one, independently of the genotypes. Furthermore, our data suggest that the higher drought tolerability of DT2008 might be attributed to the higher number of genes induced in DT2008 roots than in W82 roots by early dehydration, and to the expression changes of more genes triggered by short-term dehydration than those by prolonged dehydration in DT2008 roots vs. W82 roots. Differentially expressed genes (DEGs) that could be predicted to have a known function were further analyzed to gain a basic understanding on how soybean plants respond to dehydration for their survival. The higher drought tolerability of DT2008 vs. W82 might be attributed to differential expression in genes encoding osmoprotectant biosynthesis-, detoxification- or cell wall-related proteins, kinases, transcription factors and phosphatase 2C proteins. This research allowed us to identify genetic components that contribute to the improved drought tolerance of DT2008, as well as provide a useful genetic resource for in-depth functional analyses that ultimately leads to development of soybean cultivars with improved tolerance to drought.
Collapse
Affiliation(s)
- Chien Van Ha
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute, Vietnamese Academy of Agricultural ScienceHanoi, Vietnam
| | - Yasuko Watanabe
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Uyen Thi Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Dung Tien Le
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute, Vietnamese Academy of Agricultural ScienceHanoi, Vietnam
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Kien Huu Nguyen
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute, Vietnamese Academy of Agricultural ScienceHanoi, Vietnam
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- CREST, Japan Science and Technology AgencyKawaguchi, Japan
| | - Dong Van Nguyen
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute, Vietnamese Academy of Agricultural ScienceHanoi, Vietnam
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- *Correspondence: Lam-Son Phan Tran, Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
22
|
Zhang D, Tong J, He X, Xu Z, Xu L, Wei P, Huang Y, Brestic M, Ma H, Shao H. A Novel Soybean Intrinsic Protein Gene, GmTIP2;3, Involved in Responding to Osmotic Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1237. [PMID: 26779248 PMCID: PMC4705450 DOI: 10.3389/fpls.2015.01237] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/20/2015] [Indexed: 05/19/2023]
Abstract
Water is essential for plant growth and development. Water deficiency leads to loss of yield and decreased crop quality. To understand water transport mechanisms in plants, we cloned and characterized a novel tonoplast intrinsic protein (TIP) gene from soybean with the highest similarity to TIP2-type from other plants, and thus designated GmTIP2;3. The protein sequence contains two conserved NPA motifs and six transmembrane domains. The expression analysis indicated that this gene was constitutively expressed in all detected tissues, with higher levels in the root, stem and pod, and the accumulation of GmTIP2;3 transcript showed a significant response to osmotic stresses, including 20% PEG6000 (polyethylene glycol) and 100 μM ABA (abscisic acid) treatments. The promoter-GUS (glucuronidase) activity analysis suggested that GmTIP2;3 was also expressed in the root, stem, and leaf, and preferentially expressed in the stele of root and stem, and the core promoter region was 1000 bp in length, located upstream of the ATG start codon. The GUS tissue and induced expression observations were consistent with the findings in soybean. In addition, subcellular localization showed that GmTIP2;3 was a plasma membrane-localized protein. Yeast heterologous expression revealed that GmTIP2;3 could improve tolerance to osmotic stress in yeast cells. Integrating these results, GmTIP2;3 might play an important role in response to osmotic stress in plants.
Collapse
Affiliation(s)
- Dayong Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
- *Correspondence: Dayong Zhang
| | - Jinfeng Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of SciencesNanjing, China
| | - Xiaolan He
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Zhaolong Xu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Ling Xu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Peipei Wei
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Yihong Huang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Marian Brestic
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
- Department of Plant Physiology, Slovak Agricultural UniversityNitra, Slovakia
| | - Hongxiang Ma
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Hongbo Shao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
- Key Laboratory of Coastal Biology and Bioresources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
- Hongbo Shao
| |
Collapse
|