1
|
Atkins RM, Pantalia M, Skaggs C, Lau AK, Mahmood MB, Anwar MM, Barron L, Eby B, Khan U, Tsiokas L, Lau K. Normotensive metabolic syndrome in Transient Receptor Potential Canonical Channel type 1 Trpc1-/- mice. Biol Open 2024; 13:bio060280. [PMID: 38885005 PMCID: PMC11317093 DOI: 10.1242/bio.060280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
Metabolic syndrome has become a global epidemic, affecting all developed countries and communities with growing economies. Worldwide, increasing efforts have been directed at curbing this growing problem. Mice deleted of the gene encoding Type 1 Transient Receptor Potential Canonical Channel (Trpc1) were found to weigh heavier than controls. They had fasting hyperglycemia and impaired glucose tolerance compared with wild-type controls. Beyond 1 year of age, plasma triglyceride level in Trpc1-/- mice was elevated. Plasma cholesterol levels tended to be higher than in controls. The livers of Trpc1-/- mice were heavier, richer in triglyceride, and more echogenic than those of controls on ultrasound evaluation. Hematocrit was lower in Trpc1-/- mice of both genders beginning at the second to third months of age in the absence of bleeding or hemolysis. Measured by the indirect tail-cuff method or by the direct arterial cannulation, blood pressures in null mice were lower than controls. We conclude that TRPC1 gene regulates body metabolism and that except for hypertension, phenotypes of mice after deletion of the Trpc1 gene resemble mice with metabolic syndrome, suggesting that this could be a good experimental model for future investigation of the pathogenesis and management of this disorder.
Collapse
Affiliation(s)
- Richard Matthew Atkins
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Meghan Pantalia
- Division of Nephrology, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Christopher Skaggs
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alexander Ku Lau
- Division of Nephrology, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Muhammad Bilal Mahmood
- Division of Nephrology, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Muhammad Mubeen Anwar
- Division of Nephrology, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lindsay Barron
- Division of Nephrology, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Bonnie Eby
- Division of Nephrology, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Usman Khan
- Division of Nephrology, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Leo Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kai Lau
- Division of Nephrology, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Yang B, Ma D, Zhu X, Wu Z, An Q, Zhao J, Gao X, Zhang L. Roles of TRP and PIEZO receptors in autoimmune diseases. Expert Rev Mol Med 2024; 26:e10. [PMID: 38659380 PMCID: PMC11140548 DOI: 10.1017/erm.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 08/21/2023] [Indexed: 04/26/2024]
Abstract
Autoimmune diseases are pathological autoimmune reactions in the body caused by various factors, which can lead to tissue damage and organ dysfunction. They can be divided into organ-specific and systemic autoimmune diseases. These diseases usually involve various body systems, including the blood, muscles, bones, joints and soft tissues. The transient receptor potential (TRP) and PIEZO receptors, which resulted in David Julius and Ardem Patapoutian winning the Nobel Prize in Physiology or Medicine in 2021, attracted people's attention. Most current studies on TRP and PIEZO receptors in autoimmune diseases have been carried out on animal model, only few clinical studies have been conducted. Therefore, this study aimed to review existing studies on TRP and PIEZO to understand the roles of these receptors in autoimmune diseases, which may help elucidate novel treatment strategies.
Collapse
Affiliation(s)
- Baoqi Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xueqing Zhu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Zewen Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| |
Collapse
|
3
|
Križaj D, Cordeiro S, Strauß O. Retinal TRP channels: Cell-type-specific regulators of retinal homeostasis and multimodal integration. Prog Retin Eye Res 2023; 92:101114. [PMID: 36163161 PMCID: PMC9897210 DOI: 10.1016/j.preteyeres.2022.101114] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 02/05/2023]
Abstract
Transient receptor potential (TRP) channels are a widely expressed family of 28 evolutionarily conserved cationic ion channels that operate as primary detectors of chemical and physical stimuli and secondary effectors of metabotropic and ionotropic receptors. In vertebrates, the channels are grouped into six related families: TRPC, TRPV, TRPM, TRPA, TRPML, and TRPP. As sensory transducers, TRP channels are ubiquitously expressed across the body and the CNS, mediating critical functions in mechanosensation, nociception, chemosensing, thermosensing, and phototransduction. This article surveys current knowledge about the expression and function of the TRP family in vertebrate retinas, which, while dedicated to transduction and transmission of visual information, are highly susceptible to non-visual stimuli. Every retinal cell expresses multiple TRP subunits, with recent evidence establishing their critical roles in paradigmatic aspects of vertebrate vision that include TRPM1-dependent transduction of ON bipolar signaling, TRPC6/7-mediated ganglion cell phototransduction, TRP/TRPL phototransduction in Drosophila and TRPV4-dependent osmoregulation, mechanotransduction, and regulation of inner and outer blood-retina barriers. TRP channels tune light-dependent and independent functions of retinal circuits by modulating the intracellular concentration of the 2nd messenger calcium, with emerging evidence implicating specific subunits in the pathogenesis of debilitating diseases such as glaucoma, ocular trauma, diabetic retinopathy, and ischemia. Elucidation of TRP channel involvement in retinal biology will yield rewards in terms of fundamental understanding of vertebrate vision and therapeutic targeting to treat diseases caused by channel dysfunction or over-activation.
Collapse
Affiliation(s)
- David Križaj
- Departments of Ophthalmology, Neurobiology, and Bioengineering, University of Utah, Salt Lake City, USA
| | - Soenke Cordeiro
- Institute of Physiology, Faculty of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
4
|
Mafi A, Yadegar N, Salami M, Salami R, Vakili O, Aghadavod E. Circular RNAs; powerful microRNA sponges to overcome diabetic nephropathy. Pathol Res Pract 2021; 227:153618. [PMID: 34649056 DOI: 10.1016/j.prp.2021.153618] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN), also known as diabetic kidney disease (DKD), is a drastic renal complication of type 1 and type 2 diabetes mellitus (DM). Poorly controlled DM over the years, may disrupt kidneys' blood vessels, leading to the hypertension (HTN) and DN onset. During DN, kidneys' waste filtering ability becomes disturbed. Being on a healthy lifestyle and controlling both DM and HTN are now the best proceedings to prevent or at least delay DN occurrence. Unfortunately, about one-fourth of diabetic individuals eventually experience the corresponding renal failure, and thus it is critical to discover effective diagnostic biomarkers and therapeutic strategies to combat DN. In the past few years, circular RNAs (circRNAs), as covalently closed endogenous non-coding RNAs (ncRNAs), are believed to affect DN pathogenesis in a positive manner. CircRNAs are able to impact different cellular processes and signaling pathways by targeting biological molecules or various molecular mechanisms. Still, as a key regulatory axis, circRNAs can select miRNAs as their molecular targets, in which they are considered as miRNA sponges. In this way, circRNA-induced suppression of particular miRNAs may prevent from DN progression or promotes the DN elimination. Since the expression of circRNAs has also been reported to be increased in DN-associated cells and tissues, they can be employed as either diagnostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Negar Yadegar
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Marziyeh Salami
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Raziyeh Salami
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran; Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Zhang Y, Maitikuerban B, Chen Y, Li Y, Cao Y, Xu X. Correlation between classical transient receptor potential channel 1 gene polymorphism and microalbuminuria in patients with primary hypertension. Clin Exp Hypertens 2021; 43:443-449. [PMID: 33877007 DOI: 10.1080/10641963.2021.1901107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate the correlation between transient receptor potential channel 1 (TRPC1) gene polymorphism and microalbuminuria in patients with primary hypertension. Methods: A total of 468 patients with primary hypertension were admitted to the Department of Hypertension of the First Affiliated Hospital of Xinjiang Medical University from April 2015 to November 2017. According to microalbuminuria, the patients were divided into two groups: high urinary albumin group (EH+mALB group, n = 71) and normal urinary microalbuminuria group (EH group, n = 397). The Sequenom detection technology was used for genotyping the single nucleotide polymorphism (SNP) sites of the TRPC1 gene, such as rs1382688, rs3821647, rs7638459, rs953239, and rs7621642. RESULTS (1) No significant differences were detected in gender, smoking history, drinking history, family history, course of hypertension, fasting blood glucose, urea, creatinine, triglyceride, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, glycosylated hemoglobin, vitamin D, homocysteine, and cystatin C between the two groups (P > .05). However, age, body mass index (BMI), 24-h mean systolic and diastolic blood pressure, and 24-h average pulse pressure were statistically significant (P < .05). (2) No significant difference was detected in the distribution frequency of the polymorphisms of the TRPC1 gene between the two groups (P > .05), while the genotype, allele, and recessive model of rs7638459 differed significantly difference (P < .05). (3) Logistic regression analysis showed that BMI and rs7638459 CC genotype were the risk factors of increased microalbuminuria in patients with primary hypertension. CONCLUSION TRPC1 gene polymorphism is associated with increased microalbuminuria in patients with primary hypertension. The CC genotype of rs7638459 may increase the risk of microalbuminuria in patients with essential hypertension, while BMI and rs7638459 CC genotype may be the risk factors of increased microalbuminuria in patients with primary hypertension.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hypertension, The First Affiliated Hospital of Xinjiang Medical University, Urumqi,Xinjiang, China
| | | | - Yulan Chen
- Department of Hypertension, The First Affiliated Hospital of Xinjiang Medical University, Urumqi,Xinjiang, China
| | - Yu Li
- Second Department of General Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi,Xinjiang, China
| | - Yaping Cao
- Department of Hypertension, The First Affiliated Hospital of Xinjiang Medical University, Urumqi,Xinjiang, China
| | - Xinjuan Xu
- Department of Hypertension, The First Affiliated Hospital of Xinjiang Medical University, Urumqi,Xinjiang, China
| |
Collapse
|
6
|
Peng F, Gong W, Li S, Yin B, Zhao C, Liu W, Chen X, Luo C, Huang Q, Chen T, Sun L, Fang S, Zhou W, Li Z, Long H. circRNA_010383 Acts as a Sponge for miR-135a, and Its Downregulated Expression Contributes to Renal Fibrosis in Diabetic Nephropathy. Diabetes 2021; 70:603-615. [PMID: 33472945 DOI: 10.2337/db20-0203] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022]
Abstract
Diabetic nephropathy (DN), a vascular complication of diabetes, is the leading cause of death in patients with diabetes. The contribution of aberrantly expressed circular RNAs (circRNAs) to DN in vivo is poorly understood. Integrated comparative circRNA microarray profiling was used to examine the expression of circRNAs in diabetic kidney of db/db mice. We found that circRNA_010383 expression was markedly downregulated in diabetic kidneys, mesangial cells, and tubular epithelial cells cultured in high-glucose conditions. circRNA_010383 colocalized with miRNA-135a (miR-135a) and inhibited miR-135a function by directly binding to miR-135a. In vitro, the knockdown of circRNA_010383 promoted the accumulation of extracellular matrix (ECM) proteins and downregulated the expression of transient receptor potential cation channel, subfamily C, member 1 (TRPC1), which is a target protein of miR-135a. Furthermore, circRNA_010383 overexpression effectively inhibited the high-glucose-induced accumulation of ECM and increased TRPC1 levels in vitro. More importantly, the kidney target of circRNA_010383 overexpression inhibited proteinuria and renal fibrosis in db/db mice. Mechanistically, we identified that a loss of circRNA_010383 promoted proteinuria and renal fibrosis in DN by acting as a sponge for miR-135a. This study reveals that circRNA_010383 may be a novel therapeutic target for DN in the future.
Collapse
Affiliation(s)
- Fenfen Peng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wangqiu Gong
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuting Li
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bohui Yin
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Zhao
- Department of Nephrology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Wenting Liu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaowen Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Congwei Luo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qianying Huang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lingzhi Sun
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shun Fang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weidong Zhou
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhijian Li
- Department of Nephrology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou, China
| | - Haibo Long
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Fu Y, Shang P, Zhang B, Tian X, Nie R, Zhang R, Zhang H. Function of the Porcine TRPC1 Gene in Myogenesis and Muscle Growth. Cells 2021; 10:cells10010147. [PMID: 33450983 PMCID: PMC7828378 DOI: 10.3390/cells10010147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
In animals, muscle growth is a quantitative trait controlled by multiple genes. Previously, we showed that the transient receptor potential channel 1 (TRPC1) gene was differentially expressed in muscle tissues between pig breeds with divergent growth traits base on RNA-seq. Here, we characterized TRPC1 expression profiles in different tissues and pig breeds and showed that TRPC1 was highly expressed in the muscle. We found two single nucleotide polymorphisms (SNPs) (C-1763T and C-1604T) in TRPC1 that could affect the promoter region activity and regulate pig growth rate. Functionally, we used RNAi and overexpression to illustrate that TRPC1 promotes myoblast proliferation, migration, differentiation, fusion, and muscle hypertrophy while inhibiting muscle degradation. These processes may be mediated by the activation of Wnt signaling pathways. Altogether, our results revealed that TRPC1 might promote muscle growth and development and plays a key role in Wnt-mediated myogenesis.
Collapse
Affiliation(s)
- Yu Fu
- National Engineering Laboratory for Livestock and Poultry Breeding, Plateau Animal Genetic Resources Center, China Agriculture University, Beijing 100193, China; (Y.F.); (B.Z.); (X.T.); (R.N.); (R.Z.)
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China;
| | - Bo Zhang
- National Engineering Laboratory for Livestock and Poultry Breeding, Plateau Animal Genetic Resources Center, China Agriculture University, Beijing 100193, China; (Y.F.); (B.Z.); (X.T.); (R.N.); (R.Z.)
| | - Xiaolong Tian
- National Engineering Laboratory for Livestock and Poultry Breeding, Plateau Animal Genetic Resources Center, China Agriculture University, Beijing 100193, China; (Y.F.); (B.Z.); (X.T.); (R.N.); (R.Z.)
| | - Ruixue Nie
- National Engineering Laboratory for Livestock and Poultry Breeding, Plateau Animal Genetic Resources Center, China Agriculture University, Beijing 100193, China; (Y.F.); (B.Z.); (X.T.); (R.N.); (R.Z.)
| | - Ran Zhang
- National Engineering Laboratory for Livestock and Poultry Breeding, Plateau Animal Genetic Resources Center, China Agriculture University, Beijing 100193, China; (Y.F.); (B.Z.); (X.T.); (R.N.); (R.Z.)
| | - Hao Zhang
- National Engineering Laboratory for Livestock and Poultry Breeding, Plateau Animal Genetic Resources Center, China Agriculture University, Beijing 100193, China; (Y.F.); (B.Z.); (X.T.); (R.N.); (R.Z.)
- Correspondence:
| |
Collapse
|
8
|
Chen X, Sooch G, Demaree IS, White FA, Obukhov AG. Transient Receptor Potential Canonical (TRPC) Channels: Then and Now. Cells 2020; 9:E1983. [PMID: 32872338 PMCID: PMC7565274 DOI: 10.3390/cells9091983] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Twenty-five years ago, the first mammalian Transient Receptor Potential Canonical (TRPC) channel was cloned, opening the vast horizon of the TRPC field. Today, we know that there are seven TRPC channels (TRPC1-7). TRPCs exhibit the highest protein sequence similarity to the Drosophila melanogaster TRP channels. Similar to Drosophila TRPs, TRPCs are localized to the plasma membrane and are activated in a G-protein-coupled receptor-phospholipase C-dependent manner. TRPCs may also be stimulated in a store-operated manner, via receptor tyrosine kinases, or by lysophospholipids, hypoosmotic solutions, and mechanical stimuli. Activated TRPCs allow the influx of Ca2+ and monovalent alkali cations into the cytosol of cells, leading to cell depolarization and rising intracellular Ca2+ concentration. TRPCs are involved in the continually growing number of cell functions. Furthermore, mutations in the TRPC6 gene are associated with hereditary diseases, such as focal segmental glomerulosclerosis. The most important recent breakthrough in TRPC research was the solving of cryo-EM structures of TRPC3, TRPC4, TRPC5, and TRPC6. These structural data shed light on the molecular mechanisms underlying TRPCs' functional properties and propelled the development of new modulators of the channels. This review provides a historical overview of the major advances in the TRPC field focusing on the role of gene knockouts and pharmacological tools.
Collapse
Affiliation(s)
- Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Gagandeep Sooch
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Isaac S. Demaree
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Fletcher A. White
- The Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G. Obukhov
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Islam MS. Molecular Regulations and Functions of the Transient Receptor Potential Channels of the Islets of Langerhans and Insulinoma Cells. Cells 2020; 9:cells9030685. [PMID: 32168890 PMCID: PMC7140661 DOI: 10.3390/cells9030685] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/17/2022] Open
Abstract
Insulin secretion from the β-cells of the islets of Langerhans is triggered mainly by nutrients such as glucose, and incretin hormones such as glucagon-like peptide-1 (GLP-1). The mechanisms of the stimulus-secretion coupling involve the participation of the key enzymes that metabolize the nutrients, and numerous ion channels that mediate the electrical activity. Several members of the transient receptor potential (TRP) channels participate in the processes that mediate the electrical activities and Ca2+ oscillations in these cells. Human β-cells express TRPC1, TRPM2, TRPM3, TRPM4, TRPM7, TRPP1, TRPML1, and TRPML3 channels. Some of these channels have been reported to mediate background depolarizing currents, store-operated Ca2+ entry (SOCE), electrical activity, Ca2+ oscillations, gene transcription, cell-death, and insulin secretion in response to stimulation by glucose and GLP1. Different channels of the TRP family are regulated by one or more of the following mechanisms: activation of G protein-coupled receptors, the filling state of the endoplasmic reticulum Ca2+ store, heat, oxidative stress, or some second messengers. This review briefly compiles our current knowledge about the molecular mechanisms of regulations, and functions of the TRP channels in the β-cells, the α-cells, and some insulinoma cell lines.
Collapse
Affiliation(s)
- Md. Shahidul Islam
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Research Center, 5th floor, SE-118 83 Stockholm, Sweden;
- Department of Emergency Care and Internal Medicine, Uppsala University Hospital, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
10
|
Yang X, Wu D, Du H, Nie F, Pang X, Xu Y. MicroRNA-135a is involved in podocyte injury in a transient receptor potential channel 1-dependent manner. Int J Mol Med 2017; 40:1511-1519. [PMID: 28949388 PMCID: PMC5627871 DOI: 10.3892/ijmm.2017.3152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 09/18/2017] [Indexed: 12/03/2022] Open
Abstract
Transient receptor potential (TRP) cation channels are essential for normal cellular physiology, and their abnormal expression may lead to a number of disorders, including podocytopathy. Therefore, it is crucial to understand the mechanisms underlying the regulation of TRP channels. In the present study, microRNA (miR)-135a was found to be upregulated in patients with focal segmental glomerulosclerosis and mice treated with adriamycin (ADR). In cultured podocytes, transforming growth factor (TGF)-β and ADR were found to promote miR-135a expression. Conversely, TRP channel 1 (TRPC1) protein levels were markedly downregulated in podocytes from mice treated with ADR, as well as in cultured podocytes treated with ADR and TGF-β. Ectopic expression of miR-135a led to severe podocyte injury and disarray of the podocyte cytoskeleton, whereas podocyte-specific expression of TRPC1 was able to reverse the pathological effects of miR-135a in cultured podocytes. Moreover, using Luciferase reporter assays and western blot analysis, TRPC1 was identified as a target gene of miR-135a. To the best of our knowledge, this is the first study to demonstrate the role of TRPC1 in the development of podocyte injury and disorders of the podocyte cytoskeleton, which may contribute to the development of novel therapeutics for podocyte injury-associated kidney diseases.
Collapse
Affiliation(s)
- Xianggui Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chengdu Medical University, Chengdu, Sichuan 610500, P.R. China
| | - Dongming Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chengdu Medical University, Chengdu, Sichuan 610500, P.R. China
| | - Hongfei Du
- Department of Laboratory Medicine, The First Affiliated Hospital of Chengdu Medical University, Chengdu, Sichuan 610500, P.R. China
| | - Fang Nie
- Department of Laboratory Medicine, The First Affiliated Hospital of Chengdu Medical University, Chengdu, Sichuan 610500, P.R. China
| | - Xueli Pang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chengdu Medical University, Chengdu, Sichuan 610500, P.R. China
| | - Ying Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chengdu Medical University, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
11
|
Zhou Y, Greka A. Calcium-permeable ion channels in the kidney. Am J Physiol Renal Physiol 2016; 310:F1157-67. [PMID: 27029425 DOI: 10.1152/ajprenal.00117.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023] Open
Abstract
Calcium ions (Ca(2+)) are crucial for a variety of cellular functions. The extracellular and intracellular Ca(2+) concentrations are thus tightly regulated to maintain Ca(2+) homeostasis. The kidney, one of the major organs of the excretory system, regulates Ca(2+) homeostasis by filtration and reabsorption. Approximately 60% of the Ca(2+) in plasma is filtered, and 99% of that is reabsorbed by the kidney tubules. Ca(2+) is also a critical signaling molecule in kidney development, in all kidney cellular functions, and in the emergence of kidney diseases. Recently, studies using genetic and molecular biological approaches have identified several Ca(2+)-permeable ion channel families as important regulators of Ca(2+) homeostasis in kidney. These ion channel families include transient receptor potential channels (TRP), voltage-gated calcium channels, and others. In this review, we provide a brief and systematic summary of the expression, function, and pathological contribution for each of these Ca(2+)-permeable ion channels. Moreover, we discuss their potential as future therapeutic targets.
Collapse
Affiliation(s)
- Yiming Zhou
- Department of Medicine and Glom-NExT Center for Glomerular Kidney Disease and Novel Experimental Therapeutics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Anna Greka
- Department of Medicine and Glom-NExT Center for Glomerular Kidney Disease and Novel Experimental Therapeutics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
12
|
Garlapow ME, Huang W, Yarboro MT, Peterson KR, Mackay TFC. Quantitative Genetics of Food Intake in Drosophila melanogaster. PLoS One 2015; 10:e0138129. [PMID: 26375667 PMCID: PMC4574202 DOI: 10.1371/journal.pone.0138129] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022] Open
Abstract
Food intake is an essential animal activity, regulated by neural circuits that motivate food localization, evaluate nutritional content and acceptance or rejection responses through the gustatory system, and regulate neuroendocrine feedback loops that maintain energy homeostasis. Excess food consumption in people is associated with obesity and metabolic and cardiovascular disorders. However, little is known about the genetic basis of natural variation in food consumption. To gain insights in evolutionarily conserved genetic principles that regulate food intake, we took advantage of a model system, Drosophila melanogaster, in which food intake, environmental conditions and genetic background can be controlled precisely. We quantified variation in food intake among 182 inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP). We found significant genetic variation in the mean and within-line environmental variance of food consumption and observed sexual dimorphism and genetic variation in sexual dimorphism for both food intake traits (mean and variance). We performed genome wide association (GWA) analyses for mean food intake and environmental variance of food intake (using the coefficient of environmental variation, CVE, as the metric for environmental variance) and identified molecular polymorphisms associated with both traits. Validation experiments using RNAi-knockdown confirmed 24 of 31 (77%) candidate genes affecting food intake and/or variance of food intake, and a test cross between selected DGRP lines confirmed a SNP affecting mean food intake identified in the GWA analysis. The majority of the validated candidate genes were novel with respect to feeding behavior, and many had mammalian orthologs implicated in metabolic diseases.
Collapse
Affiliation(s)
- Megan E. Garlapow
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695–7614, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Wen Huang
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695–7614, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Michael T. Yarboro
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Kara R. Peterson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Trudy F. C. Mackay
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695–7614, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695, United States of America
- * E-mail:
| |
Collapse
|
13
|
Classical Transient Receptor Potential 1 (TRPC1): Channel or Channel Regulator? Cells 2014; 3:939-62. [PMID: 25268281 PMCID: PMC4276908 DOI: 10.3390/cells3040939] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/07/2014] [Accepted: 09/18/2014] [Indexed: 11/16/2022] Open
Abstract
In contrast to other Classical Transient Receptor Potential TRPC channels the function of TRPC1 as an ion channel is a matter of debate, because it is often difficult to obtain substantial functional signals over background in response to over-expression of TRPC1 alone. Along these lines, heterologously expressed TRPC1 is poorly translocated to the plasma membrane as a homotetramer and may not function on its own physiologically, but may rather be an important linker and regulator protein in heteromeric TRPC channel tetramers. However, due to the lack of specific TRPC1 antibodies able to detect native TRPC1 channels in primary cells, identification of functional TRPC1 containing heteromeric TRPC channel complexes in the plasma membrane is still challenging. Moreover, an extended TRPC1 cDNA, which was recently discovered, may seriously question results obtained in heterologous expression systems transfected with shortened cDNA versions. Therefore, this review will focus on the current status of research on TRPC1 function obtained in primary cells and a TRPC1-deficient mouse model.
Collapse
|
14
|
He F, Peng F, Xia X, Zhao C, Luo Q, Guan W, Li Z, Yu X, Huang F. MiR-135a promotes renal fibrosis in diabetic nephropathy by regulating TRPC1. Diabetologia 2014; 57:1726-36. [PMID: 24908566 DOI: 10.1007/s00125-014-3282-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS The contribution of aberrantly expressed microRNAs (miRNAs) to diabetic nephropathy in vivo is poorly understood. METHODS Integrated comparative miRNA array profiling was used to examine the expression of serum miRNAs in patients with diabetic nephropathy. The abundance of miRNA-135a (miR-135a) was measured by real-time quantitative PCR in the serum and kidney tissues of patients with diabetic nephropathy. The luciferase assay combined with mutation and immunoblotting was used to screen and verify the bioinformatically predicted miRNAs. Ca(2+) entry or intracellular Ca(2+) ([Ca(2+)]i) was performed by imaging Fura-2/AM-loaded cells using a fluorescence microscopy system. The role of miR-135a in vivo was explored with locked nucleic acid antisense oligonucleotides. RESULTS MiR-135a was markedly upregulated in serum and renal tissue from patients with diabetic nephropathy, as well from db/db mice, and this was associated with the development of microalbuminuria and renal fibrosis. Furthermore, we identified transient receptor potential cation channel, subfamily C, member 1 (TRPC1) as a target of miR-135a during renal injury. We demonstrated that overexpression of TRPC1 was able to reverse the pathological effects of miR-135a on promoting proliferation of mesangial cells and increasing synthesis of extracellular matrix proteins. Moreover, miR-135a attenuated store depletion-induced Ca(2+) entry into cells by regulating TRPC1. Importantly, knockdown of miR-135a in diabetic kidneys restored levels of TRPC1 and reduced synthesis of fibronectin and collagen I in vivo. Suppressing TRPC1 levels to prevent Ca(2+) entry into cells may be a mechanism whereby miR-135a promotes renal fibrosis in diabetic kidney injury. CONCLUSIONS/INTERPRETATION These findings suggest an important role for miR-135a in renal fibrosis and inhibition of miR-135a might be an effective therapy for diabetic nephropathy.
Collapse
Affiliation(s)
- Feng He
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, Zhongshan Road II, 510080, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nilius B, Szallasi A. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 2014; 66:676-814. [PMID: 24951385 DOI: 10.1124/pr.113.008268] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The large Trp gene family encodes transient receptor potential (TRP) proteins that form novel cation-selective ion channels. In mammals, 28 Trp channel genes have been identified. TRP proteins exhibit diverse permeation and gating properties and are involved in a plethora of physiologic functions with a strong impact on cellular sensing and signaling pathways. Indeed, mutations in human genes encoding TRP channels, the so-called "TRP channelopathies," are responsible for a number of hereditary diseases that affect the musculoskeletal, cardiovascular, genitourinary, and nervous systems. This review gives an overview of the functional properties of mammalian TRP channels, describes their roles in acquired and hereditary diseases, and discusses their potential as drug targets for therapeutic intervention.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| | - Arpad Szallasi
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| |
Collapse
|
16
|
Abstract
The TRPC1 ion channel was the first mammalian TRP channel to be cloned. In humans, it is encoded by the TRPC1 gene located in chromosome 3. The protein is predicted to consist of six transmembrane segments with the N- and C-termini located in the cytoplasm. The extracellular loop connecting transmembrane segments 5 and 6 participates in the formation of the ionic pore region. Inside the cell, TRPC1 is present in the endoplasmic reticulum, plasma membrane, intracellular vesicles, and primary cilium, an antenna-like sensory organelle functioning as a signaling platform. In human and rodent tissues, it shows an almost ubiquitous expression. TRPC1 interacts with a diverse group of proteins including ion channel subunits, receptors, and cytosolic proteins to mediate its effect on Ca(2+) signaling. It primarily functions as a cation nonselective channel within pathways controlling Ca(2+) entry in response to cell surface receptor activation. Through these pathways, it affects basic cell functions, such as proliferation and survival, differentiation, secretion, and cell migration, as well as cell type-specific functions such as chemotropic turning of neuronal growth cones and myoblast fusion. The biological role of TRPC1 has been studied in genetically engineered mice where the Trpc1 gene has been experimentally ablated. Although these mice live to adulthood, they show defects in several organs and tissues, such as the cardiovascular, central nervous, skeletal and muscular, and immune systems. Genetic and functional studies have implicated TRPC1 in diabetic nephropathy, Parkinson's disease, Huntington's disease, Duchenne muscular dystrophy, cancer, seizures, and Darier-White skin disease.
Collapse
Affiliation(s)
- Vasyl Nesin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | | |
Collapse
|