1
|
Matei C, Nicolae I, Mitran MI, Mitran CI, Ene CD, Nicolae G, Georgescu SR, Tampa M. Biomolecular Dynamics of Nitric Oxide Metabolites and HIF1α in HPV Infection. Biomolecules 2024; 14:1172. [PMID: 39334938 PMCID: PMC11429777 DOI: 10.3390/biom14091172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Viral infections cause oxygen deprivation, leading to hypoxia or anoxia in certain tissues. The limitation of mitochondrial respiration is one of the major events during hypoxia that induces alternative metabolic activities and increased levels of certain biomolecules such as nitric oxide (NO) metabolites. In this study, we aimed to investigate the role of NO metabolites and hypoxia in HPV infection. MATERIALS AND METHODS We included 36 patients with palmoplantar warts and 36 healthy subjects and performed serum determinations of NO metabolites (direct nitrite, total nitrite, nitrate, and 3-nitrotyrosine) and HIF1α, a marker of hypoxia. RESULTS We found elevated serum levels in NO metabolites and HIF1α, and decreased direct nitrite/nitrate ratios in patients with warts versus controls. Additionally, we identified statistically significant positive correlations between NO metabolites and HIF1α levels, except for 3-nitrotyrosine. CONCLUSIONS Our findings show that HPV infection causes hypoxia and alterations in NO metabolism and suggest a link between wart development and cellular stress. Our research could provide new insights for a comprehensive understanding of the pathogenesis of cutaneous HPV infections.
Collapse
Affiliation(s)
- Clara Matei
- Department of Dermatology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ilinca Nicolae
- Department of Dermatology, 'Victor Babes' Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| | - Madalina Irina Mitran
- Department of Microbiology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristina Iulia Mitran
- Department of Microbiology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Corina Daniela Ene
- Departments of Nephrology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Nephrology, 'Carol Davila' Nephrology Hospital, 010731 Bucharest, Romania
| | - Gheorghe Nicolae
- Faculty of Psychology, Babeș-Bolyai University, 400347 Cluj-Napoca, Romania
| | - Simona Roxana Georgescu
- Department of Dermatology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Dermatology, 'Victor Babes' Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| | - Mircea Tampa
- Department of Dermatology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Dermatology, 'Victor Babes' Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| |
Collapse
|
2
|
Hu X, Li Y, Cao Y, Shi F, Shang L. The role of nitric oxide synthase/ nitric oxide in infection-related cancers: Beyond antimicrobial activity. Biochim Biophys Acta Rev Cancer 2024; 1879:189156. [PMID: 39032540 DOI: 10.1016/j.bbcan.2024.189156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
As a free radical and endogenous effector molecule, mammalian endogenous nitric oxide (NO) is mainly derived from nitric oxide synthase (NOS) via L-arginine. NO participates in normal physiological reactions and provides immune responses to prevent the invasion of foreign bacteria. However, NO also has complex and contradictory biological effects. Abnormal NO signaling is involved in the progression of many diseases, such as cancer. In the past decades, cancer research has been closely linked with NOS/ NO, and many tumors with poor prognosis are associated with high expression of NOS. In this review, we give a overview of the biological effects of NOS/ NO. Then we focus on the oncogenic role of iNOS/ NO in HPV, HBV, EBV and H. pylori related tumors. In fact, there is growing evidence that iNOS could be used as a potential therapeutic target in cancer therapy. We emphasize that the pro-tumor effect of NOS/ NO is greater than the anti-tumor effect.
Collapse
Affiliation(s)
- Xudong Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Li Shang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China.
| |
Collapse
|
3
|
Inácio Â, Aguiar L, Rodrigues B, Pires P, Ferreira J, Matos A, Mendonça I, Rosa R, Bicho M, Medeiros R, Bicho MC. Genetic Modulation of HPV Infection and Cervical Lesions: Role of Oxidative Stress-Related Genes. Antioxidants (Basel) 2023; 12:1806. [PMID: 37891885 PMCID: PMC10604255 DOI: 10.3390/antiox12101806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Human papillomavirus (HPV) infection is a necessary but not sufficient factor for the development of invasive cervical cancer (ICC) and high-grade intraepithelial lesion (HSIL). Oxidative stress is known to play a crucial role in HPV infection and carcinogenesis. In this study, we comprehensively investigate the modulation of HPV infection, HSIL and ICC, and ICC through an exploration of oxidative stress-related genes: CβS, MTHFR, NOS3, ACE1, CYBA, HAP, ACP1, GSTT1, GSTM1, and CYP1A1. Notably, the ACE1 gene emerges as a prominent factor with the presence of the I allele offering protection against HPV infection. The association of NOS3 with HPV infection is perceived with the 4a allele showing a protective effect. The presence of the GSTT1 null mutant correlates with increased susceptibility to HPV infection, HSIL and ICC, and ICC. This study also uncovers intriguing epistatic interactions among some of the genes that further accentuate their roles in disease modulation. Indeed, the epistatic interactions between the BB genotype (ACP1) and DD genotype (ECA1) were shown to increase the risk of HPV infection, and the interaction between BB (ACP1) and 0.0 (GSTT1) was associated with HPV infection and cervical lesions. These findings underscore the pivotal role of four oxidative stress-related genes in HPV-associated cervical lesions and cancer development, enriching our clinical understanding of the genetic influences on disease manifestation. The awareness of these genetic variations holds potential clinical implications.
Collapse
Affiliation(s)
- Ângela Inácio
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Saúde Ambiental (ISAMB) e Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto Bento da Rocha Cabral, 1250-047 Lisboa, Portugal
| | - Laura Aguiar
- Instituto de Saúde Ambiental (ISAMB) e Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto Bento da Rocha Cabral, 1250-047 Lisboa, Portugal
| | - Beatriz Rodrigues
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Patrícia Pires
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Joana Ferreira
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Saúde Ambiental (ISAMB) e Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto Bento da Rocha Cabral, 1250-047 Lisboa, Portugal
| | - Andreia Matos
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Saúde Ambiental (ISAMB) e Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto Bento da Rocha Cabral, 1250-047 Lisboa, Portugal
| | - Inês Mendonça
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Raquel Rosa
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Manuel Bicho
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Saúde Ambiental (ISAMB) e Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto Bento da Rocha Cabral, 1250-047 Lisboa, Portugal
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology Group, Research Center (CI-IPOP)/RISE@CI-IPOP, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Maria Clara Bicho
- Instituto de Saúde Ambiental (ISAMB) e Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Preventiva e Saúde Pública, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
4
|
Regulation of pleiotropic physiological roles of nitric oxide signaling. Cell Signal 2023; 101:110496. [PMID: 36252791 DOI: 10.1016/j.cellsig.2022.110496] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Nitric Oxide (NO) is a highly diffusible, ubiquitous signaling molecule and a free radical that is naturally synthesized by our body. The pleiotropic effects of NO in biological systems are due to its reactivity with different molecules, such as molecular oxygen (O2), superoxide anion, DNA, lipids, and proteins. There are several contradictory findings in the literature pertaining to its role in oncology. NO is a Janus-faced molecule shown to have both tumor promoting and tumoricidal effects, which depend on its concentration, duration of exposure, and location. A high concentration is shown to have cytotoxic effects by triggering apoptosis, and at a low concentration, NO promotes angiogenesis, metastasis, and tumor progression. Upregulated NO synthesis has been implicated as a causal factor in several pathophysiological conditions including cancer. This dichotomous effect makes it highly challenging to discover its true potential in cancer biology. Understanding the mechanisms by which NO acts in different cancers helps to develop NO based therapeutic strategies for cancer treatment. This review addresses the physiological role of this molecule, with a focus on its bimodal action in various types of cancers.
Collapse
|
5
|
Paired Box-1 (PAX1) Activates Multiple Phosphatases and Inhibits Kinase Cascades in Cervical Cancer. Sci Rep 2019; 9:9195. [PMID: 31235851 PMCID: PMC6591413 DOI: 10.1038/s41598-019-45477-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
DNA methylation alteration, such as global hypomethylation and localized hypermethylation, within the promoters of tumor suppressor genes, is an important risk factor in cervical cancer. The potential use of DNA methylation detection, in cervical cancer screening or triage of mildly abnormal cytology, has recently been demonstrated. In particular, PAX1 DNA methylation testing was approved as an adjunct to cytology, in Taiwan, and is now undergoing registration trials in China. However, the function of PAX1 in cancer biology remains largely unknown. Here, we show that PAX1 inhibits malignant phenotypes upon oncogenic stress. Specifically, PAX1 expression inhibited the phosphorylation of multiple kinases, after challenges with oncogenic growth factors such as EGF and IL-6. Analogously, PAX1 activated a panel of phosphatases, including DUSP1, 5, and 6, and inhibited EGF/MAPK signaling. PAX1 also interacted with SET1B, increasing histone H3K4 methylation and DNA demethylation of numerous phosphatase-encoding genes. Furthermore, hypermethylated PAX1 associated with poor prognosis in cervical cancer. Taken together, this study reveals, for the first time, the functional relevance of PAX1 in cancer biology, and further supports the prospect of targeting multifold oncogenic kinase cascades, which jointly contribute to multiresistance, via epigenetic reactivation of PAX1.
Collapse
|
6
|
Monro JA, Puri BK. A Molecular Neurobiological Approach to Understanding the Aetiology of Chronic Fatigue Syndrome (Myalgic Encephalomyelitis or Systemic Exertion Intolerance Disease) with Treatment Implications. Mol Neurobiol 2018; 55:7377-7388. [PMID: 29411266 PMCID: PMC6096969 DOI: 10.1007/s12035-018-0928-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Currently, a psychologically based model is widely held to be the basis for the aetiology and treatment of chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME)/systemic exertion intolerance disease (SEID). However, an alternative, molecular neurobiological approach is possible and in this paper evidence demonstrating a biological aetiology for CFS/ME/SEID is adduced from a study of the history of the disease and a consideration of the role of the following in this disease: nitric oxide and peroxynitrite, oxidative and nitrosative stress, the blood–brain barrier and intestinal permeability, cytokines and infections, metabolism, structural and chemical brain changes, neurophysiological changes and calcium ion mobilisation. Evidence is also detailed for biologically based potential therapeutic options, including: nutritional supplementation, for example in order to downregulate the nitric oxide-peroxynitrite cycle to prevent its perpetuation; antiviral therapy; and monoclonal antibody treatment. It is concluded that there is strong evidence of a molecular neurobiological aetiology, and so it is suggested that biologically based therapeutic interventions should constitute a focus for future research into CFS/ME/SEID.
Collapse
Affiliation(s)
- Jean A Monro
- Breakspear Medical Group, Hemel Hempstead, England, UK
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
7
|
Su PH, Hsu YW, Huang RL, Weng YC, Wang HC, Chen YC, Tsai YJ, Yuan CC, Lai HC. Methylomics of nitroxidative stress on precancerous cells reveals DNA methylation alteration at the transition from in situ to invasive cervical cancer. Oncotarget 2017; 8:65281-65291. [PMID: 29029430 PMCID: PMC5630330 DOI: 10.18632/oncotarget.18370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/26/2017] [Indexed: 12/30/2022] Open
Abstract
Epigenetic dysregulation is important in cervical cancer development, but the underlying mechanism is largely unknown. Increasing evidence indicates that DNA methylation is sensitive to changes in microenvironmental factors, such as nitric oxide (NO) in the chronic inflammatory cervix. However, the epigenomic effects of NO in cancer have not been investigated. In this study, we explored the methylomic effects of nitroxidative stress in HPV-immortalized precancerous cells. Chronic NO exposure promoted the acquisition of malignant phenotypes such as cell growth, migration, invasion, and anchorage-independent growth. Epigenetic analysis confirmed hypermethylation of PTPRR. Whole-genome methylation analysis showed BOLA2B, FGF8, HSPA6, LYPD2, and SHE were hypermethylated in cells. The hypermethylation BOLA2B, FGF8, HSPA6, and SHE was confirmed in cervical scrapings from invasive cancer, but not in CIN3/CIS, CIN2 and CIN1 (p=0.019, 0.023, 0.023 and 0.027 respectively), suggesting the role in the transition from in situ to invasive process. Our results reveal that nitroxidative stress causes epigenetic changes in HPV-infected cells. Investigation of these methylation changes in persistent HPV infection may help identify new biomarkers of DNA methylation for cervical cancer screening, especially for precancerous lesions.
Collapse
Affiliation(s)
- Po-Hsuan Su
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Wen Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Rui-Lan Huang
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Weng
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hui-Chen Wang
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chih Chen
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yueh-Ju Tsai
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Chung Yuan
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hung-Cheng Lai
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| |
Collapse
|
8
|
Guillaud M, Buys TPH, Carraro A, Korbelik J, Follen M, Scheurer M, Storthz KA, van Niekerk D, MacAulay CE. Evaluation of HPV infection and smoking status impacts on cell proliferation in epithelial layers of cervical neoplasia. PLoS One 2014; 9:e107088. [PMID: 25210770 PMCID: PMC4161429 DOI: 10.1371/journal.pone.0107088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/05/2014] [Indexed: 12/14/2022] Open
Abstract
Accurate cervical intra-epithelial neoplasia (CIN) lesion grading is needed for effective patient management. We applied computer-assisted scanning and analytic approaches to immuno-stained CIN lesion sections to more accurately delineate disease states and decipher cell proliferation impacts from HPV and smoking within individual epithelial layers. A patient cohort undergoing cervical screening was identified (n = 196) and biopsies of varying disease grades and with intact basement membranes and epithelial layers were obtained (n = 261). Specimens were sectioned, stained (Mib1), and scanned using a high-resolution imaging system. We achieved semi-automated delineation of proliferation status and epithelial cell layers using Otsu segmentation, manual image review, Voronoi tessellation, and immuno-staining. Data were interrogated against known status for HPV infection, smoking, and disease grade. We observed increased cell proliferation and decreased epithelial thickness with increased disease grade (when analyzing the epithelium at full thickness). Analysis within individual cell layers showed a ≥50% increase in cell proliferation for CIN2 vs. CIN1 lesions in higher epithelial layers (with minimal differences seen in basal/parabasal layers). Higher rates of proliferation for HPV-positive vs. -negative cases were seen in epithelial layers beyond the basal/parabasal layers in normal and CIN1 tissues. Comparing smokers vs. non-smokers, we observed increased cell proliferation in parabasal (low and high grade lesions) and basal layers (high grade only). In sum, we report CIN grade-specific differences in cell proliferation within individual epithelial layers. We also show HPV and smoking impacts on cell layer-specific proliferation. Our findings yield insight into CIN progression biology and demonstrate that rigorous, semi-automated imaging of histopathological specimens may be applied to improve disease grading accuracy.
Collapse
Affiliation(s)
- Martial Guillaud
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- * E-mail:
| | - Timon P. H. Buys
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Anita Carraro
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Jagoda Korbelik
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Michele Follen
- Department of Obstetrics and Gynecology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, Texas, United States of America
| | - Michael Scheurer
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Karen Adler Storthz
- Department of Diagnostic Sciences, School of Dentistry, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Dirk van Niekerk
- Department of Pathology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Calum E. MacAulay
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Fernandes ATG, da Rocha NP, Avvad E, Grinsztejn BJ, Russomano F, Tristão A, Quintana MDSB, Perez MA, Conceição-Silva F, Bonecini-Almeida MDG. Balance of apoptotic and anti-apoptotic marker and perforin granule release in squamous intraepithelial lesions. HIV infection leads to a decrease in perforin degranulation. Exp Mol Pathol 2013; 95:166-73. [PMID: 23791892 DOI: 10.1016/j.yexmp.2013.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/07/2013] [Indexed: 11/28/2022]
Abstract
Cell-mediated cytotoxicity plays an important role in the regulation to HPV-associated cervical intraepithelial neoplasia. HIV co-infection is related to poorer prognosis and more rapid clinical progression to cancer. We evaluated the presence of cervical inflammatory cells, apoptotic (Bax, Bcl-2, FasL, NOS2, perforin) markers and the degranulating expressing cell marker (CD107a) in low and high squamous intraepithelial lesions (LSIL and HSIL, respectively) from HIV-negative and -positive women. Higher percentage of cervical CD4(+), CD8(+) T cells and macrophage were observed in LSIL and HSIL groups when compared with control, especially in epithelium and basal layer of epithelium. However, progression from LSIL to HSIL did not change the frequency of inflammatory cells. HIV-infection lead to a reduction on cervical CD4(+) T cell infiltration and an increased CD8(+) T cell distribution in LSIL groups. A balance between pro- and anti-apoptotic protein expressions was verified. Bax-expressing cells were present in all groups and were rarely expressed in keratinocytes in the epithelium in LSIL and control groups, but notably decreased in HSIL group. However, its frequency was enhanced in the basal layer of the epithelium meanly in LSIL group. Bcl2-expressing cells in the epithelium and the stroma were enhanced in HSIL group when compared with LSIL group. HIV-infection did not interfere in both expressions NOS2 expression was located on keratinocytes in both LSIL and HSIL groups when compared with control group. There were few FasL cervical expressing cells in all groups. Indeed, perforin was identified in few cervical cells. However, CD107a, a surface marker for cellular degranulation was significantly higher in epithelium, basal layer of epithelium and stroma in LSIL and HSIL, respectively, when compared with control group. These results support that HIV infection may induce reduction on inflammatory cervical cell degranulation corroborating to carcinogenesis process. This is the first description on the role of HIV in downregulation of perforin degranulation in the cervical lesions and it might be related to carcinogenesis.
Collapse
Affiliation(s)
- Ana Teresa G Fernandes
- Laboratory of Immunology and Immunogenetic in Infectious Diseases at Evandro Chagas Clinical Research Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rahkola-Soisalo P, Mikkola TS, Vuorento S, Ylikorkala O, Väisänen-Tommiska M. Smoking is accompanied by a suppressed cervical nitric oxide release in women with high-risk human papillomavirus infection. Acta Obstet Gynecol Scand 2013; 92:711-5. [DOI: 10.1111/aogs.12119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/10/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Päivi Rahkola-Soisalo
- Department of Obstetrics and Gynecology; Helsinki University Central Hospital; University of Helsinki; Helsinki; Finland
| | - Tomi S. Mikkola
- Department of Obstetrics and Gynecology; Helsinki University Central Hospital; University of Helsinki; Helsinki; Finland
| | - Saara Vuorento
- Department of Obstetrics and Gynecology; Helsinki University Central Hospital; University of Helsinki; Helsinki; Finland
| | - Olavi Ylikorkala
- Department of Obstetrics and Gynecology; Helsinki University Central Hospital; University of Helsinki; Helsinki; Finland
| | - Mervi Väisänen-Tommiska
- Department of Obstetrics and Gynecology; Helsinki University Central Hospital; University of Helsinki; Helsinki; Finland
| |
Collapse
|