1
|
Luo F, Chen T, Chen S, Bai D, Li X. Regulation of osteoclast-mediated bone resorption by lipids. Bone 2025; 193:117423. [PMID: 39933643 DOI: 10.1016/j.bone.2025.117423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Hyperactivation of osteoclasts has been identified as a significant etiological factor in several bone resorption-related disorders, including osteoporosis, periodontitis, arthritis, and bone metastasis of tumors. It has been demonstrated that the severity of these diseases is influenced by lipids that regulate osteoclast differentiation and activity through specific signaling pathways and cytokine levels. The regulatory mechanisms of different types of lipids on osteoclastogenesis vary across diverse disease contexts in bone resorption regulated by osteoclasts. This review presents an overview of the mechanisms underlying osteoclast formation and summarizes the pathways through which various lipids regulate osteoclastogenesis in different pathological contexts. We also discuss effective therapeutic strategies for osteolytic diseases based on modulation of lipid metabolism.
Collapse
Affiliation(s)
- Fang Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tianyi Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Al Saedi A, Yacoub AS, Awad K, Karasik D, Brotto M, Duque G. The Interplay of Lipid Signaling in Musculoskeletal Cross Talk: Implications for Health and Disease. Methods Mol Biol 2024; 2816:1-11. [PMID: 38977583 DOI: 10.1007/978-1-0716-3902-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The intricate interplay between the muscle and bone tissues is a fundamental aspect of musculoskeletal physiology. Over the past decades, emerging research has highlighted the pivotal role of lipid signaling in mediating communication between these tissues. This chapter delves into the multifaceted mechanisms through which lipids, particularly phospholipids, sphingolipids, and eicosanoids, participate in orchestrating cellular responses and metabolic pathways in both muscle and bone. Additionally, we examine the clinical implications of disrupted lipid signaling in musculoskeletal disorders, offering insights into potential therapeutic avenues. This chapter aims to shed light on the complex lipid-driven interactions between the muscle and bone tissues, paving the way for a deeper understanding of musculoskeletal health and disease.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Ahmed S Yacoub
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Kamal Awad
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Gustavo Duque
- Research Institute of McGill University Health Center, Department of Medicine, McGill University, Québec, Canada
| |
Collapse
|
3
|
Hamdan N, Bhagirath AY, Batista EL. Sphingosine kinase activity and sphingosine-1-phosphate in the inflamed human periodontium. Oral Dis 2023; 29:265-273. [PMID: 34370362 DOI: 10.1111/odi.13995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES This study evaluated changes in the levels of Sphingosine-1-Phosphate (S1P) and Sphingosine Kinase (SPHK) activity in response to non-surgical periodontal treatment in humans. METHODS Diseased (n = 65) and healthy sites (n = 72) were screened in 18 patients with localized periodontitis stage II or III. Periodontal clinical parameters were recorded, and the gingival crevicular fluid (GCF) collected at baseline, 30 and 90 days of non-surgical treatment. Internal control sites without attachment loss/bleeding were sampled at baseline and after 90 days of treatment. SPHK activity and S1P levels and SPHK 1/2 isoforms were determined in the GCF at different time points using ELISA. RESULTS Non-surgical treatment caused significant improvement in all periodontal clinical parameters (p < 0.01). Activity of SPHK and S1P levels was decreased (p < 0.05) 30 days after treatment and continued up to 90 days (p < 0.01); control sites remained unchanged throughout the study and resembled treated sites at 3 months (p > 0.05). SPHK1 levels presented decrease after periodontal treatment (p < 0.001). SPHK2 levels were lower than SPHK1 (p < 0.001) and remained unchanged. CONCLUSIONS S1P levels and SPHK activity decreased within 3 months of non-surgical periodontal treatment, which were correlated with improvements in periodontal parameters. Only SPHK1 levels varied significantly in the states of health and disease.
Collapse
Affiliation(s)
- Nader Hamdan
- Department of Dental Clinical Sciences, Division of Periodontics, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
| | - Anjali Y Bhagirath
- Department of Oral Biology, Max Rady Faculty of Health Sciences, Gerald Niznick College of Dentistry, Winnipeg, MB, Canada
| | - Eraldo L Batista
- Department of Dental Clinical Sciences, Division of Periodontics, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada.,Department of Dental Diagnostics and Surgical Sciences, Max Rady Faculty of Health Sciences, Gerald Niznick College of Dentistry, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Hashimura S, Kido J, Matsuda R, Yokota M, Matsui H, Inoue-Fujiwara M, Inagaki Y, Hidaka M, Tanaka T, Tsutsumi T, Nagata T, Tokumura A. A low level of lysophosphatidic acid in human gingival crevicular fluid from patients with periodontitis due to high soluble lysophospholipase activity: Its potential protective role on alveolar bone loss by periodontitis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158698. [PMID: 32179099 DOI: 10.1016/j.bbalip.2020.158698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 01/21/2023]
Abstract
We previously detected a submicromolar concentration of lysophosphatidic acid (LPA) in human saliva. Here, we compare LPA concentrations in human gingival crevicular fluid (GCF) from patients with periodontitis and healthy controls, and examine how the local LPA levels are regulated enzymatically. The concentrations of LPA and its precursor lysophospholipids in GCF was measured by liquid chromatography-tandem mass spectrometry. The LPA-producing and LPA-degrading enzymatic activities were measured by quantifying the liberated choline and free fatty acid, respectively. The concentration of LPA in GCF of periodontitis patients was lower than that of healthy controls, due to higher soluble lysophospholipase activity toward LPA. LPA was found to prevent survival of Sa3, a human gingival epithelium-derived tumor cell line, activate Sa3 through Ca2+ mobilization, and release interleukin 6 from Sa3 in vitro. Furthermore, local injection of LPA into the gingiva attenuated ligature-induced experimental alveolar bone loss induced by oral bacteria inoculation in a rat model of periodontitis in vivo. A high concentration of LPA in human GCF is necessary to maintain normal gingival epithelial integrity and function, protecting the progression of periodontitis.
Collapse
Affiliation(s)
- Satoru Hashimura
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan
| | - Junichi Kido
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushioma 770-8504, Japan
| | - Risa Matsuda
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan
| | - Miho Yokota
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan
| | - Hirokazu Matsui
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan
| | - Manami Inoue-Fujiwara
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan
| | - Yuji Inagaki
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushioma 770-8504, Japan
| | - Mayumi Hidaka
- Department of Life Science, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 730-0153, Japan
| | - Tamotsu Tanaka
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan; Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Toshihiko Tsutsumi
- Department of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka 882-8508, Japan
| | - Toshihiko Nagata
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushioma 770-8504, Japan
| | - Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan; Department of Life Science, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 730-0153, Japan.
| |
Collapse
|
5
|
Voinea C, Gonzalez Rodriguez E, Beigelman-Aubry C, Leroy V, Aubry-Rozier B, Campos-Xavier B, Ballhausen D, Lazor R, Barbey F, Bonafé L, Superti-Furga A, Tran C. Hepatosplenomegaly, pneumopathy, bone changes and fronto-temporal dementia: Niemann-Pick type B and SQSTM1-associated Paget's disease in the same individual. J Bone Miner Metab 2019; 37:378-383. [PMID: 29948344 DOI: 10.1007/s00774-018-0932-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023]
Abstract
Data from exome sequencing show that a proportion of individuals in whom a genetic disorder is suspected turn out to have not one, but two to four distinct ones. This may require an evolution in our diagnostic attitude towards individuals with complex disorders. We report a patient with splenomegaly, pneumopathy, bone changes and fronto-temporal dementia (FTD). "Sea-blue histiocytes" in his bone marrow pointed to a lysosomal storage disease. Homozygosity for a pathogenic mutation in the SMPD1 gene confirmed Niemann-Pick disease type B (NPD-B). Mild cognitive impairment and abnormal brain FDG PET were consistent with FTD. We initially tried to fit the skeletal and neurologic phenotype into the NPD-B diagnosis. However, additional studies revealed a pathogenic mutation in the SQSTM1 gene. Thus, our patient had two distinct diseases; NPD-B, and Paget's disease of bone with FTD. The subsequent finding of a mutation in SQSTM1 gene ended our struggle to explain the combination of findings by a singular "unifying" diagnosis and allowed us to make specific therapeutic decisions. SQSTM1 mutations have been reported in association with FTD, possibly because of defective autophagy. Bisphosphonates may be beneficial for PDB, but since they are known to inhibit acid sphingomyelinase activity, we refrained from using them in this patient. While the principle of looking for unifying diagnosis remains valid, physicians should consider the possibility of co-existing multiple diagnoses when clinical features are difficult to explain by a single one. Accurate diagnostic work-up can guide genetic counseling but also lead to better medical management.
Collapse
Affiliation(s)
- Camelia Voinea
- Respiratory Medicine Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Elena Gonzalez Rodriguez
- Service of Endocrinology, Diabetes and Metabolism, Internal Medicine Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Catherine Beigelman-Aubry
- Department of Radiodiagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Victor Leroy
- Leenaards Memory Centre, Clinical Neuroscience Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Bérengère Aubry-Rozier
- Service of Endocrinology, Diabetes and Metabolism, Internal Medicine Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Belinda Campos-Xavier
- Division of Genetic Medicine, Lausanne University Hospital, Center for Molecular Diseases, Lausanne, Switzerland
| | - Diana Ballhausen
- Division of Genetic Medicine, Lausanne University Hospital, Center for Molecular Diseases, Lausanne, Switzerland
| | - Romain Lazor
- Respiratory Medicine Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Frédéric Barbey
- Division of Genetic Medicine, Lausanne University Hospital, Center for Molecular Diseases, Lausanne, Switzerland
| | - Luisa Bonafé
- Division of Genetic Medicine, Lausanne University Hospital, Center for Molecular Diseases, Lausanne, Switzerland
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital, Center for Molecular Diseases, Lausanne, Switzerland
| | - Christel Tran
- Division of Genetic Medicine, Lausanne University Hospital, Center for Molecular Diseases, Lausanne, Switzerland.
| |
Collapse
|
6
|
Lysophosphatidic Acid Analogue rather than Lysophosphatidic Acid Promoted the Bone Formation In Vivo. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7537630. [PMID: 30003106 PMCID: PMC5996417 DOI: 10.1155/2018/7537630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/20/2018] [Indexed: 12/29/2022]
Abstract
Lysophosphatidic acid (LPA), a bioactive lipid molecule, has recently emerged as physiological and pathophysiological regulator in skeletal biology. Here we evaluate the effects of LPA on bone formation in vivo in murine femoral critical defect model. Primary femoral osteoblasts were isolated and treated with osteogenic induction conditional media supplemented with 20 μM LPA or LPA analogue. Mineralized nodules were visualized by Alizarin Red S staining. Forty-five C57BL/6 mice underwent unilateral osteotomy. The femoral osteotomy gap was filled with porous scaffolds of degradable chitosan/beta-tricalcium phosphate containing PBS, LPA, or LPA analogue. 2, 5, and 10 weeks after surgery, mice were sacrificed and femurs were harvested and prepared for Micro-Computed Tomography (Micro-CT) and histological analysis. Alizarin Red S staining showed that LPA and LPA analogue significantly enhanced the mineral deposition in osteoblasts. Micro-CT 3D reconstruction images and HE staining revealed that significantly more newly formed bone in osteotomy was treated with LPA analogue when compared to control and LPA group, which was verified by histological analysis and biomechanical characterization testing. In summary, our study demonstrated that although LPA promotes mineralized matrix formation in vitro, the locally administrated LPA was not effective in promoting bone formation in vivo. And bone formation was enhanced by LPA analogue, administrated locally in vivo. LPA analogue was a potent stimulating factor for bone formation in vivo due to its excellent stability.
Collapse
|
7
|
Kim BJ, Shin KO, Kim H, Ahn SH, Lee SH, Seo CH, Byun SE, Chang JS, Koh JM, Lee YM. The effect of sphingosine-1-phosphate on bone metabolism in humans depends on its plasma/bone marrow gradient. J Endocrinol Invest 2016. [PMID: 26219613 DOI: 10.1007/s40618-015-0364-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Although recent studies provide clinical evidence that sphingosine-1-phosphate (S1P) may primarily affect bone resorption in humans, rather than bone formation or the osteoclast-osteoblast coupling phenomenon, those studies could not determine which bone resorption mechanism is more important, i.e., chemorepulsion of osteoclast precursors via the blood to bone marrow S1P gradient or receptor activator of NF-κB ligand (RANKL) elevation in osteoblasts via local S1P. AIM To investigate how S1P mainly contributes to increased bone resorption in humans, we performed this case-control study at a clinical unit in Korea. METHODS Blood and bone marrow samples were contemporaneously collected from 70 patients who underwent hip surgery due to either osteoporotic hip fracture (HF) (n = 10) or other causes such as osteoarthritis (n = 60). RESULTS After adjusting for sex, age, BMI, smoking, alcohol, previous fracture, diabetes, and stroke, subjects with osteoporotic HF demonstrated a 3.2-fold higher plasma/bone marrow S1P ratio than those without HF, whereas plasma and bone marrow S1P levels were not significantly different between these groups. Consistently, the risk of osteoporotic HF increased 1.38-fold per increment in the plasma/bone marrow S1P ratio in a multivariate adjustment model. However, the odds ratios for prevalent HF according to the increment in the plasma and bone marrow S1P level were not statistically significant. CONCLUSION Our current results using simultaneously collected blood and bone marrow samples suggest that the detrimental effects of S1P on bone metabolism in humans may depend on the S1P gradient between the peripheral blood and bone marrow cavity.
Collapse
Affiliation(s)
- B-J Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | - K-O Shin
- College of Pharmacy and MRC, Chungbuk National University, Cheongju, 361-763, Korea
| | - H Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | - S H Ahn
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | - S H Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | - C-H Seo
- College of Pharmacy and MRC, Chungbuk National University, Cheongju, 361-763, Korea
| | - S-E Byun
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University, Seongnam, 463-712, Korea
| | - J S Chang
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | - J-M Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Korea.
| | - Y-M Lee
- College of Pharmacy and MRC, Chungbuk National University, Cheongju, 361-763, Korea.
| |
Collapse
|
8
|
Rittenhouse-Olson K. Letter from the Editor. Immunol Invest 2015; 44:713-8. [PMID: 26575460 DOI: 10.3109/08820139.2015.1099411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Rittenhouse-Olson K. Letter from the editor: immunological Investigations. Immunol Invest 2014; 43:727-33. [PMID: 25296230 DOI: 10.3109/08820139.2014.962855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|