1
|
Fathi M, Nezamzadeh R, Abdollahpour-Alitappeh M, Yazdi MH, Khoramabadi N, Mahdavi M. Formulation of a recombinant HIV-1 polytope candidate vaccine with naloxone/alum mixture: induction of multi-cytokine responses with a higher regulatory mechanism. APMIS 2021; 129:480-488. [PMID: 33539574 DOI: 10.1111/apm.13122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/31/2021] [Indexed: 11/26/2022]
Abstract
The potency of a vaccine highly depends upon the nature of the adjuvant used. There are a variety of ineffective vaccines, such as HIV-1 vaccine candidates, that need to be optimized with new adjuvant formulations to improve vaccine potency and efficacy. Studies show the potency of naloxone (NLX)/alum mixture in the induction of Th1/Th2 response for vaccine. However, other immunologic patterns inducing by this adjuvant and its immunoregulatory effect is unclear. In this regard, the aim of the present study was to investigate the effect of the NLX/alum mixture, as an adjuvant, on cytokine networks and immunoregulatory activity for an HIV-1 polytope vaccine. BALB/c mice were divided into six groups (n = 6) and immunized subcutaneously with 10 μg of the vaccine formulated with NLX/alum, NLX, alum, and Freund's adjuvants. At the same time, the mice in the control groups received an equal volume of PBS or NLX. The lymphocyte proliferation assay was carried out using the BrdU method. ELISA was used to measure the levels of IFN-γ, IL-2, IL-4, IL-10, IL-12, and IL-17 cytokines, total IgG, as well as IgG1 and IgG2a subtypes in serum samples. Our findings showed that mice receiving the NLX/alum-adjuvanted vaccine exhibited increased antibody levels compared with other groups. In addition, there was a considerable difference in the levels of IgG1, IgG2a, IFN-γ, IL-2, IL-10, IL-12, and IL-17 in mice receiving the NLX/alum-adjuvanted vaccine as compared with other groups. The NLX/alum mixture, as an adjuvant, may have a positive effect on the induction of multi-cytokine responses, as well as the increased level of IL-10, showing its higher immunogenicity with a higher immunoregulatory mechanism.
Collapse
Affiliation(s)
- Meimanat Fathi
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Genetic, Islamic Azad University, Damghan Branch, Damghan, Iran.,Department of Cell techniques and Applied Stem Cell Biology, Center for Biotechnology and Biomedicine (BBZ), Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Reza Nezamzadeh
- Department of Genetic, Islamic Azad University, Damghan Branch, Damghan, Iran
| | | | - Mohammad Hossein Yazdi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Khoramabadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Mahdavi
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Egan CE, Sodhi CP, Good M, Lin J, Jia H, Yamaguchi Y, Lu P, Ma C, Branca MF, Weyandt S, Fulton WB, Niño DF, Prindle T, Ozolek JA, Hackam DJ. Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis. J Clin Invest 2016; 126:495-508. [PMID: 26690704 DOI: 10.1172/jci83356] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
The nature and role of the intestinal leukocytes in necrotizing enterocolitis (NEC), a severe disease affecting premature infants, remain unknown. We now show that the intestine in mouse and human NEC is rich in lymphocytes that are required for NEC development, as recombination activating gene 1–deficient (Rag1–/–) mice were protected from NEC and transfer of intestinal lymphocytes from NEC mice into naive mice induced intestinal inflammation. The intestinal expression of the lipopolysaccharide receptor TLR4, which is higher in the premature compared with full-term human and mouse intestine, is required for lymphocyte influx through TLR4-mediated upregulation of CCR9/CCL25 signaling. TLR4 also mediates a STAT3-dependent polarization toward increased proinflammatory CD3+CD4+IL-17+ and reduced tolerogenic Foxp3+ Treg lymphocytes (Tregs). Th17 lymphocytes were required for NEC development, as inhibition of STAT3 or IL-17 receptor signaling attenuated NEC in mice, while IL-17 release impaired enterocyte tight junctions, increased enterocyte apoptosis, and reduced enterocyte proliferation, leading to NEC. Importantly, TLR4-dependent Th17 polarization could be reversed by the enteral administration of retinoic acid, which induced Tregs and decreased NEC severity. These findings identify an important role for proinflammatory lymphocytes in NEC development via intestinal epithelial TLR4 that could be reversed through dietary modification.
Collapse
MESH Headings
- Animals
- Enterocolitis, Necrotizing/diet therapy
- Enterocolitis, Necrotizing/genetics
- Enterocolitis, Necrotizing/immunology
- Enterocolitis, Necrotizing/pathology
- Enterocytes/immunology
- Enterocytes/pathology
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/diet therapy
- Infant, Newborn, Diseases/genetics
- Infant, Newborn, Diseases/immunology
- Infant, Newborn, Diseases/pathology
- Mice
- Mice, Knockout
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Th17 Cells/immunology
- Th17 Cells/pathology
- Tight Junctions/genetics
- Tight Junctions/immunology
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/immunology
Collapse
|