1
|
Luo H, Zhu W, Mo W, Liang M. High‐glucose concentration aggravates TNF‐alpha‐induced cell viability reduction in human CD146‐positive periodontal ligament cells via TNFR‐1 gene demethylation. Cell Biol Int 2020; 44:2383-2394. [PMID: 32808710 DOI: 10.1002/cbin.11445] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/30/2020] [Accepted: 08/16/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Haoyuan Luo
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology Sun Yat‐Sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Stomatology Guangzhou China
| | - Wenjun Zhu
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology Sun Yat‐Sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Stomatology Guangzhou China
| | - Weiyan Mo
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology Sun Yat‐Sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Stomatology Guangzhou China
| | - Min Liang
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology Sun Yat‐Sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Stomatology Guangzhou China
| |
Collapse
|
2
|
High Glucose Exacerbates TNF- α-Induced Proliferative Inhibition in Human Periodontal Ligament Stem Cells through Upregulation and Activation of TNF Receptor 1. Stem Cells Int 2020; 2020:4910767. [PMID: 32089705 PMCID: PMC7025077 DOI: 10.1155/2020/4910767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/22/2019] [Accepted: 01/17/2020] [Indexed: 01/04/2023] Open
Abstract
Objective This research is aimed at investigating how high glucose affects the proliferation and apoptosis in periodontal ligament stem cells (PDLSCs) in the presence of TNF-α. Methods PDLSCs obtained from periodontal healthy permanent teeth were treated under either high-glucose condition (30 mmol/L, G30 group) or normal glucose condition (5.6 mmol/L, G5.6 group) in the presence or absence of TNF-α (10 ng/ml) for 2 to 6 days. Cell proliferation and cell cycle were evaluated by CCK-8, EdU incorporation assay, and flow cytometry. Cell apoptosis was assessed by annexin V/PI staining. Protein expression was detected by western blotting. Cellular ROS expression was evaluated by CellROX labeling and flow cytometry. Specific antibodies targeting TNFR1 and TNFR2 were used to block TNF-α signaling. Vitamin C was also used to verify if the blockage of ROS can rescue PDLSCs in the presence of high glucose and TNF-α. Results CCK-8 assay showed that high glucose exacerbated TNF-α-induced cell viability inhibition (57.0%, 85.2%, and 100% for the G30+TNF-α group, G5.6+TNF-α group, and control group, respectively) on day 6. High glucose increased protein expression of TNFR1 compared with the control group on day 2 (1.24-fold) and day 6 (1.26-fold). Blocking TNFR1 totally reversed the proliferative inhibition in G30+TNF-α group. The addition of vitamin C or TNFR1 antibody totally reversed the elevation of intracellular ROS expression caused by high glucose and TNF-α. Vitamin C partially restored cell proliferation in the presence of high glucose and TNF-α. Conclusion High glucose exacerbates TNF-α-induced proliferative inhibition in human periodontal ligament stem cells through the upregulation and activation of TNF receptor 1. Inhibition of intracellular ROS expression by vitamin C partially rescues PDLSCs in terms of cell proliferation.
Collapse
|
3
|
Angiotensin II type 1 receptor-associated protein deficiency attenuates sirtuin1 expression in an immortalised human renal proximal tubule cell line. Sci Rep 2019; 9:16550. [PMID: 31719572 PMCID: PMC6851135 DOI: 10.1038/s41598-019-52566-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/17/2019] [Indexed: 11/08/2022] Open
Abstract
The proximal tubule is a particularly important site for ageing-related kidney damage. Sirtuin 1 (SIRT1), an NAD+ (nicotinamide adenine dinucleotide)-dependent deacetylase in the proximal tubule, may be involved in renal injury associated with ageing. However, the mechanisms of SIRT1 regulation remain to be elucidated. We recently reported that angiotensin II type 1 receptor (AT1R)-associated protein (ATRAP)-deficient mice displayed age-associated renal function decline and tubulointerstitial fibrosis. Our data showed that SIRT1 protein expression was reduced in ATRAP-deficient mice, although the relationship between ATRAP deficiency and age-associated renal fibrosis is still not fully understood. It is, therefore, necessary to investigate how ATRAP affects SIRT1 protein expression to resolve ageing-associated kidney dysfunction. Here, since ageing studies are inherently lengthy, we used an ex vivo model of the proximal tubule to determine the role of ATRAP in SIRT1 protein expression. We first generated a clonal immortalised human renal proximal tubule epithelial cell line (ciRPTEC) expressing AT1R and ATRAP. Using this cell line, we demonstrated that ATRAP knockdown reduced SIRT1 protein expression in the ciRPTEC but did not alter SIRT1 mRNA expression. Thus, ATRAP likely mediates SIRT1 protein abundance in ciRPTEC.
Collapse
|
4
|
Umino H, Hasegawa K, Minakuchi H, Muraoka H, Kawaguchi T, Kanda T, Tokuyama H, Wakino S, Itoh H. High Basolateral Glucose Increases Sodium-Glucose Cotransporter 2 and Reduces Sirtuin-1 in Renal Tubules through Glucose Transporter-2 Detection. Sci Rep 2018; 8:6791. [PMID: 29717156 PMCID: PMC5931531 DOI: 10.1038/s41598-018-25054-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Under diabetic conditions, sodium-glucose cotransporter 2 (SGLT2) for glucose uptake in proximal tubules (PTs) increases, whereas NAD+-dependent protein deacetylase silent mating type information regulation 2 homolog 1 (Sirtuin-1; SIRT1) for PT survival decreases. Therefore, we hypothesized that increased glucose influx by SGLT2 reduces SIRT1 expression. To test this hypothesis, db/db mice with diabetes and high-glucose (HG)-cultured porcine PT LLC-PK1 cells in a two-chamber system were treated with the SGLT2 inhibitor canagliflozin. We also examined SIRT1 and SGLT2 expression in human kidney biopsies. In db/db mice, SGLT2 expression increased with concomitant decreases in SIRT1, but was inhibited by canagliflozin. For determination of the polarity of SGLT2 and SIRT1 expression, LLC-PK1 cells were seeded into Transwell chambers (pore size, 0.4 µm; Becton Dickinson, Oxford, UK). HG medium was added to either or to both of the upper and lower chambers, which corresponded to the apical and basolateral sides of the cells, respectively. In this system, the lower chamber with HG showed increased SGLT2 and decreased SIRT1 expression. Canagliflozin reversed HG-induced SIRT1 downregulation. Gene silencing and inhibitors for glucose transporter 2 (GLUT2) blocked HG-induced SGLT2 expression upregulation. Gene silencing for the hepatic nuclear factor-1α (HNF-1α), whose nuclear translocation was enhanced by HG, blocked HG-induced SGLT2 expression upregulation. Similarly, gene silencing for importin-α1, a chaperone protein bound to GLUT2, blocked HG-induced HNF-1α nuclear translocation and SGLT2 expression upregulation. In human kidney, SIRT1 immunostaining was negatively correlated with SGLT2 immunostaining. Thus, under diabetic conditions, SIRT1 expression in PTs was downregulated by an increase in SGLT2 expression, which was stimulated by basolateral HG through activation of the GLUT2/importin-α1/HNF-1α pathway.
Collapse
Affiliation(s)
- Hiroyuki Umino
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Kazuhiro Hasegawa
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Hitoshi Minakuchi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Hirokazu Muraoka
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Takahisa Kawaguchi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Takeshi Kanda
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Hirobumi Tokuyama
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan.
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| |
Collapse
|