Moraes JO, Rodrigues SDC, Pereira LM, Medeiros RDCN, de Cordova CAS, de Cordova FM. Amprolium exposure alters mice behavior and metabolism in vivo.
Animal Model Exp Med 2018;
1:272-281. [PMID:
30891577 PMCID:
PMC6388078 DOI:
10.1002/ame2.12040]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/01/2018] [Accepted: 10/22/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND
Thiamine deficiency (TD) models have been developed, mainly using the thiamine analog pyrithiamine. Other analogs have not been used in rodents. We aimed to evaluate the effects and mechanisms of intraperitoneal (ip) amprolium-induced TD in mice. We also evaluated the associated pathogenesis using antioxidant and anti-inflammatory compounds (Trolox, dimethyl sulfoxide).
METHODS
Male mice were separated into two groups, one receiving a standard diet (control animals), and the other a TD diet (deficient groups) for 20 days. Control mice were further subdivided into three groups receiving daily ip injections of saline (NaCl 0.9%; Cont group), Tolox (Tr group) or dimethyl sulfoxide (DMSO; Dmso group). The three TD groups received amprolium (Amp group), amprolium and Trolox (Amp+Tr group), or amprolium and DMSO (Amp+Dmso group). The animals were subjected to behavioral tests and then euthanized. The brain and viscera were analyzed.
RESULTS
Amprolium exposure induced weight loss with hyporexia, reduced the behavioral parameters (locomotion, exploratory activity, and motor coordination), and induced changes in the brain (lower cortical cell viability) and liver (steatosis). Trolox co-treatment partially improved these conditions, but to a lesser extent than DMSO.
CONCLUSIONS
Amprolium-induced TD may be an interesting model, allowing the deficiency to develop more slowly and to a lesser extent. Amprolium exposure also seems to involve oxidative stress and inflammation, suggested as the main mechanisms of cell dysfunction in TD.
Collapse