1
|
Darras-Hostens M, Achour D, Muntaner M, Grare C, Zarcone G, Garçon G, Amouyel P, Zerimech F, Matran R, Guidice JML, Dauchet L. Short-term and residential exposure to air pollution: Associations with inflammatory biomarker levels in adults living in northern France. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:154985. [PMID: 35398417 DOI: 10.1016/j.scitotenv.2022.154985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Air pollution has an impact on health, and low-grade inflammation might be one of the underlying mechanisms. The objective of the present study of adults from northern France was to assess the associations between short-term and residential exposure to air pollution and levels of various inflammatory biomarkers. METHODS The cross-sectional Enquête Littoral Souffle Air Biologie Environnement (ELISABET) study was conducted from 2011 to 2013 in the Lille and Dunkirk urban areas of northern France. Here, we evaluated the associations between PM10, NO2 and O3 exposure (on the day of the blood sample collection and on the day before, and the mean annual residential level) and levels of the inflammatory biomarkers high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-17A, IL-22, and tumor necrosis factor α. RESULTS We assessed 3074 participants for the association with hsCRP and a subsample of 982 non-smokers from Lille for the association with plasma cytokine levels. A 10 μg/m3 increment in PM10 and NO2 levels on the day of sample collection and on the day before was associated with a higher hsCRP concentration (3.43% [0.68; 6.25] and 1.75% [-1.96; 5.61], respectively, whereas a 10 μg/m3 increment in O3 was associated with lower hsCRP concentration (-1.2% [-3.95; 1.64]). The associations between mean annual exposure and the hsCRP level were not significant. Likewise, the associations between exposure and plasma cytokine levels were not statistically significant. CONCLUSION Short-term exposure to air pollution was associated with higher serum hsCRP levels in adult residents of two urban areas in northern France. Our results suggest that along with other factors, low-grade inflammation might explain the harmful effects of air pollution on health.
Collapse
Affiliation(s)
- Marion Darras-Hostens
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Djamal Achour
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Manon Muntaner
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Céline Grare
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Gianni Zarcone
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Philippe Amouyel
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Farid Zerimech
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Régis Matran
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Jean-Marc Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Luc Dauchet
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| |
Collapse
|
2
|
O'Leary BF, Hill AB, Akers KG, Esparra-Escalera HJ, Lucas A, Raoufi G, Huang Y, Mariscal N, Mohanty SK, Tummala CM, Dittrich TM. Air quality monitoring and measurement in an urban airshed: Contextualizing datasets from the Detroit Michigan area from 1952 to 2020. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152120. [PMID: 34871691 DOI: 10.1016/j.scitotenv.2021.152120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
With urban air quality being a pressing public health concern, community members are becoming increasingly engaged in determining the links between air quality and human health. Although new measurement tools such as low-cost sensors make local data more accessible, a better understanding of gaps in regional datasets is needed to develop effective metropolitan-scale solutions. Using scoping review methodology, we compiled 214 published journal articles and grey literature reports of air quality data from the Detroit, Michigan area from 1952 through 2020. This critical scoping review focuses on air quality datasets, but related topics such as health studies and community-based participatory science studies were examined from the included articles. Most of these publications were peer-reviewed journal articles published after 2001. Particulate matter, nitrous oxides, and sulfur dioxide were the most commonly studied air pollutants, and asthma was the most frequently associated health outcome paired with air pollution datasets. Few publications reported methods for community-based participatory science. This critical scoping review establishes a foundation of historical air quality data for the Detroit metropolitan area and a set of evaluation criteria that can be replicated in other urban centers. This foundation enables future detailed analysis of air quality datasets and showcases strategies for implementing effective community science programs and monitoring efforts.
Collapse
Affiliation(s)
- Brendan F O'Leary
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202, USA
| | - Alex B Hill
- Center for Urban Studies, Wayne State University, Detroit, MI 48202, USA
| | - Katherine G Akers
- Shiffman Medical Library, Wayne State University, 320 E. Canfield St., Detroit, MI 48201, USA
| | | | - Allison Lucas
- Department of Communication, Wayne State University, 585 Manoogian Hall, Detroit, MI 48202, USA
| | - Gelareh Raoufi
- College of Education, Wayne State University, 441 Education Building, Detroit, MI 48202, USA
| | - Yaoxian Huang
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202, USA
| | - Noribeth Mariscal
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202, USA
| | - Sanjay K Mohanty
- Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Chandra M Tummala
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202, USA
| | - Timothy M Dittrich
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202, USA.
| |
Collapse
|
3
|
Chen J, Wang T, Xu H, Zhu Y, Du Y, Liu B, Zhao Q, Zhang Y, Liu L, Yuan L, Fang J, Xie Y, Liu S, Wu R, Shao D, Song X, He B, Brunekreef B, Huang W. An extended analysis of cardiovascular benefits of indoor air filtration intervention among elderly: a randomized crossover trial (Beijing indoor air purifier study, BIAPSY). GLOBAL HEALTH JOURNAL 2022. [DOI: 10.1016/j.glohj.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
4
|
A study of atherothrombotic biomarkers in welders. Int Arch Occup Environ Health 2019; 92:1023-1031. [DOI: 10.1007/s00420-019-01441-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/14/2019] [Indexed: 12/25/2022]
|
5
|
Upadhyay S, Stoeger T, George L, Schladweiler MC, Kodavanti U, Ganguly K, Schulz H. Ultrafine carbon particle mediated cardiovascular impairment of aged spontaneously hypertensive rats. Part Fibre Toxicol 2014; 11:36. [PMID: 25442699 PMCID: PMC4410795 DOI: 10.1186/s12989-014-0036-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/29/2014] [Indexed: 01/09/2023] Open
Abstract
Background Studies provide compelling evidences for particulate matter (PM) associated cardiovascular health effects. Elderly individuals, particularly those with preexisting conditions like hypertension are regarded to be vulnerable. Experimental data are warranted to reveal the molecular pathomechanism of PM related cardiovascular impairments among aged/predisposed individuals. Thus we investigated the cardiovascular effects of ultrafine carbon particles (UfCP) on aged (12–13 months) spontaneously hypertensive rats (SHRs) and compared the findings with our pervious study on adult SHRs (6–7 months) to identify age related predisposition events in cardiovascular compromised elderly individuals. Methods Aged SHRs were inhalation exposed to UfCP for 24 h (~180 μg/m3) followed by radio-telemetric assessment for blood pressure (BP) and heart rate (HR). Bronchoalveolar lavage (BAL) fluid cell differentials, interleukin 6 (IL-6) and other proinflammatory cytokines; serum C-reactive protein (CRP) and haptoglobin (HPT); and plasma fibrinogen were measured. Transcript levels of hemeoxygenase 1 (HO-1), endothelin 1 (ET1), endothelin receptors A, B (ETA, ETB), tissue factor (TF), and plasminogen activator inhibitor-1 (PAI-1) were measured in the lung and heart to assess oxidative stress, endothelial dysfunction and coagulation cascade. Result UfCP exposed aged SHRs exhibited increased BP (4.4%) and HR (6.3%) on 1st recovery day paralleled by a 58% increase of neutrophils and 25% increase of IL-6 in the BAL fluid. Simultaneously higher CRP, HPT and fibrinogen levels in exposed SHRs indicate systemic inflammation. HO-1, ET1, ET-A, ET-B, TF and PAI-1 were induced by 1.5-2.0 folds in lungs of aged SHRs on 1st recovery day. However, in UfCP exposed adult SHRs these markers were up-regulated (2.5-6 fold) on 3rd recovery day in lung without detectable pulmonary/systemic inflammation. Conclusions The UfCP induced pulmonary and systemic inflammation in aged SHRs is associated with oxidative stress, endothelial dysfunction and disturbed coagulatory hemostasis. UfCP exposure increased BP and HR in aged SHRs rats which was associated with lung inflammation, and increased expression of inflammatory, vasoconstriction and coagulation markers as well as systemic changes in biomarkers of thrombosis in aged SHRs. Our study provides further evidence for potential molecular mechanisms explaining the increased risk of particle mediated cardiac health effects in cardiovascular compromised elderly individuals.
Collapse
Affiliation(s)
- Swapna Upadhyay
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany. .,Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, India.
| | - Tobias Stoeger
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany.
| | - Leema George
- SRM Research Institute, SRM University, Chennai, 603203, India.
| | - Mette C Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, NC, 27711, USA.
| | - Urmila Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, NC, 27711, USA.
| | - Koustav Ganguly
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany. .,SRM Research Institute, SRM University, Chennai, 603203, India.
| | - Holger Schulz
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany. .,Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg/München, Germany.
| |
Collapse
|
6
|
Hammond D, Croghan C, Shin H, Burnett R, Bard R, Brook RD, Williams R. Cardiovascular impacts and micro-environmental exposure factors associated with continuous personal PM2.5 monitoring. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2014; 24:337-345. [PMID: 23982121 DOI: 10.1038/jes.2013.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 03/12/2013] [Accepted: 04/28/2013] [Indexed: 06/02/2023]
Abstract
The US Environmental Protection Agency's (US EPA) Detroit Exposure and Aerosol Research Study (DEARS) has provided extensive data on human exposures to a wide variety of air pollutants and their impact on human health. Previous analyses in the DEARS revealed select cardiovascular (CV) health outcomes such as increase in heart rate (HR) associated with hourly based continuous personal fine particulate matter (PM2.5) exposures in this adult, non-smoking cohort. Examination of time activity diary (TAD), follow-up questionnaire (FQ) and the continuous PM2.5 personal monitoring data provided the means to more fully examine the impact of discreet human activity patterns on personal PM2.5 exposures and changes in CV outcomes. A total of 329 343 min-based PM2.5 personal measurements involving 50 participants indicated that ∼75% of these total events resulted in exposures <35 μg/m(3). Cooking and car-related events accounted for nearly 10% of the hourly activities that were identified with observed peaks in personal PM2.5 exposures. In-residence cooking often resulted in some of the highest incidents of 1 min exposures (33.5-17.6 μg/m(3)), with average peaks for such events in excess of 209 μg/m(3). PM2.5 exposure data from hourly based personal exposure activities (for example,, cooking, cleaning and household products) were compared with daily CV data from the DEARS subject population. A total of 1300 hourly based lag risk estimates associated with changes in brachial artery diameter and flow-mediated dilatation (BAD and FMD, respectively), among others, were defined for this cohort. Findings indicate that environmental tobacco smoke (ETS) exposures resulted in significant HR changes between 3 and 7 h following the event, and exposure to smells resulted in increases in BAD on the order of 0.2-0.7 mm/μg/m(3). Results demonstrate that personal exposures may be associated with several biological responses, sometimes varying in degree and direction in relation to the extent of the exposure.
Collapse
Affiliation(s)
- Davyda Hammond
- US Environmental Protection Agency, MD E-205-04, Research Triangle Park, NC, USA
| | - Carry Croghan
- US Environmental Protection Agency, MD E-205-04, Research Triangle Park, NC, USA
| | - Hwashin Shin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Richard Burnett
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Robert Bard
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ron Williams
- US Environmental Protection Agency, MD E-205-04, Research Triangle Park, NC, USA
| |
Collapse
|
7
|
Amatullah H, North ML, Akhtar US, Rastogi N, Urch B, Silverman FS, Chow CW, Evans GJ, Scott JA. Comparative cardiopulmonary effects of size-fractionated airborne particulate matter. Inhal Toxicol 2012; 24:161-71. [PMID: 22356274 DOI: 10.3109/08958378.2011.650235] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Strong epidemiological evidence exists linking particulate matter (PM) exposures with hospital admissions of individuals for cardiopulmonary symptoms. The PM size is important in influencing the extent of infiltration into the respiratory tract and systemic circulation and directs the differential physiological impacts. OBJECTIVE To investigate the differential effects of the quasi-ultrafine (PM(0.2)), fine (PM(0.15-2.5)), and coarse PM (PM(2.5-10)) size fractions on pulmonary and cardiac function. METHODS Female BALB/c mice were exposed to HEPA-filtered laboratory air or concentrated coarse, fine, or quasi-ultrafine PM using Harvard Ambient Particle Concentrators in conjunction with our nose-only exposure system. These exposures were conducted as part of the "Health Effects of Aerosols in Toronto (HEAT)" campaign. Following a 4 h exposure, mice underwent assessment of respiratory function and recording of electrocardiograms using the flexiVent® system. RESULTS Exposure to coarse and fine PM resulted in a significant reduction in quasistatic compliance of the lung. Baseline total respiratory resistance and maximum responsiveness to methacholine were augmented after coarse PM exposures but were not affected by quasi-ultrafine PM exposures. In contrast, quasi-ultrafine PM alone had a significant effect on heart rate and in reducing heart rate variability. CONCLUSION These findings indicate that coarse and fine PM influence lung function and airways responsiveness, while ultrafine PM can perturb cardiac function. This study supports the hypothesis that coarse and fine PM exerts its predominant physiologic effects at the site of deposition in the airways, whereas ultrafine PM likely crosses the alveolar epithelial barrier into the systemic circulation to affect cardiovascular function.
Collapse
Affiliation(s)
- Hajera Amatullah
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kamal AS, Rohr AC, Mukherjee B, Morishita M, Keeler GJ, Harkema JR, Wagner JG. PM2.5-induced changes in cardiac function of hypertensive rats depend on wind direction and specific sources in Steubenville, Ohio. Inhal Toxicol 2011; 23:417-30. [DOI: 10.3109/08958378.2011.580387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Rohr AC, Kamal A, Morishita M, Mukherjee B, Keeler GJ, Harkema JR, Wagner JG. Altered heart rate variability in spontaneously hypertensive rats is associated with specific particulate matter components in Detroit, Michigan. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:474-80. [PMID: 21163724 PMCID: PMC3080928 DOI: 10.1289/ehp.1002831] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/15/2010] [Indexed: 05/10/2023]
Abstract
BACKGROUND Exposure to fine particulate matter [aerodynamic diameter ≤ 2.5 μm (PM2.5)] is linked to adverse cardiopulmonary health effects; however, the responsible constituents are not well defined. OBJECTIVE We used a rat model to investigate linkages between cardiac effects of concentrated ambient particle (CAP) constituents and source factors using a unique, highly time-resolved data set. METHODS Spontaneously hypertensive rats inhaled Detroit Michigan, CAPs during summer or winter (2005-2006) for 13 consecutive days. Electrocardiogram data were recorded continuously, and heart rate (HR) and heart rate variability (HRV) metrics were derived. Extensive CAP characterization, including use of a Semicontinuous Elements in Aerosol Sampler (SEAS), was performed, and positive matrix factorization was applied to investigate source factors. RESULTS Mean CAP exposure concentrations were 518 μg/m(3) and 357 μg/m(3) in the summer and winter, respectively. Significant reductions in the standard deviation of the normal-to-normal intervals (SDNN) in the summer were strongly associated with cement/lime, iron/steel, and gasoline/diesel factors, whereas associations with the sludge factor and components were less consistent. In winter, increases in HR were associated with a refinery factor and its components. CAP-associated HR decreases in winter were linked to sludge incineration, cement/lime, and coal/secondary sulfate factors and most of their associated components. Specific relationships for increased root mean square of the standard deviation of successive normal-to-normal intervals (RMSSD) in winter were difficult to determine because of lack of consistency between factors and associated constituents. CONCLUSIONS Our results indicate that specific modulation of cardiac function in Detroit was most strongly linked to local industrial sources. Findings also highlight the need to consider both factor analytical results and component-specific results when interpreting findings.
Collapse
Affiliation(s)
- Annette C Rohr
- Electric Power Research Institute, Palo Alto, California, USA.
| | | | | | | | | | | | | |
Collapse
|