1
|
Crawford KA, Hartmann N. Respiratory Exposure to Highly Fluorinated Chemicals via Application of Ski Wax and Related Health Effects. Curr Environ Health Rep 2024; 11:39-45. [PMID: 38216812 PMCID: PMC10907454 DOI: 10.1007/s40572-023-00425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/14/2024]
Abstract
PURPOSE Waxes containing per- and polyfluoroalkyl substances (PFAS) are applied to the base of skis and snowboards ("skis") to reduce friction with the snow surface and improve glide. PFAS exposure can adversely impact cardiometabolic, thyroid, liver, kidney, reproductive, and immune health and are associated with increased risk of certain cancers. In the present review, we summarize the state of the science on PFAS exposure from fluorinated ski wax use, including acute respiratory health effects and PFAS concentrations in biological and environmental media collected from ski waxing settings. RECENT FINDINGS Perfluoroalkyl carboxylic acid (PFCA) concentrations in serum and air collected from professional wax technicians and the rooms where waxes are applied are among the highest of any occupation investigated to date, including the fluorochemical industry. High airborne concentrations of fluorotelomer alcohols contribute to high body burdens of certain PFCAs among ski waxers. Fluorinated ski waxes are a significant source of PFAS exposure for people waxing skis and/or spending time in areas where waxing occurs. We highlight recommendations for future research, policy, and technologies needed to address PFAS exposures from fluorinated wax use.
Collapse
Affiliation(s)
- Kathryn A Crawford
- Environmental Studies Program, Middlebury College, 276 Bicentennial Way, Middlebury, VT, 05753, USA.
| | | |
Collapse
|
2
|
Crawford KA, Doherty BT, Gilbert-Diamond D, Romano ME, Claus Henn B. Waxing activity as a potential source of exposure to per- and polyfluoroalkyl substances (PFAS) and other environmental contaminants among the US ski and snowboard community. ENVIRONMENTAL RESEARCH 2022; 215:114335. [PMID: 36150439 DOI: 10.1016/j.envres.2022.114335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/31/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Skiers and snowboarders apply waxes and solvents to their equipment to enhance glide across the snow. Waxing results in exposures to per- and polyfluoroalkyl substances (PFAS) and particulate matter, which have been associated with adverse health effects among professional wax technicians in Scandinavia. However, little is known about exposure among people who participate at other levels of sport, including recreationally, in other regions. OBJECTIVE We sought to characterize wax-related exposures among US skiers and snowboarders who participate across numerous levels of sport to expand scientific understanding of environmental health risks among this population. METHODS We used an anonymous electronic survey to evaluate wax-related exposures among US cross-country and downhill skiers and snowboarders. Specifically, we assessed (Fang et al., 2020): duration of time involved with each sport in any role (Freberg et al., 2013), intensity of wax-related exposures based on time spent in waxing areas, wax use, and wax type (Rogowski et al., 2007), frequency of fluorinated wax application, and (Freberg et al., 2010) use of exposure interventions. RESULTS Participants tended to be long-term winter sports enthusiasts (e.g., median downhill skiing duration: 31 years). Nearly all (92%) participants personally applied some wax to their skis/snowboards and most applied waxes containing PFAS (67%) and solvents (62%). Ski professionals waxed the most pairs of skis with fluorinated waxes annually (median (IQR): 20 (1, 100)), though individuals participating recreationally also applied fluorinated waxes regularly. Exposure interventions were not widely used. SIGNIFICANCE Waxing activities may pose significant risk of exposure to PFAS and other environmental contaminants among the US ski and snowboard community. Efforts are needed to reduce these exposures through changes to wax use patterns and broader adoption of exposure reduction strategies.
Collapse
Affiliation(s)
| | | | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
3
|
Wang T, Song X, Xu H, Zhu Y, Li L, Sun X, Chen J, Liu B, Zhao Q, Zhang Y, Yuan N, Liu L, Fang J, Xie Y, Liu S, Wu R, He B, Cao J, Huang W. Combustion-Derived Particulate PAHs Associated with Small Airway Dysfunction in Elderly Patients with COPD. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10868-10878. [PMID: 35834827 DOI: 10.1021/acs.est.2c00797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Evidence of the respiratory effects of ambient organic aerosols (e.g., polycyclic aromatic hydrocarbons, PAHs) among patients with chronic diseases is limited. We aimed to assess whether exposure to ambient particle-bound PAHs could worsen small airway functions in patients with chronic obstructive pulmonary disease (COPD) and elucidate the underlying mechanisms involved. Forty-five COPD patients were recruited with four repeated visits in 2014-2015 in Beijing, China. Parameters of pulmonary function and pulmonary/systemic inflammation and oxidative stress were measured at each visit. Linear mixed-effect models were performed to evaluate the associations between PAHs and measurements. In this study, participants experienced an average PAH level of 61.7 ng/m3. Interquartile range increases in exposure to particulate PAHs at prior up to 7 days were associated with reduced small airway functions, namely, decreases of 17.7-35.5% in forced maximal mid-expiratory flow. Higher levels of particulate PAHs were also associated with heightened lung injury and inflammation and oxidative stress. Stronger overall effects were found for PAHs from traffic emissions and coal burning. Exposure to ambient particulate PAHs was capable of impairing small airway functions in elderly patients with COPD, potentially via inflammation and oxidative stress. These findings highlight the importance of control efforts on organic particulate matter from fossil fuel combustion emissions.
Collapse
Affiliation(s)
- Tong Wang
- Department of Occupational and Environmental Health, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Peking University Institute of Environmental Medicine, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing 100191, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Peking University Institute of Environmental Medicine, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing 100191, China
| | - Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Peking University Institute of Environmental Medicine, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing 100191, China
| | - Yutong Zhu
- Department of Occupational and Environmental Health, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Peking University Institute of Environmental Medicine, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing 100191, China
| | - Lijuan Li
- Institute of Atmospheric Physics, Chinese Academy of Sciences, No. 40 Huayanli, Beichen West Road, Chaoyang District, Beijing 100029, China
| | - Xiaoyan Sun
- Division of Respiration, Peking University Third Hospital, Beijing 100191, China
| | - Jie Chen
- Department of Occupational and Environmental Health, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Institute for Risk Assessment Sciences, University Medical Centre Utrecht, University of Utrecht, P.O. Box 80125, Utrecht 3508 TC, The Netherlands
| | - Beibei Liu
- Division of Respiration, Peking University Third Hospital, Beijing 100191, China
| | - Qian Zhao
- Department of Occupational and Environmental Health, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Peking University Institute of Environmental Medicine, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing 100191, China
| | - Yi Zhang
- Department of Occupational and Environmental Health, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Peking University Institute of Environmental Medicine, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing 100191, China
| | - Ningman Yuan
- Department of Occupational and Environmental Health, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Peking University Institute of Environmental Medicine, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing 100191, China
| | - Lingyan Liu
- Department of Occupational and Environmental Health, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Peking University Institute of Environmental Medicine, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing 100191, China
| | - Jiakun Fang
- Department of Occupational and Environmental Health, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Peking University Institute of Environmental Medicine, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing 100191, China
| | - Yunfei Xie
- Department of Occupational and Environmental Health, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Peking University Institute of Environmental Medicine, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing 100191, China
| | - Shuo Liu
- Department of Occupational and Environmental Health, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Copenhagen K 1353, Denmark
| | - Rongshan Wu
- Department of Occupational and Environmental Health, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bei He
- Division of Respiration, Peking University Third Hospital, Beijing 100191, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, No. 40 Huayanli, Beichen West Road, Chaoyang District, Beijing 100029, China
| | - Wei Huang
- Department of Occupational and Environmental Health, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Peking University Institute of Environmental Medicine, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Wang T, Xu H, Zhu Y, Sun X, Chen J, Liu B, Zhao Q, Zhang Y, Liu L, Fang J, Xie Y, Liu S, Wu R, Song X, He B, Huang W. Traffic-related air pollution associated pulmonary pathophysiologic changes and cardiac injury in elderly patients with COPD. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127463. [PMID: 34687998 DOI: 10.1016/j.jhazmat.2021.127463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Traffic-related air pollution (TRAP) has shown enormous environmental toxicity, but its cardiorespiratory health impact on chronic obstructive pulmonary disease (COPD) has been less studied. We followed a panel of 45 COPD patients with 4 repeated clinical visits across 14 months in a traffic-predominated urban area of Beijing, China, with concurrent measurements of TRAP metrics (fine particulate matter, black carbon, oxides of nitrogen and carbon monoxide). Linear mixed-effect models were performed to evaluate the associations and potential pathways linking traffic pollution to indicators of spirometry, cardiac injury, inflammation and oxidative stress. We observed that interquartile range increases in moving averages of TRAP exposures at prior up to 7 days were associated with significant reductions in large and small airway functions, namely decreases in forced vital capacity of 3.1-9.3% and forced expiratory flow 25-75% of 5.9-16.4%. Higher TRAP levels were also associated with worsening of biomarkers relevant to lung injury (hepatocyte growth factor and surfactant protein D) and cardiac injury (high-sensitivity cardiac troponin I, B-type natriuretic peptide and soluble ST2), as well as enhanced airway/systemic inflammation and oxidative stress. Mediation analyses showed that TRAP exposures may prompt cardiac injury, possibly via worsening pulmonary pathophysiology. These findings highlight the importance of traffic pollution control priority in urban areas.
Collapse
Affiliation(s)
- Tong Wang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing, China
| | - Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing, China
| | - Yutong Zhu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing, China
| | - Xiaoyan Sun
- Division of Respiration, Peking University Third Hospital, Beijing, China
| | - Jie Chen
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Institute for Risk Assessment Sciences, University Medical Centre Utrecht, University of Utrecht, the Netherlands
| | - Beibei Liu
- Division of Respiration, Peking University Third Hospital, Beijing, China
| | - Qian Zhao
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing, China
| | - Yi Zhang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing, China
| | - Lingyan Liu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing, China
| | - Jiakun Fang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing, China
| | - Yunfei Xie
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing, China
| | - Shuo Liu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Rongshan Wu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing, China
| | - Bei He
- Division of Respiration, Peking University Third Hospital, Beijing, China.
| | - Wei Huang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing, China.
| |
Collapse
|
5
|
Respiratory Health and Inflammatory Markers-Exposure to Cobalt in the Swedish Hard Metal Industry. J Occup Environ Med 2021; 62:820-829. [PMID: 33009343 DOI: 10.1097/jom.0000000000001952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To study the relationship between inhalable dust and cobalt, and respiratory symptoms, lung function, exhaled nitric oxide in expired air, and CC16 in the Swedish hard metal industry. METHODS Personal sampling of inhalable dust and cobalt, and medical examination including blood sampling was performed for 72 workers. Exposure-response relationships were determined using logistic, linear, and mixed-model analysis. RESULTS The average inhalable dust and cobalt concentrations were 0.079 and 0.0017 mg/m, respectively. Statistically significant increased serum levels of CC16 were determined when the high and low cumulative exposures for cobalt were compared. Nonsignificant exposure-response relationships were observed between cross-shift inhalable dust or cobalt exposures and asthma, nose dripping, and bronchitis. CONCLUSIONS Our findings suggest an exposure-response relationship between inhalable cumulative cobalt exposure and CC16 levels in blood, which may reflect an injury or a reparation process in the lungs.
Collapse
|
6
|
Wang Z, Xu M, Wang Y, Wang T, Wu N, Zheng W, Duan H. Air particulate matter pollution and circulating surfactant protein: A systemic review and meta-analysis. CHEMOSPHERE 2021; 272:129564. [PMID: 33476792 DOI: 10.1016/j.chemosphere.2021.129564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Air particulate matter (PM) pollution is associated with the alterations in circulating pulmonary damage proteins. But there are not consistent results among the epidemiological studies. The aim of this study is to investigate the alteration of surfactant protein (SP) from PM exposure. METHODS We conducted a comprehensive meta-analysis by searching the databases of PubMed, Medline, EMBASE, Web of Science and CNKI before October 2020 which reported PM pollutants and surfactant protein in the population. The sources of heterogeneity were assessed by subgroup (smoking, particulate matter with different aerodynamic diameter, exposure duration) analysis. We also used the publication bias tests for the comprehensive assessment. RESULTS This meta-analysis consisted of 10 studies with 1985 subjects. The results showed that the combined standardized mean difference (SMD) value was 0.05, 95% confidence interval (CI) was -0.07 to 0.17 for serum SP-A and -0.81 (95% CI: -1.41 to -0.21) for circulating SP-D. Among smokers, the combined SMD value of SP-A were 0.29 (95% CI: 0.05 to 0.52). We did not find the correlation between publication year of SP-A and SP-D and study heterogeneity. CONCLUSIONS Circulating SP-D was significantly decreased by air particulate matter. Serum SP-A was significantly increased by PM exposure among smokers. Circulating surfactant protein may be considered as a biomarker for respiratory injury caused by air particulate matter.
Collapse
Affiliation(s)
- Zhenjie Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengmeng Xu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanhua Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ting Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Nan Wu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenjing Zheng
- Office of Epidemiology, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
7
|
Andersson L, Bryngelsson IL, Hedbrant A, Persson A, Johansson A, Ericsson A, Lindell I, Stockfelt L, Särndahl E, Westberg H. Respiratory health and inflammatory markers - Exposure to respirable dust and quartz and chemical binders in Swedish iron foundries. PLoS One 2019; 14:e0224668. [PMID: 31675355 PMCID: PMC6824619 DOI: 10.1371/journal.pone.0224668] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/19/2019] [Indexed: 01/13/2023] Open
Abstract
Purpose To study the relationship between respirable dust, quartz and chemical binders in Swedish iron foundries and respiratory symptoms, lung function (as forced expiratory volume FEV1 and vital capacity FVC), fraction of exhaled nitric oxide (FENO) and levels of club cell secretory protein 16 (CC16) and CRP. Methods Personal sampling of respirable dust and quartz was performed for 85 subjects in three Swedish iron foundries. Full shift sampling and examination were performed on the second or third day of a working week after a work free weekend, with additional sampling on the fourth or fifth day. Logistic, linear and mixed model analyses were performed including, gender, age, smoking, infections, sampling day, body mass index (BMI) and chemical binders as covariates. Results The adjusted average respirable quartz and dust concentrations were 0.038 and 0.66 mg/m3, respectively. Statistically significant increases in levels of CC16 were associated with exposure to chemical binders (p = 0.05; p = 0.01) in the regression analysis of quartz and respirable dust, respectively. Non-significant exposure-responses were identified for cumulative quartz and the symptoms asthma and breathlessness. For cumulative chemical years, non-significant exposure–response were observed for all but two symptoms. FENO also exhibited a non significant exposure-response for both quartz and respirable dust. No exposure-response was determined for FEV1 or FVC, CRP and respirable dust and quartz. Conclusions Our findings suggest that early markers of pulmonary effect, such as increased levels of CC16 and FENO, are more strongly associated with chemical binder exposure than respirable quartz and dust in foundry environments.
Collapse
Affiliation(s)
- Lena Andersson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Medical Sciences, School of Medicine and Health, Örebro University, Örebro, Sweden
- * E-mail:
| | - Ing-Liss Bryngelsson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Alexander Hedbrant
- Department of Medical Sciences, School of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Alexander Persson
- Department of Medical Sciences, School of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Anders Johansson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Annette Ericsson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ina Lindell
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Leo Stockfelt
- Unit of Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Särndahl
- Department of Medical Sciences, School of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Håkan Westberg
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Medical Sciences, School of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| |
Collapse
|
8
|
Pneumoproteins in Offshore Drill Floor Workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030300. [PMID: 30678045 PMCID: PMC6388385 DOI: 10.3390/ijerph16030300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 11/25/2022]
Abstract
The aim was to assess pneumoproteins and a certain biomarker of systemic inflammation in drill floor workers exposed to airborne contaminants generated during drilling offshore, taking into consideration serum biomarkers of smoking, such as nicotine (S-Nico) and cotinine. Blood samples of club cell protein 16 (CC-16), surfactant protein D (SP-D) and C-reactive protein (CRP) were collected before and after a 14-day work period from 65 drill floor workers and 65 referents. Air samples of oil mist, drilling mud components and elemental carbon were collected in person. The drill floor workers were exposed to a median air concentration of 0.18 mg/m3 of oil mist and 0.14 mg/m3 of airborne mud particles. There were no differences in the concentrations of CC-16 and SP-D across the 14-day work period and no difference between drill floor workers and referents at baseline after adjusting for differences in sampling time and smoking. CRP decreased across the work period. There was a strong association between the CC-16 concentrations and the time of sampling. Current smokers with S-Nico > detection limit (DL) had a statistically significantly lower CC-16 concentration, while smokers with S-Nico < DL had CC-16 concentrations similar to that of the non-smokers. Fourteen days of work offshore had no effect on serum pneumoprotein and CRP concentrations. However, the time of blood sampling was observed to have a strong effect on the measured concentrations of CC-16. The effect of current smoking on the CC-16 concentrations appears to be dependent on the S-Nico concentrations.
Collapse
|
9
|
Effets sur la santé associés à l’inhalation d’imperméabilisants ou d’autres aérosols de résines hydrophobes. Revue de la littérature. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2018. [DOI: 10.1016/j.toxac.2018.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|