1
|
Hajian M, Rouhollahi Varnosfaderani S, Jafarpour F, Tanhaei Vash N, Nasr-Esfahani MH. Pluripotency and embryonic lineage genes expression in the presence of small molecule inhibitors of FGF, TGFβ and GSK3 during pre-implantation development of goat embryos. Gene Expr Patterns 2023; 50:119334. [PMID: 37678700 DOI: 10.1016/j.gep.2023.119334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/05/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Generating stable livestock pluripotent stem cells (PSCs) can be used for complex genome editing, cellular agriculture, gamete generation, regenerative medicine and in vitro breeding schemes. Over the past decade, significant progress has been made in characterizing pluripotency markers for livestock species. In this study, we investigated embryo development and gene expression of the core pluripotency triad (OCT4, NANOG, SOX2) and cell lineage commitment markers (REX1, CDX2, GATA4) in the presence of three small molecules and their combination [PD0325901 (FGF inhibitor), SB431542 (TGFβ inhibitor), and CHIR99021 (GSK3B inhibitor)] from day 2-7 post-insemination in goat. Significant reduction in rate of blastocyst formation was observed when SB was used along with PD or CHIR and their three combinations had more sever effect. SB and CHIR decreased the expression of SOX2 while increasing the GATA4 expression. PD decrease the relative expression of NANOG, OCT4 and GATA4, while increased the expression of REX1. Among the combination of two molecules, only SB + CHIR combination significantly decreased the expression of GATA4, while the combination of the three molecules significantly decreases the expression of NANOG, SOX2 and CDX2. According to these results, the inhibition of the FGF signaling pathway, by PD may lead to blocking the hypoblast formation as observed by reduction of GATA4. OCT4 and NANOG expressions did not show signs of maintenance pluripotency. GATA4, NANOG and OCT4 in the PD group were downregulated and REX1 as EPI-marker was upregulated thus REX1 may be considered as a marker of EPI/ICM in goat.
Collapse
Affiliation(s)
- Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Shiva Rouhollahi Varnosfaderani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nima Tanhaei Vash
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
2
|
Chowdhary S, Hadjantonakis AK. Journey of the mouse primitive endoderm: from specification to maturation. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210252. [PMID: 36252215 PMCID: PMC9574636 DOI: 10.1098/rstb.2021.0252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
The blastocyst is a conserved stage and distinct milestone in the development of the mammalian embryo. Blastocyst stage embryos comprise three cell lineages which arise through two sequential binary cell fate specification steps. In the first, extra-embryonic trophectoderm (TE) cells segregate from inner cell mass (ICM) cells. Subsequently, ICM cells acquire a pluripotent epiblast (Epi) or extra-embryonic primitive endoderm (PrE, also referred to as hypoblast) identity. In the mouse, nascent Epi and PrE cells emerge in a salt-and-pepper distribution in the early blastocyst and are subsequently sorted into adjacent tissue layers by the late blastocyst stage. Epi cells cluster at the interior of the ICM, while PrE cells are positioned on its surface interfacing the blastocyst cavity, where they display apicobasal polarity. As the embryo implants into the maternal uterus, cells at the periphery of the PrE epithelium, at the intersection with the TE, break away and migrate along the TE as they mature into parietal endoderm (ParE). PrE cells remaining in association with the Epi mature into visceral endoderm. In this review, we discuss our current understanding of the PrE from its specification to its maturation. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Sayali Chowdhary
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
3
|
Yilmaz F, Micili SC, Erbil G. The role of FGF-4 and FGFR-2 on preimplantation embryo development in experimental maternal diabetes. Gynecol Endocrinol 2022; 38:248-252. [PMID: 34904519 DOI: 10.1080/09513590.2021.2005782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Diabetes mellitus can cause spontaneous abortion, neonatal diseases, congenital malformations, and death. There are many studies related to the damage of in vitro hyperglycemia on embryogenesis in literature, but not enough studies on in vivo hyperglycemia effects on embryogenesis. Fibroblast growth factor (FGF) molecules play an essential role in pre-implantation embryo development and diabetes pathogenesis. In our study, we researched whether FGF-4 and FGFR-2 were playing a role in maternal diabetes' effects on embryo development. MATERIAL AND METHODS Thirty adult virgin female BALB/c mice were randomly divided into two groups: control and diabetic. The experimental diabetes model was generated by streptozotocin (55 mg/kg, once, intraperitoneally). The control and the diabetic group were mated. Embryos were collected at the morula and blastocyte stages corresponding to the third and fourth days of pregnancy. Embryo's FGF-4 and FGFR-2 molecules were evaluated by their immunofluorescence staining and immunoreactivity score. RESULT The results clearly showed that the FGF-4 and FGFR-2 immunofluorescence reactivity was higher in the diabetes group. CONCLUSION We concluded that FGF-4 and FGFR-2 overexpression might impair mouse pre-implantation embryo development in maternal diabetes and suggest investigating whether they have crucial effects on human embryo development and infertility in maternal diabetes.
Collapse
Affiliation(s)
- Filiz Yilmaz
- IVF Center, Hitit University Erol Olcok Research and Training Hospital, Corum, Turkey
| | - Serap Cilaker Micili
- Faculty of Medicine, Department of Histology and Embryology, Dokuz Eylul University, Izmir, Turkey
| | - Guven Erbil
- Faculty of Medicine, Department of Histology and Embryology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
4
|
Souza-Fabjan JMG, Batista RITP, Correia LFL, Paramio MT, Fonseca JF, Freitas VJF, Mermillod P. In vitro production of small ruminant embryos: latest improvements and further research. Reprod Fertil Dev 2021; 33:31-54. [PMID: 38769678 DOI: 10.1071/rd20206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
This review presents the latest advances in and main obstacles to the application of invitro embryo production (IVEP) systems in small ruminants. This biotechnology is an extremely important tool for genetic improvement for livestock and is essential for the establishment of other biotechnologies, such as cloning and transgenesis. At present, the IVEP market is almost non-existent for small ruminants, in contrast with the trends observed in cattle. This is probably related to the lower added value of small ruminants, lower commercial demand and fewer qualified professionals interested in this area. Moreover, there are fewer research groups working on small ruminant IVEP than those working with cattle and pigs. The heterogeneity of oocytes collected from growing follicles in live females or from ovaries collected from abattoirs remains a challenge for IVEP dissemination in goats and sheep. Of note, although the logistics of oocyte collection from live small ruminant females are more complex than in the bovine, in general the IVEP outcomes, in terms of blastocyst production, are similar. We anticipate that after appropriate training and repeatable results, the commercial demand for small ruminant invitro -produced embryos may increase.
Collapse
Affiliation(s)
- Joanna M G Souza-Fabjan
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil; and Corresponding author
| | - Ribrio I T P Batista
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Lucas F L Correia
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Maria Teresa Paramio
- Departament de Ciencia Animal i dels Aliments, Facultat de Veterinaria, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Valles, Barcelona, Spain
| | - Jeferson F Fonseca
- Embrapa Caprinos e Ovinos, Rodovia MG 133, km 42, Campo Experimental Coronel Pacheco, Coronel Pacheco-MG, CEP 36155-000, Brazil
| | - Vicente J F Freitas
- Laboratório de Fisiologia e Controle da Reprodução, Universidade Estadual do Ceará, Fortaleza-CE, CEP 60714-903, Brazil
| | - Pascal Mermillod
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
5
|
Płusa B, Piliszek A. Common principles of early mammalian embryo self-organisation. Development 2020; 147:147/14/dev183079. [PMID: 32699138 DOI: 10.1242/dev.183079] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pre-implantation mammalian development unites extreme plasticity with a robust outcome: the formation of a blastocyst, an organised multi-layered structure ready for implantation. The process of blastocyst formation is one of the best-known examples of self-organisation. The first three cell lineages in mammalian development specify and arrange themselves during the morphogenic process based on cell-cell interactions. Despite decades of research, the unifying principles driving early mammalian development are still not fully defined. Here, we discuss the role of physical forces, and molecular and cellular mechanisms, in driving self-organisation and lineage formation that are shared between eutherian mammals.
Collapse
Affiliation(s)
- Berenika Płusa
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Anna Piliszek
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
6
|
Granulosa secreted factors improve the developmental competence of cumulus oocyte complexes from small antral follicles in sheep. PLoS One 2020; 15:e0229043. [PMID: 32182244 PMCID: PMC7077809 DOI: 10.1371/journal.pone.0229043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Oocyte in vitro maturation can be improved by mimicking the intra-follicular environment. Oocyte, cumulus cells, granulosa cells, and circulating factors act as meiotic regulators in follicles and maintain oocyte in the meiotic phase until oocyte becomes competent and ready to be ovulated. In a randomized experimental design, an ovine model was used to optimize the standard in vitro maturation media by Granulosa secreted factors. At first, the development capacity of oocyte derived from medium (>4 to 6 mm) and small (2 to ≤4 mm) size follicles was determined. Differential gene expression of granulosa secreted factors and their receptors were compared between the cumulus cells of the two groups. Then, the best time and concentration for arresting oocytes at the germinal vesicle stage by natriuretic peptide type C (CNP) were determined by nuclear staining in both groups. Oocyte quality was further confirmed by calcein uptake and gene expression. The developmental competence of cumulus oocyte complexes derived from small size follicles that were cultured in the presence of CNP in combination with amphiregulin (AREG) and prostaglandin E2 (PGE2) for 24 h was determined. Finally, embryo quality was specified by assessing expressions of NANOG, SOX2, CDX2, OCT4, and TET1. The cumulus oocyte complexes derived from small size follicles had a lower capacity to form blastocyst in comparison with cumulus oocyte complexes derived from medium size follicles. Prostaglandin E receptor 2 and prostaglandin-endoperoxide synthase 2 had significantly lower expression in cumulus cells derived from small size follicles in comparison with cumulus cells derived from medium size follicles. Natriuretic peptide type C increased the percentage of cumulus oocyte complexes arresting at the germinal vesicle stage in both oocytes derived from medium and small follicles. Gap junction communication was also improved in the presence of natriuretic peptide type C. In oocytes derived from small size follicles; best blastocyst rates were achieved by sequential exposure of cumulus oocyte complexes in [TCM+CNP (6 h), then cultured in TCM+AREG+PGE2 (18h)] and [TCM+CNP (6 h), then cultured in conventional IVM supplements+AREG+PGE2 (18h)]. Increased SOX2 expression was observed in [TCM+CNP (6 h), then cultured in TCM+AREG+PGE2 (18h)], while decreased OCT4 expression was observed in [TCM+CNP (6 h), then cultured in conventional IVM supplements+AREG+PGE2 (18h)]. It seems that the natriuretic peptide type C modulates meiotic progression, and oocyte development is probably mediated by amphiregulin and prostaglandin E2. These results may provide an alternative IVM method to optimize in vitro embryo production in sheep and subsequently for humans.
Collapse
|
7
|
Abstract
During the first days following fertilization, cells of mammalian embryo gradually lose totipotency, acquiring distinct identity. The first three lineages specified in the mammalian embryo are pluripotent epiblast, which later gives rise to the embryo proper, and two extraembryonic lineages, hypoblast (also known as primitive endoderm) and trophectoderm, which form tissues supporting development of the fetus in utero. Most of our knowledge regarding the mechanisms of early lineage specification in mammals comes from studies in the mouse. However, the growing body of evidence points to both similarities and species-specific differences. Understanding molecular and cellular mechanisms of early embryonic development in nonrodent mammals expands our understanding of basic mechanisms of differentiation and is essential for the development of effective protocols for assisted reproduction in agriculture, veterinary medicine, and for biomedical research. This review summarizes the current state of knowledge on key events in epiblast, hypoblast, and trophoblast differentiation in domestic mammals.
Collapse
Affiliation(s)
- Anna Piliszek
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland.
| | - Zofia E Madeja
- Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
8
|
Zhai F, Song N, Ma J, Gong W, Tian H, Li X, Jiang C, Wang H. FGF18 inhibits MC3T3-E1 cell osteogenic differentiation via the ERK signaling pathway. Mol Med Rep 2017; 16:4127-4132. [DOI: 10.3892/mmr.2017.7088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/12/2017] [Indexed: 11/05/2022] Open
|