1
|
Xie H, Song H, Schmidt C, Chang WP, Chien JH. The effect of mechanical vibration-based stimulation on dynamic balance control and gait characteristics in healthy young and older adults: A systematic review of cross-sectional study. Gait Posture 2023; 102:18-38. [PMID: 36871475 DOI: 10.1016/j.gaitpost.2023.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND A good dynamic balance control and stable gait played an important role in the daily ambulation, especially for older adults with sensorimotor degeneration. This study aimed to systematically review the effects and potential mechanisms of mechanical vibration-based stimulation (MVBS) on dynamic balance control and gait characteristics in healthy young and older adults. METHOD Five bioscience and engineering databases, including MEDLINE via PubMed, CINAHL via EBSCO, Cochrane Library, Scopus, and Embase, were searched until September 4th, 2022. Studies published between 2000 and 2022 in English and Chinese involving mechanical vibration related to gait and dynamic balance were included. The procedure was followed via the preferred reporting items for systematic reviews and meta-analysis method. The methodological quality of included studies was assessed using the NIH study quality assessment tool for observational cohort and cross-sectional studies. RESULTS A total of 41 cross-sectional studies met the inclusion criteria and were included in this study. Eight studies were good-quality while 26 were moderate-quality and 7 were poor-quality. There were six categories of MVBS at various frequencies and amplitudes utilized in included studies, including plantar vibration, focal muscle vibration, Achilles tendon vibration, vestibular vibration, cervical vibration, and vibration on nail of hallux. SIGNIFICANCE Different types of MVBS targeting different sensory systems affected the dynamic balance control and gait characteristics differently. MVBS could be used to provide improvement or perturbation to specific sensory systems, to induce different sensory reweight strategies during gait.
Collapse
Affiliation(s)
- Haoyu Xie
- Division of Physical Therapy Education, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, USA
| | - Huiyan Song
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cindy Schmidt
- Leon S. McGoogan Health Sciences Library, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wen-Pin Chang
- Department of Occupational Therapy, Rocky Mountain University of Health Professions, Provo, UT, USA
| | | |
Collapse
|
2
|
Wieber J, Brandt J, Pieper M, Hirschhäuser E, Catalá-Lehnen P, Rein R, Braunstein B. Effects of body orientation and direction of movement on a knee joint angle reproduction test in healthy subjects: An experimental study. Technol Health Care 2023; 31:1567-1578. [PMID: 37125585 PMCID: PMC10578216 DOI: 10.3233/thc-220747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND Joint position sense test assess patient mobility and proprioceptive ability. Yet, application used under different conditions may biases reproduction error resulting in different therapeutic consequences. OBJECTIVE To investigate knee angle reproduction test under different test conditions. METHODS 25 healthy subjects (mean ± SD, age = 25 ± 2 years, activity level: 9 ± 2 training hours/week) performed knee angle reproduction test in the sitting and prone position, while changing the knee angle starting (i) from flexion and (ii) extension, (iii) inducing vibration on the semitendinosus tendon. RESULTS Absolute mean knee angle reproduction error showed significant difference for body position and vibration (Position: 95% CI 0.71 to 2.32; p< 0.001. No Vibration & Vibration: 95% CI -1.71 to -0.12; p= 0.027). Relative knee angle reproduction error was significant different in all conditions (No Vibration & Vibration: 95% CI -3.30 to -0.45; p= 0.010. Body orientation: 95% CI 1.08 to 3.93; p< 0.001. Direction of movement: 95% CI 0.56 to 3.41; p= 0.007). CONCLUSION Body orientation and movement direction influence the resulting knee angle reproduction error in healthy subjects. Practitioners are advised to use standardised test procedures when comparing different within- and between-patient results. TRIAL REGISTRATION DOI 10.17605/OSF.IO/AFWRP.
Collapse
Affiliation(s)
- Juliane Wieber
- Institute of Movement and Neuroscience, German Sport University, Cologne, Germany
- Institute of Training and Computer Science in Sport, German Sport University, Cologne, Germany
- LANS Medicum Hamburg, Center for Sports and Regenerative Medicine, Hamburg, Germany
| | - Jasmin Brandt
- Institute of Movement and Neuroscience, German Sport University, Cologne, Germany
- Institute of Training and Computer Science in Sport, German Sport University, Cologne, Germany
| | - Maike Pieper
- Institute of Movement and Neuroscience, German Sport University, Cologne, Germany
- Institute of Training and Computer Science in Sport, German Sport University, Cologne, Germany
| | - Eva Hirschhäuser
- Institute of Movement and Neuroscience, German Sport University, Cologne, Germany
- Institute of Training and Computer Science in Sport, German Sport University, Cologne, Germany
| | - Philip Catalá-Lehnen
- LANS Medicum Hamburg, Center for Sports and Regenerative Medicine, Hamburg, Germany
| | - Robert Rein
- Institute of Training and Computer Science in Sport, German Sport University, Cologne, Germany
| | - Bjoern Braunstein
- Institute of Movement and Neuroscience, German Sport University, Cologne, Germany
- Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany
- German Research Centre of Elite Sport, German Sport University, Cologne, Germany
- Centre for Health and Integrative Physiology in Space, Cologne, Germany
| |
Collapse
|
3
|
Tsay JS, Kim H, Haith AM, Ivry RB. Understanding implicit sensorimotor adaptation as a process of proprioceptive re-alignment. eLife 2022; 11:e76639. [PMID: 35969491 PMCID: PMC9377801 DOI: 10.7554/elife.76639] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/13/2022] [Indexed: 01/11/2023] Open
Abstract
Multiple learning processes contribute to successful goal-directed actions in the face of changing physiological states, biomechanical constraints, and environmental contexts. Amongst these processes, implicit sensorimotor adaptation is of primary importance, ensuring that movements remain well-calibrated and accurate. A large body of work on reaching movements has emphasized how adaptation centers on an iterative process designed to minimize visual errors. The role of proprioception has been largely neglected, thought to play a passive role in which proprioception is affected by the visual error but does not directly contribute to adaptation. Here, we present an alternative to this visuo-centric framework, outlining a model in which implicit adaptation acts to minimize a proprioceptive error, the distance between the perceived hand position and its intended goal. This proprioceptive re-alignment model (PReMo) is consistent with many phenomena that have previously been interpreted in terms of learning from visual errors, and offers a parsimonious account of numerous unexplained phenomena. Cognizant that the evidence for PReMo rests on correlational studies, we highlight core predictions to be tested in future experiments, as well as note potential challenges for a proprioceptive-based perspective on implicit adaptation.
Collapse
Affiliation(s)
- Jonathan S Tsay
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Hyosub Kim
- Department of Physical Therapy, University of DelawareNewarkUnited States
- Department of Psychological and Brain Sciences, University of DelawareNewarkUnited States
| | - Adrian M Haith
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
| | - Richard B Ivry
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
4
|
Prado A, Agrawal SK. Effects of Localized Leg Muscle Vibration Timed to Gait Cycle Percentage During Overground Walking. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3181415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Antonio Prado
- Robotics and Rehabilitation Laboratory, Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Sunil K. Agrawal
- Robotics and Rehabilitation Laboratory, Department of Mechanical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
5
|
Layne CS, Malaya CA, Levine JT. The effects of muscle vibration on gait control: a review. Somatosens Mot Res 2019; 36:212-222. [PMID: 31416377 DOI: 10.1080/08990220.2019.1652585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: The purpose of the review is to summarize the literature surrounding the use of muscle vibration as it relates to modifying human gait. Methods: After a brief introduction concerning historical uses and early research identifying the effect of vibration on muscle activation, we reviewed 32 articles that used muscle vibration during walking. The review is structured to address the literature within four broad categories: the effect of vibration to 'trigger' gait-like lower limb motions, the effect of vibration on gait control of healthy individuals and individuals with clinical conditions in which gait disorders are a prominent feature, and the effect of vibration training protocols on gait. Results: The acute effects of vibration during gait involving healthy participants is varied. Some authors reported differences in segmental kinematic and spatiotemporal measures while other authors reported no differences in these outcome measures. The literature involving participants with clinical conditions revealed that vibration consistently had a significant impact on gait, suggesting vibration may be an effective rehabilitation tool. All of the studies that used vibration therapy over time reported significant improvement in gait performance. Conclusions: This review highlights the difficulties in drawing definitive conclusions as to the impact of vibration on gait control, partly because of differences in walking protocols, site of vibration application, and outcome measures used across different investigative teams. It is suggested that the development of common investigative methodologies and outcome measures would accelerate the identification of techniques that may provide optimal rehabilitation protocols for individuals experiencing disordered gait control.
Collapse
Affiliation(s)
- Charles S Layne
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston , Houston , TX , USA
| | - Christopher A Malaya
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston , Houston , TX , USA
| | - Jackson T Levine
- Department of Biomedical Engineering, Tulane University , New Orleans , LA , USA
| |
Collapse
|
6
|
Locomotor adaptations to prolonged step-by-step frontal plane trunk perturbations in young adults. PLoS One 2018; 13:e0203776. [PMID: 30235250 PMCID: PMC6147485 DOI: 10.1371/journal.pone.0203776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/27/2018] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to quantify the magnitude and time course of dynamic balance control adaptations to prolonged step-by-step frontal plane forces applied to the trunk during walking. Healthy young participants (n = 10, 5 female) walked on an instrumented split-belt treadmill while an external cable-driven device applied frontal plane forces to the trunk. Two types of forces were applied: 1) forces which accentuated COM movement in the frontal plane (destabilizing) and 2) forces which resisted COM movement in the frontal plane (stabilizing). We quantified dynamic balance control using frontal plane measures of (1) the extent of center of mass (COM) movement over a gait cycle (COM sway), (2) the magnitude of base of support (step width), and (3) cadence. During destabilizing force conditions, COM sway, step width, and cadence increased. In response to stabilizing force conditions, COM sway decreased. In addition, during destabilizing balance conditions participants made quicker adaptations to their step width compared to the time to adapt to stabilizing forces. Taken together, these results provide important insight into differences in dynamic balance control strategies in response to stabilizing and destabilizing force fields.
Collapse
|
7
|
Nagai T, Bates NA, Hewett TE, Schilaty ND. Effects of localized vibration on knee joint position sense in individuals with anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon) 2018; 55:40-44. [PMID: 29680779 PMCID: PMC5960437 DOI: 10.1016/j.clinbiomech.2018.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Anterior cruciate ligament injury can disrupt one's mechanoreceptors and result in decreased proprioception such as joint position sense and ultimately altered motor function. The application of localized vibration has been used to investigate the integrity of the sensorimotor system and the mechanisms of quadriceps function after anterior cruciate ligament injury and reconstruction. The purpose of the study is to evaluate joint position sense with and without vibration and compare among anterior cruciate ligament reconstructed, contralateral, and control limbs. METHODS Fourteen subjects with anterior cruciate ligament reconstruction (8 males and 6 females) and fourteen control subjects (7 males and 7 females) participated in the study. Subjects sat on an isokinetic dynamometer chair with localized vibration strapped on the quadriceps tendon while visual and auditory cues were removed. Subjects were asked to remember an active target position and replicate that position actively. The absolute difference between the target and replicated trial was used as joint position sense. There were three trials at three target positions (15, 45, and 75 degrees of knee flexion) with and without vibration. The order of testing conditions was randomized. One-way analysis of variance or non-parametric equivalent (Kruskal-Wallis test) was used to compare among limbs. Significance was set at P < 0.05 a priori. FINDINGS There were no significant joint position sense differences among anterior cruciate ligament reconstructed, contralateral, and control limbs with or without vibration (P = 0.207-0.914). INTERPRETATION There are several potential reasons for the current findings: vibration-induced post effect, locations of vibration, types of vibration, and rehabilitation status. Future studies should expand the current investigation and explore both sensory and motor functions in anterior cruciate ligament reconstructed subjects.
Collapse
Affiliation(s)
- Takashi Nagai
- Biomechanics Laboratories, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, United States,Sports Medicine Center, Mayo Clinic, Rochester, Minnesota, United States
| | - Nathaniel A. Bates
- Biomechanics Laboratories, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, United States,Sports Medicine Center, Mayo Clinic, Rochester, Minnesota, United States,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Timothy E. Hewett
- Biomechanics Laboratories, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, United States,Sports Medicine Center, Mayo Clinic, Rochester, Minnesota, United States,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States,Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota, United States,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Nathan D. Schilaty
- Biomechanics Laboratories, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, United States,Sports Medicine Center, Mayo Clinic, Rochester, Minnesota, United States,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States,CORRESPONDING AUTHOR: Name: Nathan Schilaty, DC, PhD, Address: Biomechanics Laboratories – 200 First Street SW, Rochester, MN 55905, United States,
| |
Collapse
|
8
|
Darter BJ, Bastian AJ, Wolf EJ, Husson EM, Labrecque BA, Hendershot BD. Locomotor adaptability in persons with unilateral transtibial amputation. PLoS One 2017; 12:e0181120. [PMID: 28704467 PMCID: PMC5507533 DOI: 10.1371/journal.pone.0181120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/26/2017] [Indexed: 11/18/2022] Open
Abstract
Background Locomotor adaptation enables walkers to modify strategies when faced with challenging walking conditions. While a variety of neurological injuries can impair locomotor adaptability, the effect of a lower extremity amputation on adaptability is poorly understood. Objective Determine if locomotor adaptability is impaired in persons with unilateral transtibial amputation (TTA). Methods The locomotor adaptability of 10 persons with a TTA and 8 persons without an amputation was tested while walking on a split-belt treadmill with the parallel belts running at the same (tied) or different (split) speeds. In the split condition, participants walked for 15 minutes with the respective belts moving at 0.5 m/s and 1.5 m/s. Temporal spatial symmetry measures were used to evaluate reactive accommodations to the perturbation, and the adaptive/de-adaptive response. Results Persons with TTA and the reference group of persons without amputation both demonstrated highly symmetric walking at baseline. During the split adaptation and tied post-adaptation walking both groups responded with the expected reactive accommodations. Likewise, adaptive and de-adaptive responses were observed. The magnitude and rate of change in the adaptive and de-adaptive responses were similar for persons with TTA and those without an amputation. Furthermore, adaptability was no different based on belt assignment for the prosthetic limb during split adaptation walking. Conclusions Reactive changes and locomotor adaptation in response to a challenging and novel walking condition were similar in persons with TTA to those without an amputation. Results suggest persons with TTA have the capacity to modify locomotor strategies to meet the demands of most walking conditions despite challenges imposed by an amputation and use of a prosthetic limb.
Collapse
Affiliation(s)
- Benjamin J. Darter
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Research, Hunter Holmes McGuire Veteran Affairs Medical Center, Richmond, Virginia, United States of America
- * E-mail:
| | - Amy J. Bastian
- Kennedy Krieger Institute, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Erik J. Wolf
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
- DoD-VA Extremity Trauma and Amputation Center of Excellence (EACE), Bethesda, Maryland, United States of America
| | - Elizabeth M. Husson
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
- BADER Consortium, University of Delaware, Newark, Delaware, United States of America
| | - Bethany A. Labrecque
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Brad D. Hendershot
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
- DoD-VA Extremity Trauma and Amputation Center of Excellence (EACE), Bethesda, Maryland, United States of America
- Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|