1
|
Clinical Outcomes and Central Pain Mechanisms are Improved After Upper Trapezius Eccentric Training in Female Computer Users With Chronic Neck/Shoulder Pain. Clin J Pain 2019; 35:65-76. [DOI: 10.1097/ajp.0000000000000656] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
The effects of propranolol on heart rate variability and quantitative, mechanistic, pain profiling: a randomized placebo-controlled crossover study. Scand J Pain 2018; 18:479-489. [DOI: 10.1515/sjpain-2018-0054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
Abstract
Abstract
Background and aims
The autonomic nervous system (ANS) is capable of modulating pain. Aberrations in heart rate variability (HRV), reflective of ANS activity, are associated with experimental pain sensitivity, chronic pain, and more recently, pain modulatory mechanisms but the underlying mechanisms are still unclear. HRV is lowered during experimental pain as well as in chronic pain conditions and HRV can be increased by propranolol, which is a non-selective β-blocker. Sensitization of central pain pathways have been observed in several chronic pain conditions and human mechanistic pain biomarkers for these central pain pathways include temporal summation of pain (TSP) and conditioned pain modulation (CPM). The current study aimed to investigate the effect of the β-blocker propranolol, and subsequently assessing the response to standardized, quantitative, mechanistic pain biomarkers.
Methods
In this placebo-controlled, double-blinded, randomized crossover study, 25 healthy male volunteers (mean age 25.6 years) were randomized to receive 40 mg propranolol and 40 mg placebo. Heart rate, blood pressure, and HRV were assessed before and during experimental pain tests. Cuff pressure pain stimulation was used for assessment of pain detection (cPDTs) and pain tolerance (cPTTs) thresholds, TSP, and CPM. Offset analgesia (OA) was assessed using heat stimulation.
Results
Propranolol significantly reduced heart rate (p<0.001), blood pressure (p<0.02) and increased HRV (p<0.01) compared with placebo. No significant differences were found comparing cPDT (p>0.70), cPTT (p>0.93), TSP (p>0.70), OA-effect (p>0.87) or CPM (p>0.65) between propranolol and placebo.
Conclusions
The current study demonstrated that propranolol increased HRV, but did not affect pressure pain sensitivity or any pain facilitatory or modulatory outcomes.
Implications
Analgesic effects of propranolol have been reported in clinical pain populations and the results from the current study could indicate that increased HRV from propranolol is not associated with peripheral and central pain pathways in healthy male subjects.
Collapse
|
3
|
Andersen HH, van Laarhoven AI, Elberling J, Arendt-Nielsen L. Modulation of Itch by Conditioning Itch and Pain Stimulation in Healthy Humans. THE JOURNAL OF PAIN 2017; 18:1437-1450. [DOI: 10.1016/j.jpain.2017.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 12/16/2022]
|