1
|
Abstract
Oestrogen–progesterone signalling is highly versatile and critical for the maintenance of healthy endometrium in humans. The genomic and nongenomic signalling cascades initiated by these hormones in differentiated cells of endometrium have been the primary focus of research since 1920s. However, last decade of research has shown a significant role of stem cells in the maintenance of a healthy endometrium and the modulatory effects of hormones on these cells. Endometriosis, the growth of endometrium outside the uterus, is very common in infertile patients and the elusiveness in understanding of disease pathology causes hindrance in selection of treatment approaches to enhance fertility. In endometriosis, the stem cells are dysfunctional as it can confer progesterone resistance to their progenies resulting in disharmony of hormonal orchestration of endometrial homeostasis. The bidirectional communication between stem cell signalling pathways and oestrogen–progesterone signalling is found to be disrupted in endometriosis though it is not clear which precedes the other. In this paper, we review the intricate connection between hormones, stem cells and the cross-talks in their signalling cascades in normal endometrium and discuss how this is deregulated in endometriosis. Re-examination of the oestrogen–progesterone dependency of endometrium with a focus on stem cells is imperative to delineate infertility associated with endometriosis and thereby aid in designing better treatment modalities.
Collapse
|
2
|
Khalaj K, Miller JE, Fenn CR, Ahn S, Luna RL, Symons L, Monsanto SP, Koti M, Tayade C. RNA-Binding Proteins in Female Reproductive Pathologies. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1200-1210. [PMID: 28408123 DOI: 10.1016/j.ajpath.2017.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022]
Abstract
RNA-binding proteins are key regulatory molecules involved primarily in post-transcriptional gene regulation of RNAs. Post-transcriptional gene regulation is critical for adequate cellular growth and survival. Recent reports have shown key interactions between these RNA-binding proteins and other regulatory elements, such as miRNAs and long noncoding RNAs, either enhancing or diminishing their response to RNA stabilization. Many RNA-binding proteins have been reported to play a functional role in mediation of cytokines involved in inflammation and immune dysfunction, and some have been classified as global post-transcriptional regulators of inflammation. The ubiquitous expression of RNA-binding proteins in a wide variety of cell types and their unique mechanisms of degradative action provide evidence that they are involved in reproductive tract pathologies. Aberrant inflammation and immune dysfunction are major contributors to the pathogenesis and disease pathophysiology of many reproductive pathologies, including ovarian and endometrial cancers in the female reproductive tract. Herein, we discuss various RNA-binding proteins and their unique contributions to female reproductive pathologies with a focus on those mediated by aberrant inflammation and immune dysfunction.
Collapse
Affiliation(s)
- Kasra Khalaj
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jessica E Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Christian R Fenn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - SooHyun Ahn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Rayana L Luna
- Ultrastructure Laboratory, Aggeu Magalhães Research Center of the Oswaldo Cruz Foundation, Recife, Brazil
| | - Lindsey Symons
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Stephany P Monsanto
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|